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Research, development, & deployment of advanced iterative s
DAKOTA: Res opment, & deploy |
algorithms for simulation-based assessment and design

Laboratories

DAKOTA
Optimization

A

Uncertainty Quant.
Parameter Est.

Sensitivity Analysis Iterative systems analysis

/ Black box: N\ Multilevel parallel computing
Sandia simulation codes . .
Commercial simulation codes Simulation management

Library mode (semi-intrusive): .
(' Model ALEGRA (shock physics), Design
Parameters Xyce (circuits), Sage (CFD), Metrics

Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,
SIERRA (multiphysics)

Impact across a variety of DOE mission areas
Stockpile (NNSAASC) Enerqy (ASCR, EERE, NE) Climate (SciDAC, CSSEF)

Abnormal environments Wind turbines, nuclear reactors Ice sheet modeling, CISM, CESM, ISSM
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Figure 1: Schematic of observations, houndary canditions, and pro




Emphasis on Scalable Methods for High-fidelity UQ on HPC () i

Laboratories

Key Challenges:
« Severe simulation budget constraints (e.g., a handful of HF runs) _ ==
« Moderate to high-dimensional in random variables: O(10") to O(102) [post KLE]

» Compounding effects: ﬂ ¢
* Mixed aleatory-epistemic uncertainties (= nested iteration) "y ¢
* Requirement to evaluate probability of rare events (e.g., safety criteria) 02 AL
« Nonsmooth responses (= difficulty with fast converging spectral methods) og, o, s T

Core UQ Capabilities: T I

« Sampling methods: LHS, MC, QMC, incremental B rs R

+  Reliability methods: local (MV, AMV+, FORM, ...), global (EGRA, GPAIS, POFDarts) **[EH ...

+ Stochastic expansion methods: polynomial chaos, stochastic collocation +f.

» Epistemic methods: interval estimation, Dempster-Shafer evidence - ! !

0'?].0 0.z 0.4 0.6 0.8 1.0

Research Thrusts:

« Compute dominant uncertainty effects despite key challenges above 108 = o Comun
« Scalable UQ foundation 3" o
« Adaptive refinement, Adjoint enhancement, Sparsity detection m E S
« Leverage his foundation within component-based meta-iteration : 104
+  Mixed UQ incl. model form, Multifidelity UQ, Bayesian methods B e

Equivalent Number of High-Fidelity Model Evaluations




Uncertainty Quantification Algorithms in DAKOTA:
New methods bridge robustness/efficiency gap

Sandia
National

Laboratories

Latin Hypercube, | Incremental Importance Bootstrap, FSU
Monte Carlo Jackknife
Local: Mean Value,| Global reliability GPAIS, POFDarts, Recursive Local:
1st- & 2nd-order methods (EGRA) [ GPs with gradient- | emulation, Notre Dame,
reliability (AMV+, enhancement TGP Global:
FORM, SORM) Research: Scalability, Robustness, Goal-orientation Vanderbilt
Polynomial chao$, | Dimension-adapfive | Local adapt | Stanford,
stoch collocation] | p-/h-refinement, refinement, Utah
(reqression., grad-enhancement, | adjoint EE,
Adv. Deployment sparsity detection discrete vars
Interval-valued/ : Opt-based interval Discrete Arizona St
2nd-order prob. Fills Gaps est, Dempster-Shafer,| GPs, Imprec.
w/nested sampling discrete model forms| probability
Emulator based model LANL,
MCMC with QUESO, | selection, UT Austin
GPMSA multifidelity
\ Efficient subspace | Rand fields / | NCSU, Utah,
method, Morris- stoch proc, Cornell,
Smale topology Moment meth| Maryland




Solution-Verified Reliability Analysis and Design of MEMS 4L 'ﬁaﬁdt'

=  Problem: MEMS subject to substantial variabilities
= Material properties, manufactured geometry, residual stresses
= Partyields can be low or have poor durability
= Data can be obtained = aleatory UQ = probabilistic methods

= Goal: account for both uncertainties and errors in design

switch
= Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), o __»_mf*_’_“*t“'
adaptivity (SIERRA), nonlin mech (Aria) > MESA application - \
= Perform soln verification in automated, parameter-adaptive way R E\/
E,
= Generate fully converged UQ/OUU results at lower cost - K e
I:min( AW, Sr )
e AMV?2+ and FORM converge to different MPPs 72'
(+ and o, respectively) 25 Parameter study over
e |ssue: high nonlinearity leading to multiple s s 3o uncertain variable
legitimate MPP solns. f’h il 1ss  range for fixed
] L 14 1 1 *,
e Challenge: design optimization may tend to & dDe51I%n dvl?; 1ali) l;s Ay
seek out regions encircled by the failure K py “s te aer z;e
domain. 1%t-order and even 2"-order S sl K enotes g(x) min()
e . . a s =-3.0.
probability integrations can experience = '
difficulty with this degree of nonlinearity. €
Optimizers can/will exploit this model Y s
weakness. ore

-0.2
width bias AW (um)




Non-Intrusive Stochastic Expansions: A i,
Laboratories
Polynomial Chaos and Stochastic Collocation
Polynomlal chaos: spectral prOJectlon using orthogonal polynomial basis fns
\1;0(5) = IL‘G(&) d’U( ) = 1 Distribution ~ Density function Polynomial ‘Weight function  Support range
R Z () = nil@) (&) = & Normel Pl el e ((I)) G [T?;cl
v ing MO = wen - . R R
/ )| using D Il i ——T 1 me———
Uy(€) = (&) viléa) = &iée Gamma % GenerallzedLaguerreL( )() % " [0, 00]
Us(€) = wo(&) dalés) = & —1
* Estimate ¢; using regression or numerical integration: (R, ;) 1 fR‘I’ (6)de
. . oy = = i 0
sampling, tensor quadrature, sparse grids, or cubature | ’ (v?) (%) Jo o 7
Stochastic collocation: instead of estimating coefficients for N,
known basis functions, form interpolants for known coefficients R(§) = Zfr L;(¢)
» Global: Lagrange (values) or Hermite (values+derivatives) =1
* Local: linear (values) or cubic (values+gradients) splines
&_ &_ miy mi,
k . . . ,
H ':> §) = Z Z r (5;; e 35;:) (L; @ TN\ 1/sqrt(N) for LHS ||
k ji=1  jn=1 R —~_
%j Sparse interpolants formed using X of tensor interpci |\ =

* Tailor expansion form:
— p-refinement: anisotropic tensor/sparse, generalized sparse
— h-refinement: local bases with dimension & local refinement

* Method selection: fault tolerance, decay, sparsity, error est.

CDF Residual

super-algebraic for num.
integration & regression




Adaptive Collocation Methods: Generalized Sparse Grids () e
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Polynomial order (p-) refinement approaches:
» Uniform: isotropic tensor/sparse grids

» Increment grid: increase order/level, ensure change (restricted growth in nested rules)

« Assess convergence: L2 change in response covariance
- Dimension-adaptive: anisotropic tensor/sparse grids ~ |Wy <i-vy < w7y + |7

 PCE/SC: variance-based decomp. - total Sobol’ indices - anisotropy

« PCE: spectral coefficient decay rates - anisotropy
» Goal-oriented dimension-adaptive: generalized sparse grids

« PCE/SC: change in QOI induced by trial index sets on active front
1. Initialization: Starting from reference grid Smolyak sparse grid ) = 110 6-F
(often w = 0 grid), define active index sets using T
admissible forward neighbors of all old index sets. 2 or
2. Trial set evaluation: For each trial index set, A » oo
evaluate tensor grid, form tensor expansion, ) af e
update combinatorial coefficients, and combine Lo
with reference expansion. Perform necessary A A A N
bookkeeping to allow efficient restoration. :
3. Trial set selection: Select trial index set that
induces largest change in statistical QOI. o A& I
4. Update sets: If largest change > tolerance, then b e R R
promote selected trial set from active to old and , ‘ (Gerstner, 2003)
compute new admissible active sets; return to 2. . B * . _ .
If tolerance is satisfied, advance to step 5. . ) L] Fine-grained control:
5. Finalization: Promote all remaining active sets frontier not limited by
to old set, update combinatorial coefficients, and ; } x prescribed shape of
perform final combination of tensor expansions to B . .
arrive at final result for statistical QOI. x index set constraint

£ p— Ep— R ER— 0o 05 1 15 2
x| X1



Extend Scalability: (Adjoint) Derivative-Enhancement (i) i

Laboratories

PCE: B ; N [ )
* Linear regression including derivatives mo5(&) &) meg(&) 7(md) i
: : e (&) T&‘L(az) e 5Et (&) (m+1.9) 5
« Gradients/Hessians - addtnl. eqns. . _ . _ _
* Over-determined: SVD, eq-constrained LS Omos 7y  Omiy ol q(m;n B oii;
. . . Wn&l(s‘i) T L&) a_gnj'({;i) ue BEne
* Under-determined: compressive sensing : . : . )
SC: 10' - 5D (?erstnerwith gradlents and usmg sub-s sampled lensorgnd - Gradieni~Enhanced PCE: Rosenbrock Std Uniform Condition Numbers from GELSS

* Gradient-enhanced interpolants ’*_‘\’—\\I:::z;

* Local: cubic Hermite splines
* Global: Hermite interpolating polynomials

error in variance
>

107}
N i . 5
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S 2 1 1 1 10-70 2’0 4’0 éo éo 160 1éo 140
z H( )(xl)H( )(xz)H( )(x3)+ 08 model runs
i=1 06 - Convergence for Gerstner aniso3 for sparse grids under uniform refinement o
= T T T T 10
N hoo —P— PCE Glabal Legendre
—<€— SC Global Lagrange
Z t A D ODHP ) HP () + | o == e
hll :
=l 02 . Q .
107 3 Jio
N S
z H(l)(x H(l)(x )H(2)(x) o - “ S Smooth
1 2 3 | Loty S
i=1 02 b é
é 107 Ao
U= z : ,(1) ) (1> +z df; W(2>W(1>W(1) n [ | .
. Nonsmooth
Y, d
z lf, W(l) (2) (1) +z f (1) (1) (2) ol %5%%@%51555@?2‘1’1
i=1 dx2 3 v . —G—SCPWC‘EEiacrN:v“vtn:r:‘:C(;S:
i m%n ‘w ‘2 3 ‘¢ ‘;, Sg ‘2 ‘a ‘,1 ‘5 6
and similar for hlgher-order moments © © O e © oo " Sinuatons ° °



Stochastic Expansions on Unstructured Grids:
Compressive Sensing

(a) CS methodology (/1 objective) (b) Pseudo-inverse (¢2 objective)
BP

c =argmin ||c|,s+ suchthat dc=y
BPDN and OMP

¢c =argmin ||c|[, suchthat |®c -y, <c¢

LASSO and LARS

- ¢ =argmin ||éc —y|% such that|x|, < —-

&1
o

EN

error in variance
-
o

Sandia
m National

Laboratories

or in matrix notation
b =Ax+¢
and find the minimum norm solution
mxin |Ax — b||2
or ( more recently ) find a sparse solution
mxin |x|[y suchthat |Ax—Db|,<¢

Structured or unstructured grids
Value-based or gradient-enhanced

5D Gerstner without gradients and using sub-sampled tensor grid
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Application Deployment (CASL)

Application: Nuclear reactor cores experience localized boiling, which leads to CRUD
(Chalk River Unidentified Deposit). These deposits result in undesirable power shifts
(CIPS) within the core. Statistics of mass evaporation (ME) rate are of interest.

Methodology: PCE/SC with uniform/adaptive refinement compared to LHS

Plant A (n=4, smooth, mild anisotropy) Plant B (n=10, discontinuous, high anisotropy)
——= s —#—LHS
—=— PCE uniform o —&— PCE uniform
—=&— SC uniform 10 F SN —F&— SC uniform  [7
1oL ~— PCE adapfive i N =— PCE adaptive|]
—&— SC adaptive —+&— SC adaptive |1
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Local Error Estimation with Hierarchical Surpluses () &

From X. Ma, 2010
Y X ! =
Hierarchical basis: ) "4 A
» Improved precision in Qol increments ;
: , & 4
 Surpluses provide error estimates for - . N
local refinement using local/global oo m
hierarchical interpolants o A7 |
* New error indicators under
development that leverage both i
value and gradient surpluses v r v v r_
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NNSA Example: UQ Modernization
for Abnormal Thermal Environments

Traditional approach: MVFOSM with central finite differences (2n+1 evaluations, linear Taylor series)

* Compared to level 1 sparse grid PCE: captures nonlinear main effects and supports
nonlinear sensitivity analysis

+ 2n+1 evaluations at Gauss points - quadratic main effects, no interactions
» First set of active indices within a generalized sparse grid approach

* Naturally leads to subsequent refinement, as budget allows
* Index set(s) with greatest influence on Qol = higher-order main + interaction effects
—> ldentified cases of mild and severe nonlinearity (MV ok, MV not ok) in thermal response

Traditional approach: LHS with coarse sampling (N samples, 1/ sqrt(N) convergence rate)
» Post-process unstructured data using regression PCE
« Standard SVD for over-determined low-order expansions
» Compressive sensing for under-determined higher-order expansions
+ K-fold cross-validation - expansion order, noise tolerance
—> ldentified N dominant main+interaction terms within candidate set, efficient global SA via VBD



. Sandia
Core UQ Algorithms: strengths, weaknesses, research needs A etiona

Laboratories

Sampling (nongradient-based)
e Strengths: Simple and reliable, convergence rate is dimension-independent
e Weaknesses: N'V/2 convergence = expensive for accurate tail statistics
Local reliability (gradient-based)
e Strengths: computationally efficient, widely used, scalable to large n (w/ efficient/adjoint derivatives)
e Weaknesses: algorithmic failures for limit states with following features
e Nonsmooth: fail to converge to an MPP * Multimodal: only locate one of several MPPs
e Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP
Global reliability (typically nongradient-based)
e Strengths: handles multimodal and/or highly nonlinear limit states, tailored for efficient probability estimation
e Weaknesses:
e Conditioning, nonsmoothness - ensemble emulation (recursion, discretization)
e Scaling tolargen - adjoint gradient-enhancement, additional refinement bias
Stochastic expansions (typically nongradient-based)
» Strengths: functional representation, exponential convergence rates for smooth problems, best for moment est.
* Weaknesses:
* Nonsmoothness - local h-refinement based on hierarchical error estimates
e Scaling to large n -> adaptive refinement, adjoint gradient-enhancement, sparsity detection
Epistemic methods (typically nongradient-based)
» Strengths: extrema are point solutions instead of integrated quantities

* Weaknesses: high degrees of input structure (Dempster-Shafer) require many extrema
(bridging intervals and distributions breaks down as continuum is approached discretely)
I EEEEEEEE—————————



Multiple Model Forms in UQ ) i,
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Discrete model choices, same physics (additional dimensions for multi-{physics,scale})

Potential Flow

» Aclear hierarchy of fidelity (from low to high)

» Multifidelity UQ methods: generate statistics for
truth model leveraging less expensive models

* An ensemble of models that are all credible (lacking
a clear preference structure): e.g., turbulence models

Hybrid RANS/LES

» Without (adequate) data: epistemic model form uncertainty propagation
« With data: Bayesian model selection

Potential Flow

=
(]
. e
» Both hierarchy and peers 2 —
U‘% Averaged Navier-
. . . . . = Stokes (RANS)
« Muiltifidelity inference: calibration 3
enables resolution of low % Hybrid
complexity discrepancies =
:
Large Eddy

* Simulation (LES)




Multifidelity UQ using Stochastic Expansions (i) i

* High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ
* Low fidelity “design” codes often exist that are predictive of basic trends
« Can we leverage LF codes w/i HF UQ in a rigorous manner? - global approxs. of model discrepancy

A‘io Jn"hz
Fra(€ me(& (&) + > AF(EHL;(E) Ny >> Ny,
j=1
Ruign(§) = ¢ cos 0.56 — 0.5¢” %28 o o
- discrepanc
Rigw () = €00 cos058, Lo
10°° 10y
£ 2 4070} o
8 ¢> E 3
E 10° g § 10
._g 10_15' 10—3 |
a —— High-Fidelity —— High-Fidelity
— I'\flultnr dellty — Nlultnr dellty
s High—Fidelity Model 107" : 107" .
107" Correction Function 0 5 10 15 20 0 5 10 15 20
5 10 15 20 Number of High—Fidelity Model Evaluations Number of High—Fidelity Model Evaluations
Polynomial Order (a) Error in mean (b) Error in standard deviation
Adaptive sparse grid multifidelity algorithm: 3active | g_active
. . . iscrepanc
« Generalized sparse grids for LF & each discrepancy level W Fsets i Ehendiinhed
. . . ) 21 |,
* Greedy selection among multiple grids: max AQol/ACost 3 ] S
* Refines discrepancy where LF is less predictive 0
01 2 3 4 01234
Compressive sensing multifidelity algorithm: . -
» Target sparsity within the model discrepancy
- - L] . L] . : - L]




Elliptic PDE with FEM

d

dx

du(r,w)

= 1.
dx "

x e (0,1),

r(r,w)

u(0,w) = u(l,w)

Sandia
National
Laboratories

h

Qol is u(0.5, w).

LF = coarse spatial
grid with 50 states.

HF = fine spatial grid

10 CIN 2 ]
p(r,w) = 0.1+ 0.033 V/Aeor(a)Ye(w),  Yi ~ Uniform[~1, 1]{| Cpn(ir, o) = exp [— (“L' - ; ) ] with 500 states.
k=1 ‘ Expense ratio = 40.
0 r = Nhi/Nlo =6
10 @ - : —©€— CS muli
. . - > ; —A— CS single
o L
Static offset & uniform refinement 8 4o'L s
© E
Stati ffset | =1 Relative Error ~ Relative Error ~ High-Fidelity  Low-Fidelity cg 10—2 :_ SG single
auc oriset level = in Mean in Std Deviation  Evaluations Evaluations g % E—MC
Single-Fidelity (¢ = 3) 5.3 x 10~6 2.7 x 102 1981 - 5 107 _
Single-Fidelity (q = 4) 41 %1077 2.3 % 1072 12,081 - o : ]
Multifidelity (g =4, r =1)  4.7x 107 2.6 x 1075 1981 12,081 B 10°E
K> :
Adapti e T TS
aptive | . - .
P pf High-Fidelity Model Evaluations
Sparse 102 1 o
Grid N N
£t 2 107
§ 107° § 107°
107" 107"
= High-Fidelity = High~Fidelity
—— Multifidelity —— Multifidelity
107" ‘ - : : 107" : : : :
10° 10’ 10° 10° 10 10° 10° 10’ 10° 10° 10* 10°

Equivalent Number of High-Fidelity Model Evaluations

(a) Error in mean

(b) Error in standard deviation

Equivalent Number of High-Fidelity Model Evaluations




ASCR MF UQ example: VAWT Gust Response () i

Laboratories

Vertical-axis Wind Turbine (VAWT) Low fidelity gﬁ)(;::c.:gw QTc:Jdrleo if:; %;(rinalljlzzlig

Computed vortex filaments
in the wake of a VAWT &

% o,
L]

Time: 29.800000



Mixed Aleatory-Epistemic UQ: ) i
IVP, SOP, and DSTE based on Stochastic Expansions

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge epistemic
uncertainty): insufficient info to specify objective probability distributions sampling

Traditional approach: nested sampling

1.00

= Expensive sims - under-resolved
sampling (especially @ outer loop) 0.75-

= Under-prediction of credible outcomes

p Interval-
valued and

second-order
statistics

Cum Prob
o
o
T

Algorithmic approaches " tesponse metric
* Interval-valued probability (IVP), aka probability bounds analysis (PBA) Increasing epistemic
» Dempster-Shafer theory of evidence (DSTE) structure (stronger

- Second-order probability (SOP), aka probability of frequency assumptions)

Address accuracy and efficiency minimize ~ M(s)

* Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined) subjectto s <5 < sy

* Outer |OOpZ maximize M(s)
« VP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) —> |subjectto s, <5< sy

— « SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)




Mixed Aleatory-Epistemic UQ: )
IVP, SOP, and DSTE based on Stochastic Expansions i

Interv Est UuQ Expansion Evaluations
Approach Approach Variables (Fn, Grad) Area B 1 |l ‘t T ot CoiSC wos et
. . ‘ Global OpYSC w=3 Plaus
IVP SC SSG Aleatory: B interval converged to 5-6 digits by 300-400 evals ST ~ i ok |
EGO SCSSGw=1 Aleatory (84/91, 0/0) [75.0002,374999] [ 226264, 11.8623] Foor s 100018 1000 s |
EGO SCSSGw =2 Aleatory (372/403. 0/0) [75.0002, 374.999] [-2.18735. 11.5900] <ol " Multiol s |
EGO SCSSG w =3 Aleatory (1260/1365, 0/0) [75.0002,374999]  [-2.18732, 11.5900] 3 (. ultiple cells
EGO SC SSG w =4 Aleatory (3564/3861, 0/0) [75.0002, 374.999] [-2.18732, 11.5900] £ ocf - within DSTE
NPSOL SCSSGw=1 Aleatory Q1/77.21/77) [75.0000, 375.000] [2.26264, 11.8623] .| |
NPSOL SCSSGw=2 Aleatory (93/341. 93/341) [75.0000, 375.000] [2.18735, 11.5901] H ‘
NPSOL SC SSG w =3 Aleatory (315/1155, 315/1155) [75.0000, 375.000] [2.18732, 11.5900] ot S
NPSOL SCSSGw=4 Aleatory (891/3267. 891/3267) [75.0000, 375.000] [2.18732, 11.5900] £, b u
: — S0 L
IVP nested LHS sampling: converged to 2-3 digits by 108 evals _ ik
LHS 100 LHS 100 N/A 1047104, 0/0) [80.5075, 338.607] [-2.14505, 8.64891] L
LHS 1000 LHS 1000 N/A 10%/10° . 0/0) [76.5939. 368.225] [-2.19883, 11.2353]
LHS 104 LHS 104 N/A (1087108 . 0/0) [76.4755,373.935] [-2.16323, 11.5593] = o Rﬂ.ab.m‘:}m O w2
Fully converged area interval = [75., 375.], B interval = [-2.18732, 11.5900]
Interval est w/ mixed-integer global opt Drekar RANS turbulence: Spalart-Allmaras,
° | | e k-¢ with Neumann BC, k-¢ with Dirichlet BC
—A— SBGO 10
107k —A—3sBGO 20
—A— 5BGO 100
107
g 107
;'3’ 107
107 . . . ) o Figure 5. The steady-state x-velocity for typical realization com-
Uncerta“’] mOdeI forms (Rosenbrock) Fltgl(ljre 4 Th}e?:eNaéiy—stglel &\Sloilly for typical realization com- puted using a RANS model in Drekar.
puted using a model 1n DreKar.
o't Fom L £y =100( = )"+ (1—x)" Method Outer Evals Total Eval
A |Form2:  f,=100(x2 — s +.2)2 + (0.8~ x1)? ethod  uler mvals ofal Bvals Hux Hpressure
; : b2~ | )+ (087 x) LHS 10 250 [0.727604, 2.78150] [32.6109, 282.237]
10

10 0 e e o SBGO 17 425 [0.622869, 4.44624] [21.7321, 297.957]

Total Evaluations




CISM Pareto set calibration

1

accumulation, temperature surface topography

surface velocity

’ flow law
calving law

Tul m/yr
1000

shelf geometry

melt/freeze distribution bed topography

geothermal flux

Figure 1: Schematic of observations, boundary conditions, and processes affecting ice sheet initialization.

CISM global sensitivity (PCE)

deltaArea Sobol indices:

deltavolume

s

a5k

*

054

Main Total
4.7513765309¢-02 6.7248544556¢-02 geothermal flux
9.1650860584¢-01 9.3781166646¢-01 flow_factor
7.9696945177¢-03 2.6872229178e-02 basal_exponent
Interaction

9.1053996720e-03 geothermal_flux flow_factor
= 6.7048737120e-03 geothermal_flux basal_exponent

* . 8.2731550851e-03 flow_factor basal_exponent
3.9245058634e-03 geothermal_flux flow_factor basal exponent

*
e
* ok oxe

Ice sheet initialization from

L L L L
1FF2 17F4 17FE 17FB 178 1782 1784 1788 1788 (7@ 1782

(synthetic) data using
Bayesian calibration

deltadren,

deltaVolume Sobol indices:
Main Total
2.3075148007¢-04 5.8457999638¢-04 geothermal_flux
9.9465232748e-01 9.9546169642¢-01 flow_factor
4.2442002665¢-03 4.9154442300e-03 basal exponent
Interaction
2.0147681120e-04 geothermal_flux flow_factor
6.3351832896¢-05 geothermal_flux basal_exponent
5.1889225839¢-04 flow_factor basal_exponent
8.8999872203¢-05 geothermal_flux flow_factor basal_exponent

Basal sliding field (4 param):
B(x,»)=PBy+Pix+By+Bsr

Office of Science Example: SciDAC (PISCEES)
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Model problem: ice dome in FELIX
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UQ deployment faces a number of key challenges
» Severe simulation budget constraints and moderate to high random dimensionality
+ Compounded by mixed uncertainties, nonsmoothness, rare events

Investments in scalable UQ R&D

+ We are developing a broad suite of scalable and robust core UQ methods with a focus
on addressing a critical gap that has existed with popular production methods

« Within the highlighted area of stochastic expansions:
« Adaptive refinement, adjoint enhancement, sparsity detection
« Suite of formulations: local / global, value / gradient, structured / unstructured, nodal / hierarchical

* We are building on this foundation
« Multifidelity UQ, Mixed UQ including model form, Bayesian inference
Impact and deployment
« UQ tools deployed through Dakota (v5.3.1 released 5/15/13, v5.4 scheduled 11/15/13)
« Impact with NNSA (stockpile), Energy (wind, nuclear), and Climate (community earth/ice




