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Research, development, & deployment of advanced iterative

algorithms for simulation-based assessment and design

Black box:
Sandia simulation codes
Commercial simulation codes

Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter, 
SIERRA (multiphysics)

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

Model
Parameters

Design
Metrics

Iterative systems analysis

Multilevel parallel computing

Simulation management

Impact across a variety of DOE mission areas

Stockpile (NNSA ASC)
Abnormal environments

Energy (ASCR, EERE, NE)
Wind turbines, nuclear reactors

Climate (SciDAC, CSSEF)
Ice sheet modeling, CISM, CESM, ISSM



Emphasis on Scalable Methods for High-fidelity UQ on HPC

Key Challenges:

• Severe simulation budget constraints (e.g., a handful of HF runs)

• Moderate to high-dimensional in random variables: O(101) to O(102)  [post KLE]

• Compounding effects:

• Mixed aleatory-epistemic uncertainties ( nested iteration)

• Requirement to evaluate probability of rare events (e.g., safety criteria)

• Nonsmooth responses ( difficulty with fast converging spectral methods)

Core UQ Capabilities:

• Sampling methods: LHS, MC, QMC, incremental

• Reliability methods: local (MV, AMV+, FORM, …), global (EGRA, GPAIS, POFDarts)

• Stochastic expansion methods: polynomial chaos, stochastic collocation

• Epistemic methods: interval estimation, Dempster-Shafer evidence

Research Thrusts:

• Compute dominant uncertainty effects despite key challenges above

• Scalable UQ foundation

• Adaptive refinement, Adjoint enhancement, Sparsity detection

• Leverage his foundation within component-based meta-iteration

• Mixed UQ incl. model form, Multifidelity UQ, Bayesian methods



Uncertainty Quantification Algorithms in DAKOTA:
New methods bridge robustness/efficiency gap

Traditional 
(at Sandia)

Production Recently 
released

Under dev
Planned

Collabs.

Sampling Latin Hypercube, 
Monte Carlo

Incremental Importance Bootstrap, 
Jackknife

FSU

Reliability Local: Mean Value, 
1st- & 2nd-order 
reliability (AMV+, 
FORM, SORM)

Global reliability 
methods (EGRA)

GPAIS, POFDarts, 
GPs with gradient-
enhancement

Recursive 
emulation, 
TGP

Local:
Notre Dame, 
Global:
Vanderbilt

Stochastic 
expansion

Polynomial chaos, 
stoch collocation 
(regression, 
tensor, sparse)

Dimension-adaptive 
p-/h-refinement, 
grad-enhancement, 
sparsity detection

Local adapt 
refinement, 

adjoint EE,
discrete vars

Stanford, 
Utah

Epistemic Interval-valued/ 
2nd-order prob. 
w/nested sampling

Opt-based interval 
est, Dempster-Shafer, 
discrete model forms

Discrete 
GPs, Imprec. 
probability 

Arizona St

Bayesian Emulator based 
MCMC with QUESO, 
GPMSA

model 
selection, 
multifidelity

LANL, 
UT Austin

Other Efficient subspace 
method, Morris-
Smale topology

Rand fields / 
stoch proc,

Moment meth

NCSU, Utah, 
Cornell, 
Maryland

Adv. Deployment 

Fills Gaps

Research: Scalability, Robustness, Goal-orientation



Solution-Verified Reliability Analysis and Design of MEMS

 Problem: MEMS subject to substantial variabilities

 Material properties, manufactured geometry, residual stresses

 Part yields can be low or have poor durability

 Data can be obtained  aleatory UQ  probabilistic methods

 Goal: account for both uncertainties and errors in design

 Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), 
adaptivity (SIERRA), nonlin mech (Aria)  MESA application

 Perform soln verification in automated, parameter-adaptive way

 Generate fully converged UQ/OUU results at lower cost

Parameter study over 
3σ uncertain variable 
range for fixed 
design variables dM*.  
Dashed black line 
denotes g(x) = Fmin(x) 
= -5.0.

• AMV2+ and FORM converge to different MPPs 
(+ and o, respectively)

• Issue: high nonlinearity leading to multiple 
legitimate MPP solns.

• Challenge: design optimization may tend to 
seek out regions encircled by the failure 
domain.  1st-order and even 2nd-order 
probability integrations can experience 
difficulty with this degree of nonlinearity. 
Optimizers can/will exploit this model 
weakness.



Stochastic collocation: instead of estimating coefficients for 
known basis functions, form interpolants for known coefficients

• Global:  Lagrange (values) or Hermite (values+derivatives)

• Local:    linear (values) or cubic (values+gradients) splines

Sparse interpolants formed using  of tensor interpolants

Non-Intrusive Stochastic Expansions:
Polynomial Chaos and Stochastic Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

using

• Estimate j using regression or numerical integration:
sampling, tensor quadrature, sparse grids, or cubature

• Tailor expansion form:
– p-refinement: anisotropic tensor/sparse, generalized sparse

– h-refinement: local bases with dimension & local refinement

• Method selection: fault tolerance, decay, sparsity, error est.
super-algebraic for num. 
integration & regression

1/sqrt(N) for LHS



Adaptive Collocation Methods: Generalized Sparse Grids

Polynomial order (p-) refinement approaches:

• Uniform: isotropic tensor/sparse grids

• Increment grid: increase order/level, ensure change (restricted growth in nested rules)

• Assess convergence: L2 change in response covariance

• Dimension-adaptive: anisotropic tensor/sparse grids

• PCE/SC: variance-based decomp.  total Sobol’ indices  anisotropy

• PCE: spectral coefficient decay rates  anisotropy

• Goal-oriented dimension-adaptive: generalized sparse grids

• PCE/SC: change in QOI induced by trial index sets on active front

(Gerstner, 2003)

Fine-grained control: 
frontier not limited by 
prescribed shape of 
index set constraint

Smolyak sparse grid
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1. Initialization: Starting from reference grid 
(often w = 0 grid), define active index sets using 
admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set, 
evaluate tensor grid, form tensor expansion, 
update combinatorial coefficients, and combine 
with reference expansion. Perform necessary 
bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that 
induces largest change in statistical QOI. 

4. Update sets: If largest change > tolerance, then 
promote selected trial set from active to old and 
compute new admissible active sets; return to 2. 
If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets 
to old set, update combinatorial coefficients, and 
perform final combination of tensor expansions to 
arrive at final result for statistical QOI.



Extend Scalability: (Adjoint) Derivative-Enhancement

PCE:

• Linear regression including derivatives

• Gradients/Hessians  addtnl. eqns.

• Over-determined: SVD, eq-constrained LS

• Under-determined: compressive sensing
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and similar for higher-order moments

Cubic shape fns: type 1 
(value) & type 2 (gradient)

SC:

• Gradient-enhanced interpolants

• Local: cubic Hermite splines

• Global: Hermite interpolating polynomials

Nonsmooth

Smooth



Stochastic Expansions on Unstructured Grids:

Compressive Sensing
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Structured or unstructured grids
Value-based or gradient-enhanced



Application Deployment (CASL)

Plant A (n=4, smooth, mild anisotropy)  Plant B (n=10, discontinuous, high anisotropy)

Application: Nuclear reactor cores experience localized boiling, which leads to CRUD 
(Chalk River Unidentified Deposit).  These deposits result in undesirable power shifts 
(CIPS) within the core.  Statistics of mass evaporation (ME) rate are of interest.

Methodology: PCE/SC with uniform/adaptive refinement compared to LHS



Hierarchical basis:

• Improved precision in QoI increments

• Surpluses provide error estimates for 
local refinement using local/global 
hierarchical interpolants

• New error indicators under 
development that leverage both 
value and gradient surpluses

From X. Ma, 2010

From J. Jakeman, July 2010

Local Error Estimation with Hierarchical Surpluses



NNSA Example: UQ Modernization 
for Abnormal Thermal Environments 

Traditional approach: MVFOSM with central finite differences (2n+1 evaluations, linear Taylor series)

• Compared to level 1 sparse grid PCE: captures nonlinear main effects and supports 
nonlinear sensitivity analysis

• 2n+1 evaluations at Gauss points  quadratic main effects, no interactions

• First set of active indices within a generalized sparse grid approach

• Naturally leads to subsequent refinement, as budget allows

• Index set(s) with greatest influence on QoI  higher-order main + interaction effects

 Identified cases of mild and severe nonlinearity (MV ok, MV not ok) in thermal response

Traditional approach: LHS with coarse sampling (N samples, 1/ sqrt(N) convergence rate)

• Post-process unstructured data using regression PCE

• Standard SVD for over-determined low-order expansions

• Compressive sensing for under-determined higher-order expansions

• K-fold cross-validation  expansion order, noise tolerance

 Identified N dominant main+interaction terms within candidate set, efficient global SA via VBD



Core UQ Algorithms: strengths, weaknesses, research needs

Sampling (nongradient-based)

• Strengths: Simple and reliable, convergence rate is dimension-independent

• Weaknesses: N-1/2 convergence  expensive for accurate tail statistics

Local reliability (gradient-based)

• Strengths: computationally efficient, widely used, scalable to large n (w/ efficient/adjoint derivatives)

• Weaknesses: algorithmic failures for limit states with following features

• Nonsmooth: fail to converge to an MPP

• Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP

Global reliability (typically nongradient-based)

• Strengths: handles multimodal and/or highly nonlinear limit states, tailored for efficient probability estimation

• Weaknesses:

• Conditioning, nonsmoothness  ensemble emulation (recursion, discretization)

• Scaling to large n  adjoint gradient-enhancement, additional refinement bias

Stochastic expansions (typically nongradient-based)

• Strengths: functional representation, exponential convergence rates for smooth problems, best for moment est.

• Weaknesses: 

• Nonsmoothness  local h-refinement based on hierarchical error estimates

• Scaling to large n  adaptive refinement, adjoint gradient-enhancement, sparsity detection

Epistemic methods (typically nongradient-based)

• Strengths: extrema are point solutions instead of integrated quantities

• Weaknesses: high degrees of input structure (Dempster-Shafer) require many extrema
(bridging intervals and distributions breaks down as continuum is approached discretely)

• Multimodal: only locate one of several MPPs



• A clear hierarchy of fidelity (from low to high)

• Multifidelity UQ methods: generate statistics for 
truth model leveraging less expensive models

Multiple Model Forms in UQ
Discrete model choices, same physics (additional dimensions for multi-{physics,scale})

• Both hierarchy and peers

• Multifidelity inference: calibration 
enables resolution of low 
complexity discrepancies

• An ensemble of models that are all credible (lacking 
a clear preference structure): e.g., turbulence models

• Without (adequate) data: epistemic model form uncertainty propagation
• With data: Bayesian model selection



• High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ

• Low fidelity “design” codes often exist that are predictive of basic trends

• Can we leverage LF codes w/i HF UQ in a rigorous manner?  global approxs. of model discrepancy

Multifidelity UQ using Stochastic Expansions

Nlo >> Nhi

discrepancy

Adaptive sparse grid multifidelity algorithm:
• Generalized sparse grids for LF & each discrepancy level
• Greedy selection among multiple grids: max QoI/Cost
• Refines discrepancy where LF is less predictive

Compressive sensing multifidelity algorithm: 
• Target sparsity within the model discrepancy

3 active 
LF sets

4 active 
discrepancy 
sets



Static offset & uniform refinement

Static offset level = 1

Elliptic PDE with FEM

Adaptive
Sparse

Grid

QoI is u(0.5, ω). 

LF = coarse spatial 
grid with 50 states.

HF = fine spatial grid 
with 500 states. 

Expense ratio = 40.



ASCR MF UQ example: VAWT Gust Response

Vertical-axis Wind Turbine (VAWT) CACTUS: Code for Axial and 
Crossflow TUrbine Simulation

Computed vortex filaments 
in the wake of a VAWT

Low fidelity

High fidelity: DG formulation for LES



0.00

0.25

0.50

0.75

1.00

C
u
m

 P
ro

b

2e+15 4e+15 6e+15 8e+15 1e+16 1.2e+16response metric

Interval-
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second-order 
statistics

Traditional approach: nested sampling

 Expensive sims  under-resolved 

sampling (especially @ outer loop)

 Under-prediction of credible outcomes

epistemic
sampling

aleatory
sampling

simulation

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge 
uncertainty): insufficient info to specify objective probability distributions

Increasing epistemic 
structure (stronger 
assumptions)

Algorithmic approaches

• Interval-valued probability (IVP), aka probability bounds analysis (PBA)

• Dempster-Shafer theory of evidence (DSTE)

• Second-order probability (SOP), aka probability of frequency

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Address accuracy and efficiency

• Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)

• Outer loop:

• IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP)

• SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)



Drekar RANS turbulence: Spalart-Allmaras, 
k- with Neumann BC, k- with Dirichlet BC

Multiple cells 
within DSTE

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Interval est w/ mixed-integer global opt

Uncertain model forms (Rosenbrock)

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900]

IVP SC SSG Aleatory:  interval converged to 5-6 digits by 300-400 evals

IVP nested LHS sampling: converged to 2-3 digits by 108 evals



Office of Science Example: SciDAC (PISCEES)

Known  solution: (2.9, .012, -.002, -.005)

deltaArea Sobol indices:

Main             Total

4.7513765309e-02  6.7248544556e-02 geothermal_flux

9.1650860584e-01  9.3781166646e-01 flow_factor

7.9696945177e-03  2.6872229178e-02 basal_exponent

Interaction

9.1053996720e-03 geothermal_flux flow_factor

6.7048737120e-03 geothermal_flux basal_exponent

8.2731550851e-03 flow_factor basal_exponent

3.9245058634e-03 geothermal_flux flow_factor basal_exponent

deltaVolume Sobol indices:

Main             Total

2.3075148007e-04  5.8457999638e-04 geothermal_flux

9.9465232748e-01  9.9546169642e-01 flow_factor

4.2442002665e-03  4.9154442300e-03 basal_exponent

Interaction

2.0147681120e-04 geothermal_flux flow_factor

6.3351832896e-05 geothermal_flux basal_exponent

5.1889225839e-04 flow_factor basal_exponent

8.8999872203e-05 geothermal_flux flow_factor basal_exponent

CISM global sensitivity (PCE)
Model problem: ice dome in FELIX

(x, y) 0  1x 2 y3r

Ice sheet initialization from 
(synthetic) data using 
Bayesian calibration

Basal sliding field (4 param):

Greenland 
surface ice 
velocity

CISM Pareto set calibration



Summary

UQ deployment faces a number of key challenges

• Severe simulation budget constraints and moderate to high random dimensionality

• Compounded by mixed uncertainties, nonsmoothness, rare events

Investments in scalable UQ R&D

• We are developing a broad suite of scalable and robust core UQ methods with a focus 
on addressing a critical gap that has existed with popular production methods

• Within the highlighted area of stochastic expansions:

• Adaptive refinement, adjoint enhancement, sparsity detection

• Suite of formulations: local / global, value / gradient, structured / unstructured, nodal / hierarchical

• We are building on this foundation

• Multifidelity UQ, Mixed UQ including model form, Bayesian inference

Impact and deployment

• UQ tools deployed through Dakota (v5.3.1 released 5/15/13, v5.4 scheduled 11/15/13)

• Impact with NNSA (stockpile), Energy (wind, nuclear), and Climate (community earth/ice


