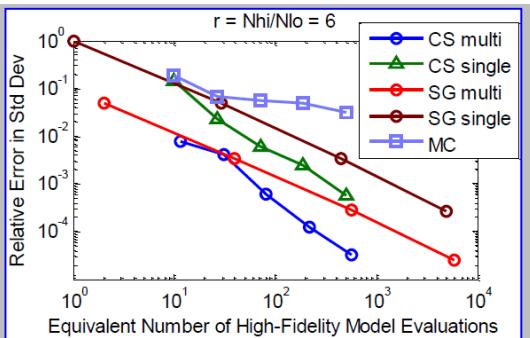
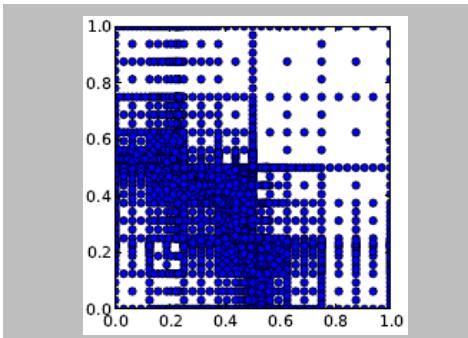
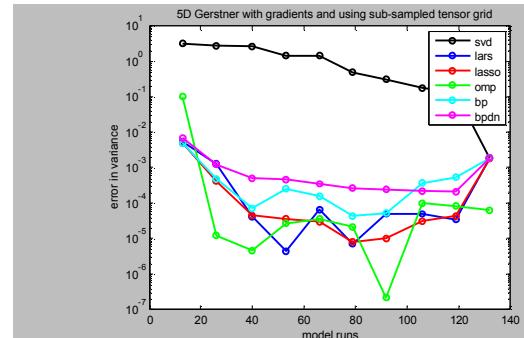


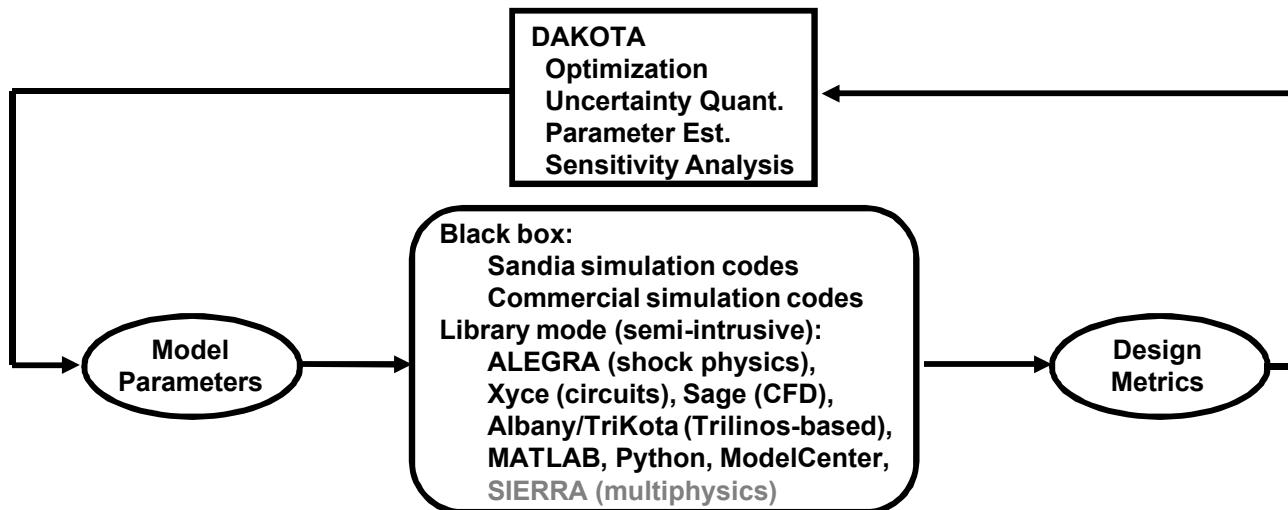
Exceptional service in the national interest



Deployment of Scalable UQ Methods for High-Fidelity Simulation-based Applications within the DOE

Michael S. Eldred, John D. Jakeman, Timothy M. Wildey
 Sandia National Laboratories, Albuquerque, NM

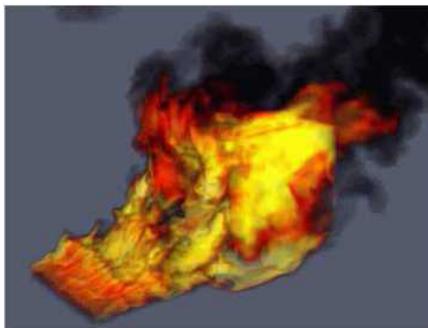
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



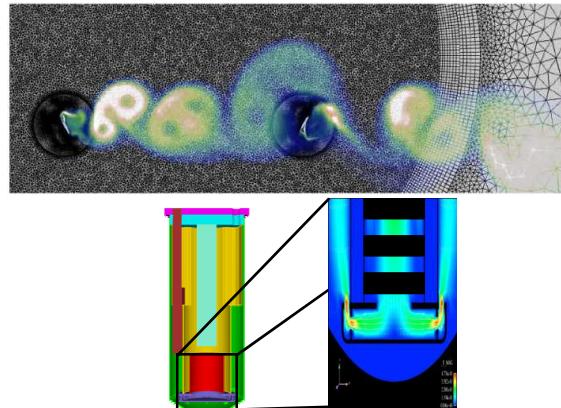
*Iterative systems analysis
Multilevel parallel computing
Simulation management*

Impact across a variety of DOE mission areas

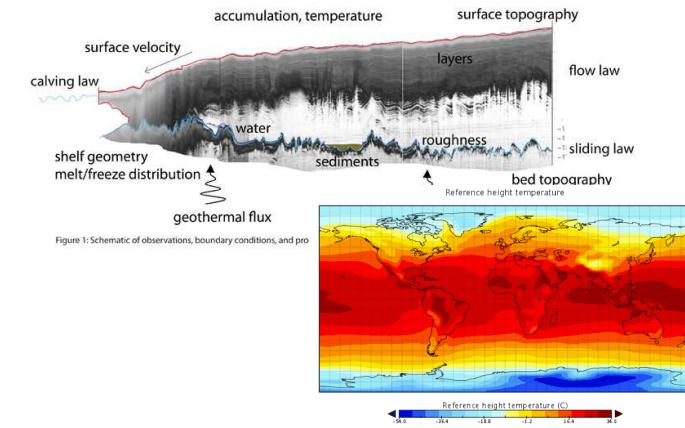
Stockpile (NNSA ASC) Abnormal environments



Energy (ASCR, EERE, NE) Wind turbines, nuclear reactors



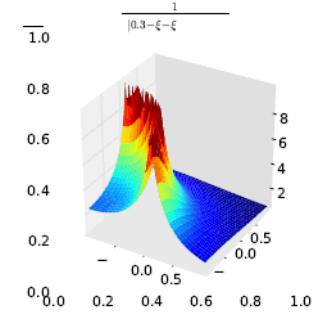
Climate (SciDAC, CSSEF) Ice sheet modeling, CISM, CESM, ISSM



Emphasis on Scalable Methods for High-fidelity UQ on HPC

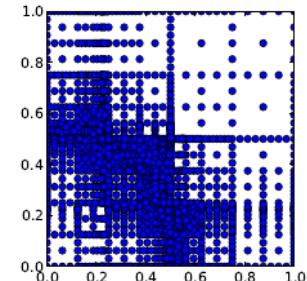
Key Challenges:

- Severe simulation budget constraints (e.g., a handful of HF runs)
- Moderate to high-dimensional in random variables: $O(10^1)$ to $O(10^2)$ [post KLE]
- Compounding effects:
 - Mixed aleatory-epistemic uncertainties (\rightarrow nested iteration)
 - Requirement to evaluate probability of rare events (e.g., safety criteria)
 - Nonsmooth responses (\rightarrow difficulty with fast converging spectral methods)



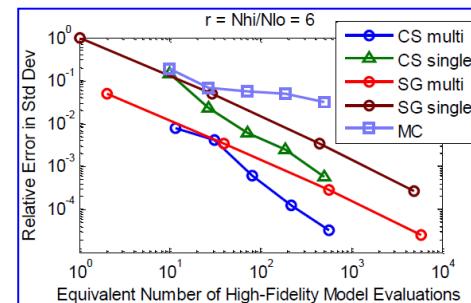
Core UQ Capabilities:

- Sampling methods: LHS, MC, QMC, incremental
- Reliability methods: local (MV, AMV+, FORM, ...), global (EGRA, GPAIS, POFDarts)
- Stochastic expansion methods: polynomial chaos, stochastic collocation
- Epistemic methods: interval estimation, Dempster-Shafer evidence



Research Thrusts:

- Compute dominant uncertainty effects despite key challenges above
- Scalable UQ foundation
 - Adaptive refinement, Adjoint enhancement, Sparsity detection
- Leverage his foundation within component-based meta-iteration
 - Mixed UQ incl. model form, Multifidelity UQ, Bayesian methods



Uncertainty Quantification Algorithms in DAKOTA:

New methods bridge robustness/efficiency gap

	Traditional (at Sandia)	Production	Recently released	Under dev Planned	Collabs.
Sampling	Latin Hypercube, Monte Carlo	Incremental	Importance	Bootstrap, Jackknife	FSU
Reliability	<i>Local:</i> Mean Value, 1st- & 2nd-order reliability (AMV+, FORM, SORM)	Global reliability methods (EGRA)	GPAIS, POFDarts, GPs with gradient- enhancement	Recursive emulation, TGP	<i>Local:</i> Notre Dame, <i>Global:</i> Vanderbilt
Stochastic expansion		Polynomial chaos, stoch collocation (regression, Adv. Deployment	Dimension-adaptive p-/h-refinement, grad-enhancement, sparsity detection	Local adapt refinement, adjoint EE, discrete vars	Stanford, Utah
Epistemic	Interval-valued/ 2nd-order prob. w/nested sampling		Opt-based interval est, Dempster-Shafer, discrete model forms	Discrete GPs, Imprec. probability	Arizona St
Bayesian			Emulator based MCMC with QUESO, GPMSA	model selection, multifidelity	LANL, UT Austin
Other			Efficient subspace method, Morris- Smale topology	Rand fields / stoch proc, Moment meth	NCSU, Utah, Cornell, Maryland

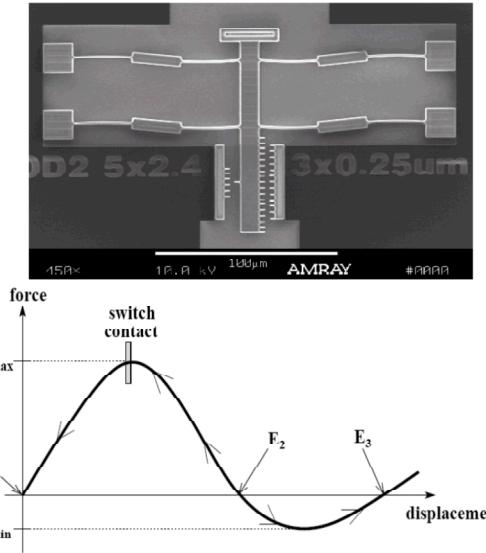
Research: Scalability, Robustness, Goal-orientation

Adv. Deployment

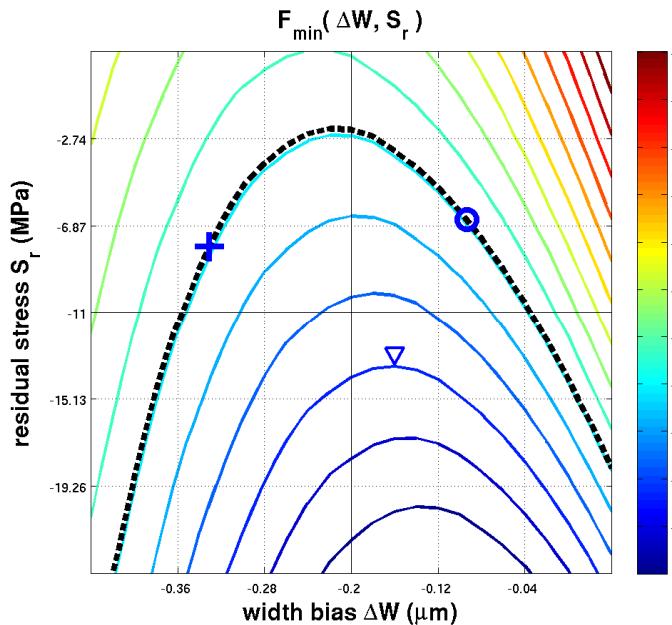
Fills Gaps

Solution-Verified Reliability Analysis and Design of MEMS

- Problem: MEMS subject to substantial variabilities
 - Material properties, manufactured geometry, residual stresses
 - Part yields can be low or have poor durability
 - Data can be obtained → aleatory UQ → probabilistic methods
- Goal: account for both uncertainties and errors in design
 - Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), adaptivity (SIERRA), nonlin mech (Aria) → MESA application
 - Perform soln verification in automated, parameter-adaptive way
 - Generate fully converged UQ/OUU results at lower cost



- AMV²⁺ and FORM converge to different MPPs (+ and o, respectively)
- Issue: high nonlinearity leading to multiple legitimate MPP solns.
- Challenge: design optimization may tend to seek out regions encircled by the failure domain. 1st-order and even 2nd-order probability integrations can experience difficulty with this degree of nonlinearity. Optimizers can/will exploit this model weakness.



Parameter study over 3σ uncertain variable range for fixed design variables d_M^* . Dashed black line denotes $g(x) = F_{min}(x) = -5.0$.

Non-Intrusive Stochastic Expansions: Polynomial Chaos and Stochastic Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

$$R = \sum_{j=0}^{\infty} \alpha_j \Psi_j(\xi)$$

using

$$\begin{aligned} \Psi_0(\xi) &= \psi_0(\xi_1) \psi_0(\xi_2) = 1 \\ \Psi_1(\xi) &= \psi_1(\xi_1) \psi_0(\xi_2) = \xi_1 \\ \Psi_2(\xi) &= \psi_0(\xi_1) \psi_1(\xi_2) = \xi_2 \\ \Psi_3(\xi) &= \psi_2(\xi_1) \psi_0(\xi_2) = \xi_1^2 - 1 \\ \Psi_4(\xi) &= \psi_1(\xi_1) \psi_1(\xi_2) = \xi_1 \xi_2 \\ \Psi_5(\xi) &= \psi_0(\xi_1) \psi_2(\xi_2) = \xi_2^2 - 1 \end{aligned}$$

Distribution	Density function	Polynomial	Weight function	Support range
Normal	$\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	Hermite $H_n(x)$	$e^{-\frac{x^2}{2}}$	$[-\infty, \infty]$
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	$[-1, 1]$
Beta	$\frac{(1-x)^\alpha (1+x)^\beta}{2^{\alpha+\beta+1} B(\alpha+1, \beta+1)}$	Jacobi $P_n^{(\alpha, \beta)}(x)$	$(1-x)^\alpha (1+x)^\beta$	$[-1, 1]$
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0, \infty]$
Gamma	$\frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^\alpha e^{-x}$	$[0, \infty]$

- Estimate α_j using regression or numerical integration: sampling, tensor quadrature, sparse grids, or cubature

$$\alpha_j = \frac{\langle R, \Psi_j \rangle}{\langle \Psi_j^2 \rangle} = \frac{1}{\langle \Psi_j^2 \rangle} \int_{\Omega} R \Psi_j \varrho(\xi) d\xi$$

Stochastic collocation: instead of estimating coefficients for known basis functions, form interpolants for known coefficients

- Global:** Lagrange (values) or Hermite (values+derivatives)
- Local:** linear (values) or cubic (values+gradients) splines

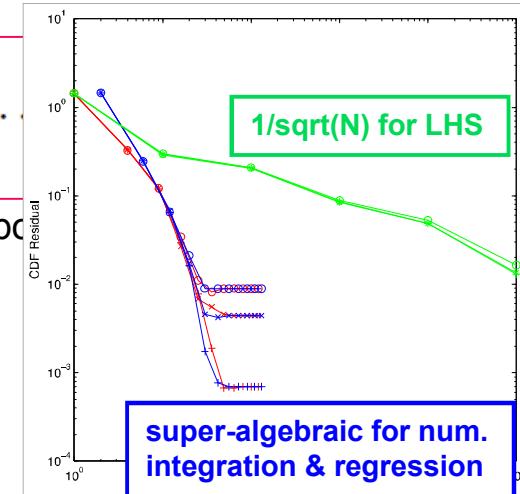
$$L_j = \prod_{\substack{k=1 \\ k \neq j}}^m \frac{\xi - \xi_k}{\xi_j - \xi_k}$$

$$R(\xi) \cong \sum_{j_1=1}^{m_{i_1}} \cdots \sum_{j_n=1}^{m_{i_n}} r(\xi_{j_1}^{i_1}, \dots, \xi_{j_n}^{i_n}) (L_{j_1}^{i_1} \otimes \dots \otimes L_{j_n}^{i_n})$$

Sparse interpolants formed using Σ of tensor interpolants

- Tailor expansion form:**
 - p-refinement: anisotropic tensor/sparse, generalized sparse
 - h-refinement: local bases with dimension & local refinement
- Method selection:** fault tolerance, decay, sparsity, error est.

$$R(\xi) \cong \sum_{j=1}^{N_p} r_j L_j(\xi)$$



Adaptive Collocation Methods: Generalized Sparse Grids

Polynomial order (p -) refinement approaches:

- **Uniform:** isotropic tensor/sparse grids
 - *Increment grid:* increase order/level, ensure change (restricted growth in nested rules)
 - *Assess convergence:* L^2 change in response covariance
- **Dimension-adaptive:** anisotropic tensor/sparse grids
 - **PCE/SC:** variance-based decomp. \rightarrow total Sobol' indices \rightarrow anisotropy
 - **PCE:** spectral coefficient decay rates \rightarrow anisotropy
- **Goal-oriented dimension-adaptive:** generalized sparse grids
 - **PCE/SC:** change in QOI induced by trial index sets on active front

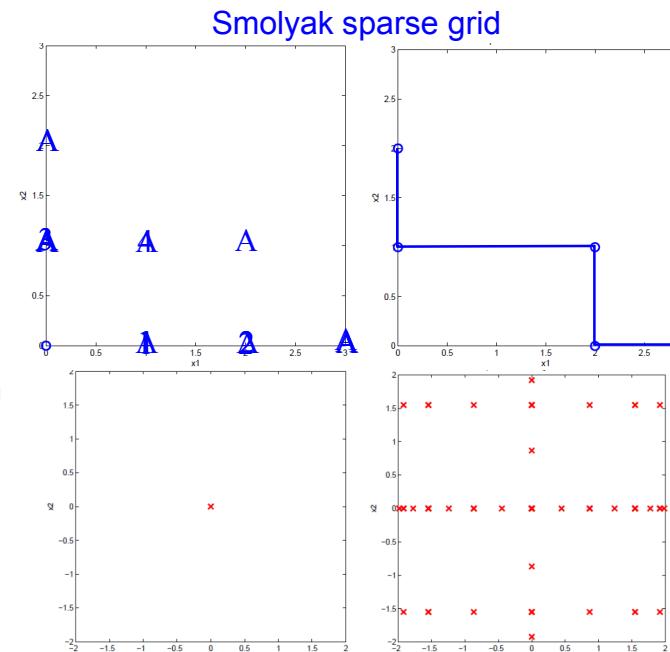
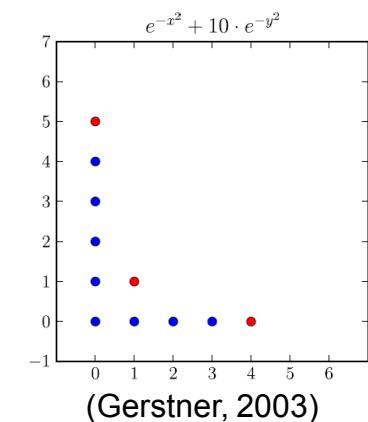
1. Initialization: Starting from reference grid (often $w = 0$ grid), define active index sets using admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set, evaluate tensor grid, form tensor expansion, update combinatorial coefficients, and combine with reference expansion. Perform necessary bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that induces largest change in statistical QOI.

4. Update sets: If largest change $>$ tolerance, then promote selected trial set from active to old and compute new admissible active sets; return to 2. If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets to old set, update combinatorial coefficients, and perform final combination of tensor expansions to arrive at final result for statistical QOI.



**Fine-grained control:
frontier not limited by
prescribed shape of
index set constraint**

Extend Scalability: (Adjoint) Derivative-Enhancement

PCE:

- **Linear regression including derivatives**
 - Gradients/Hessians \rightarrow addtnl. eqns.
 - Over-determined: SVD, eq-constrained LS
 - Under-determined: compressive sensing

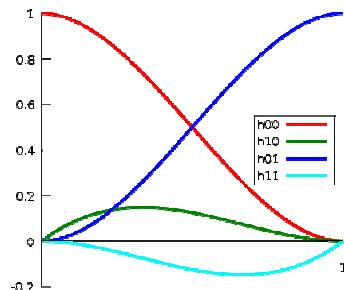
$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \pi_{0,j}(\vec{\xi}_i) & \pi_{1,j}(\vec{\xi}_i) & \cdots & \pi_{P,j}(\vec{\xi}_i) \\ \frac{\partial \pi_{0,j}}{\partial \xi_1}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_1}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_1}(\vec{\xi}_i) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \pi_{0,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \begin{pmatrix} \vec{u}^{(m,j)} \\ \vec{u}^{(m+1,j)} \\ \vdots \\ \vec{u}^{(m+n_\xi,j)} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \vec{u}_i \\ \frac{\partial \vec{u}_i}{\partial \xi_1} \\ \vdots \\ \frac{\partial \vec{u}_i}{\partial \xi_{n_\xi}} \\ \vdots \end{pmatrix}$$

SC:

- **Gradient-enhanced interpolants**
 - Local: cubic Hermite splines
 - Global: Hermite interpolating polynomials

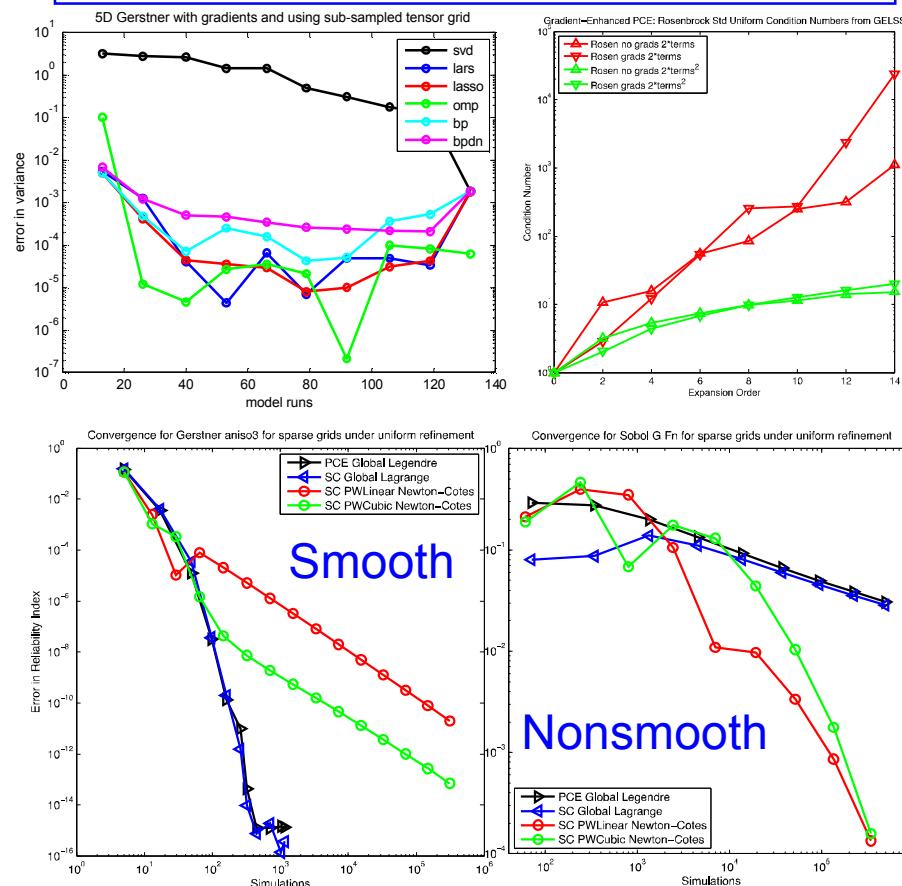
$$f = \sum_{i=1}^N f_i H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^N \frac{df_i}{dx_1} H_i^{(2)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^N \frac{df_i}{dx_2} H_i^{(1)}(x_1) H_i^{(2)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^N \frac{df_i}{dx_3} H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(2)}(x_3)$$

Cubic shape fns: type 1 (value) & type 2 (gradient)



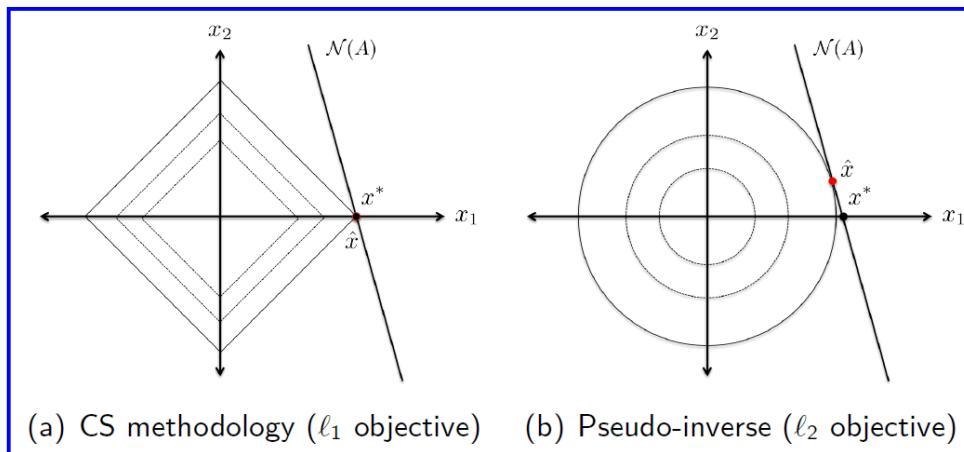
$$\mu = \sum_{i=1}^N f_i w_i^{(1)} w_i^{(1)} w_i^{(1)} + \sum_{i=1}^N \frac{df_i}{dx_1} w_i^{(2)} w_i^{(1)} w_i^{(1)} + \sum_{i=1}^N \frac{df_i}{dx_2} w_i^{(1)} w_i^{(2)} w_i^{(1)} + \sum_{i=1}^N \frac{df_i}{dx_3} w_i^{(1)} w_i^{(1)} w_i^{(2)}$$

and similar for higher-order moments



Stochastic Expansions on Unstructured Grids: Compressive Sensing

$$\begin{bmatrix} f(\mathbf{x}^{(1)}) \\ f(\mathbf{x}^{(2)}) \\ \vdots \\ f(\mathbf{x}^{(N)}) \end{bmatrix} = \begin{bmatrix} 1 & \phi_2(\mathbf{x}^{(1)}) & \phi_2(\mathbf{x}^{(1)}) & \dots & \phi_P(\mathbf{x}^{(1)}) \\ 1 & \phi_1(\mathbf{x}^{(2)}) & \phi_2(\mathbf{x}^{(2)}) & \dots & \phi_P(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \phi_1(\mathbf{x}^{(N)}) & \phi_2(\mathbf{x}^{(N)}) & \dots & \phi_P(\mathbf{x}^{(N)}) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_P \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$



or in matrix notation

$$\mathbf{b} = \mathbf{Ax} + \varepsilon$$

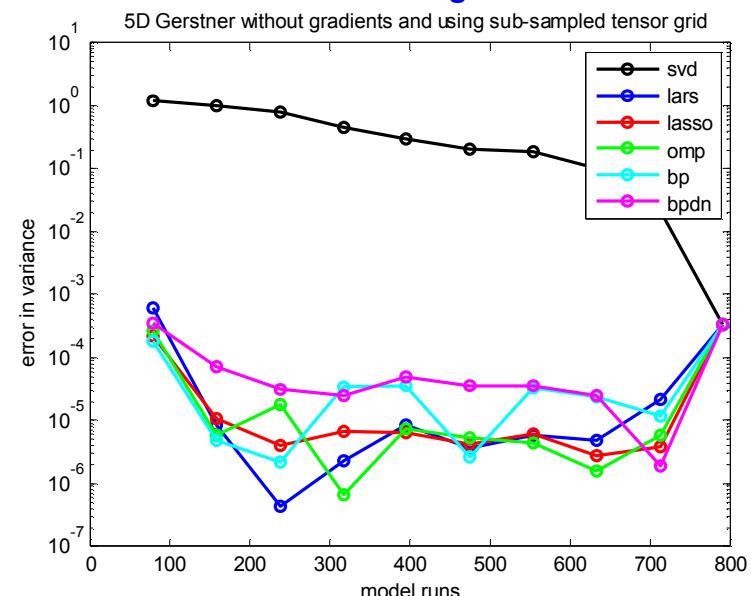
and find the **minimum norm solution**

$$\min_{\mathbf{x}} \|\mathbf{Ax} - \mathbf{b}\|_2$$

or (more recently) **find a sparse solution**

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ such that } \|\mathbf{Ax} - \mathbf{b}\|_2 \leq \varepsilon$$

Structured or unstructured grids
Value-based or gradient-enhanced



BP

$$\mathbf{c} = \arg \min \|\mathbf{c}\|_{\ell^1} \text{ such that } \Phi \mathbf{c} = \mathbf{y}$$

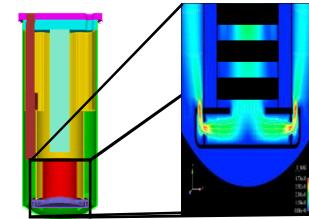
BPDN and OMP

$$\mathbf{c} = \arg \min \|\mathbf{c}\|_{\ell^1} \text{ such that } \|\Phi \mathbf{c} - \mathbf{y}\|_{\ell^2} \leq \varepsilon$$

LASSO and LARS

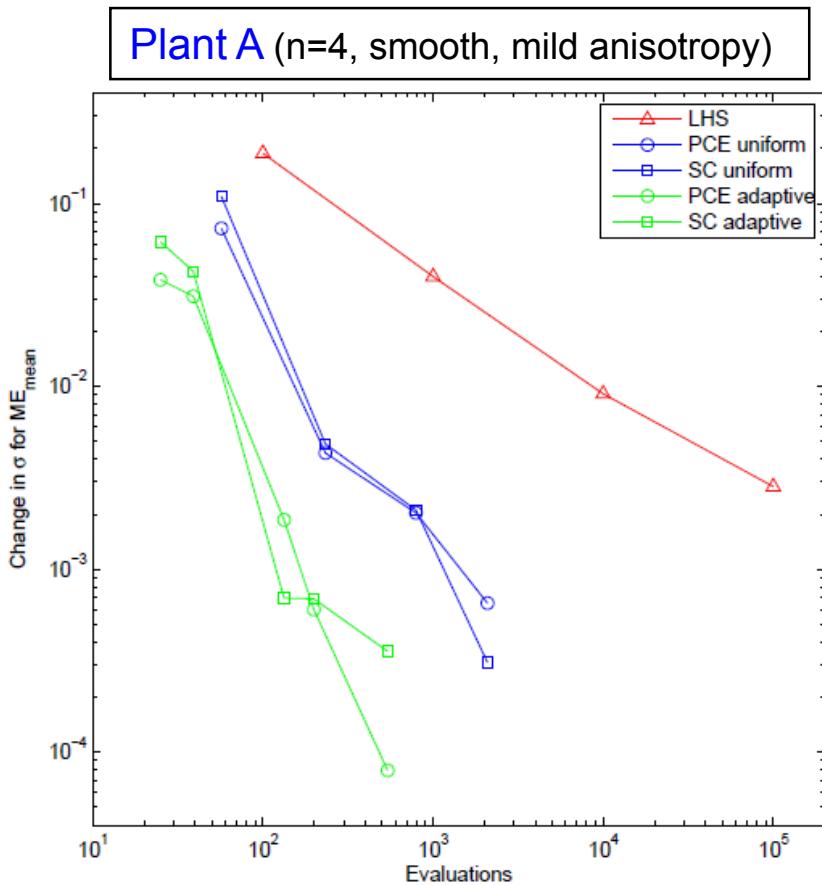
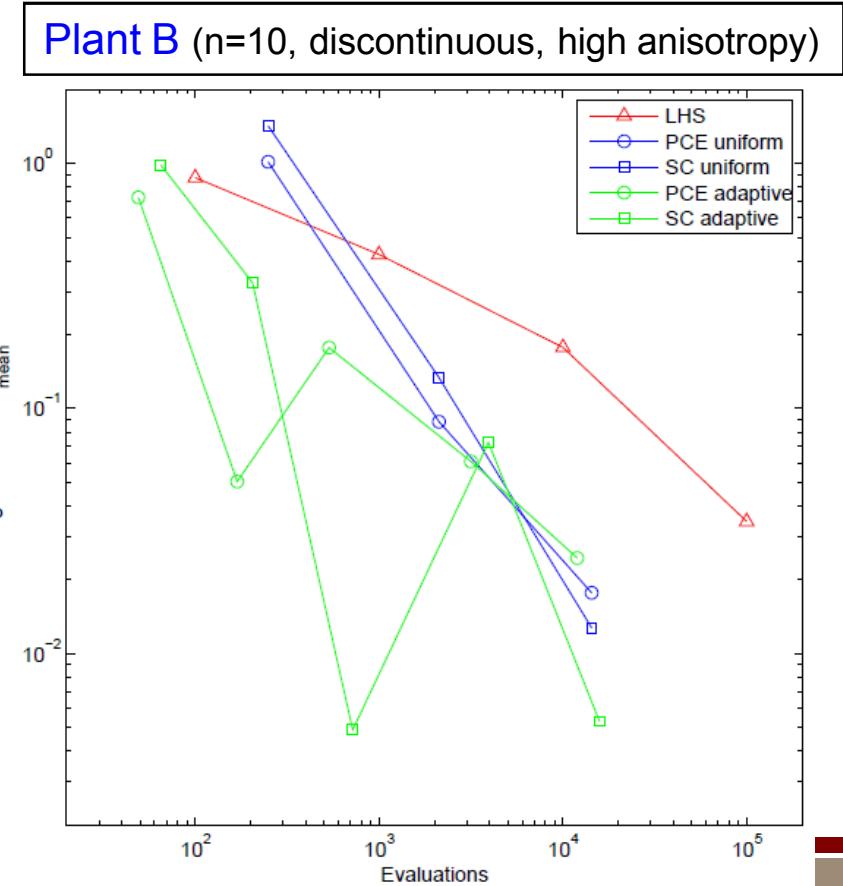
$$\mathbf{c} = \arg \min \|\Phi \mathbf{c} - \mathbf{y}\|_{\ell^2}^2 \text{ such that } \|\mathbf{x}\|_{\ell^1} \leq \tau$$

Application Deployment (CASL)



Application: Nuclear reactor cores experience localized boiling, which leads to CRUD (Chalk River Unidentified Deposit). These deposits result in undesirable power shifts (CIPS) within the core. Statistics of mass evaporation (ME) rate are of interest.

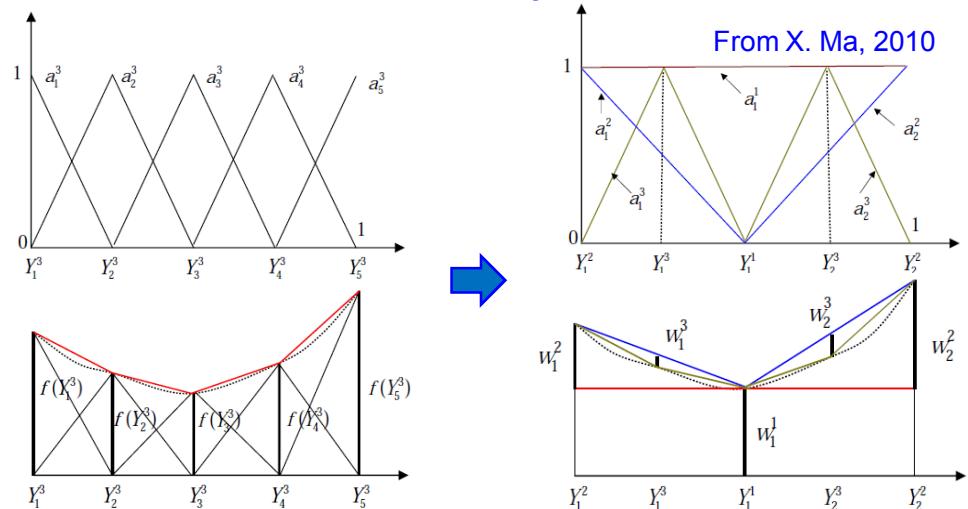
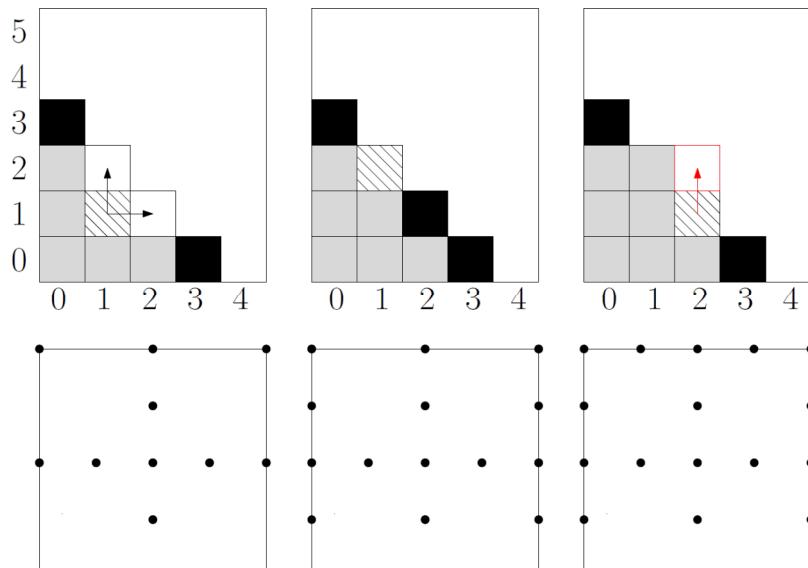
Methodology: PCE/SC with uniform/adaptive refinement compared to LHS



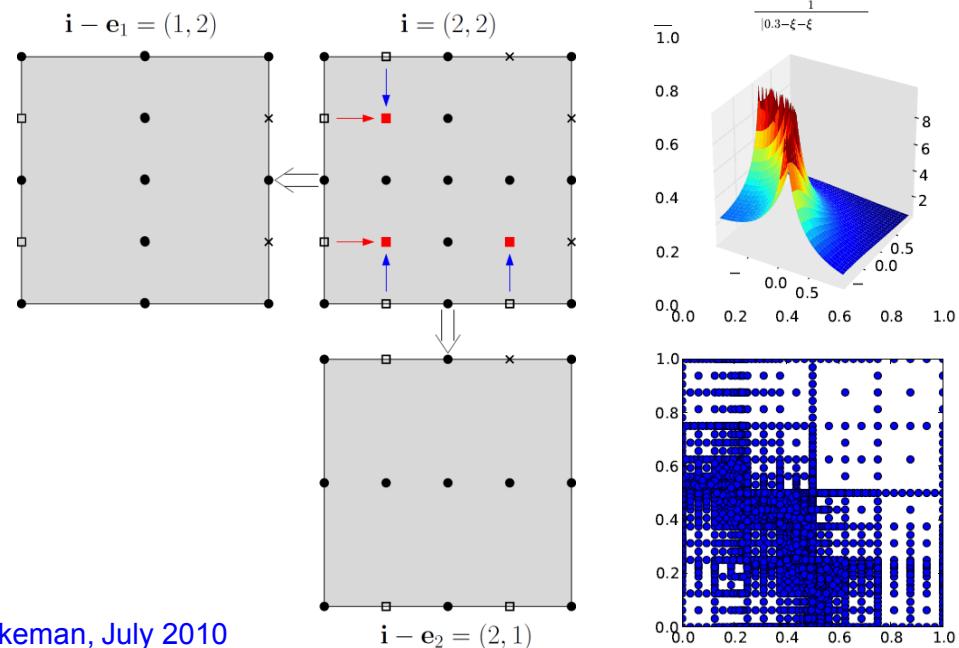
Local Error Estimation with Hierarchical Surpluses

Hierarchical basis:

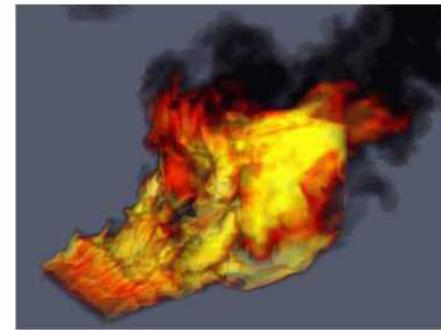
- Improved precision in QoI increments
- Surpluses provide error estimates for local refinement using local/global hierarchical interpolants
- New error indicators under development that leverage both value and gradient surpluses



From J. Jakeman, July 2010



NNSA Example: UQ Modernization for Abnormal Thermal Environments



Traditional approach: MVFOSM with central finite differences (2n+1 evaluations, linear Taylor series)

- Compared to level 1 sparse grid PCE: captures nonlinear main effects and supports nonlinear sensitivity analysis
 - 2n+1 evaluations at Gauss points → quadratic main effects, no interactions
 - First set of active indices within a generalized sparse grid approach
 - Naturally leads to subsequent refinement, as budget allows
 - Index set(s) with greatest influence on QoI → higher-order main + interaction effects

→ Identified cases of mild and severe nonlinearity (MV ok, MV not ok) in thermal response

Traditional approach: LHS with coarse sampling (N samples, $1/\sqrt{N}$ convergence rate)

- Post-process unstructured data using regression PCE
 - Standard SVD for over-determined low-order expansions
 - Compressive sensing for under-determined higher-order expansions
 - K-fold cross-validation → expansion order, noise tolerance

→ Identified N dominant main+interaction terms within candidate set, efficient global SA via VBD

Sampling (nongradient-based)

- **Strengths:** Simple and reliable, convergence rate is dimension-independent
- **Weaknesses:** $N^{-1/2}$ convergence \rightarrow expensive for accurate tail statistics

Local reliability (gradient-based)

- **Strengths:** computationally efficient, widely used, scalable to large n (w/ efficient/adjoint derivatives)
- **Weaknesses:** algorithmic failures for limit states with following features
 - Nonsmooth: fail to converge to an MPP
 - Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP
 - Multimodal: only locate one of several MPPs

Global reliability (typically nongradient-based)

- **Strengths:** handles multimodal and/or highly nonlinear limit states, tailored for efficient probability estimation
- **Weaknesses:**
 - Conditioning, nonsmoothness \rightarrow ensemble emulation (recursion, discretization)
 - Scaling to large n \rightarrow adjoint gradient-enhancement, additional refinement bias

Stochastic expansions (typically nongradient-based)

- **Strengths:** functional representation, exponential convergence rates for smooth problems, best for moment est.
- **Weaknesses:**
 - Nonsmoothness \rightarrow local h-refinement based on hierarchical error estimates
 - Scaling to large n \rightarrow adaptive refinement, adjoint gradient-enhancement, sparsity detection

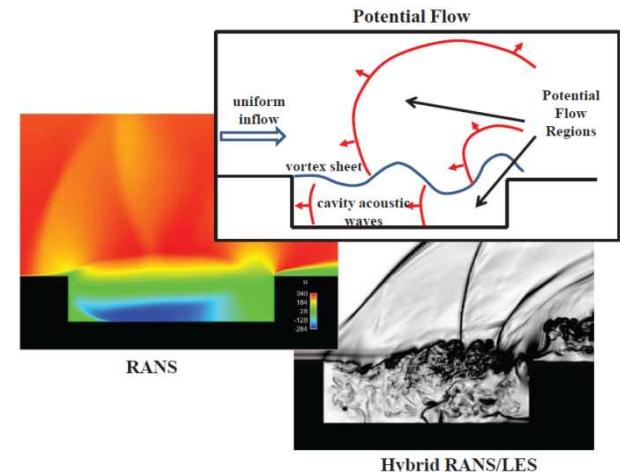
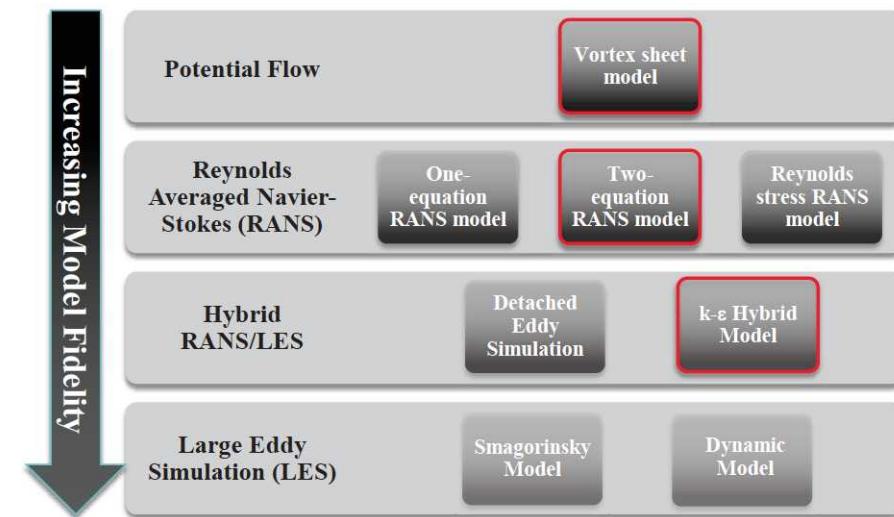
Epistemic methods (typically nongradient-based)

- **Strengths:** extrema are point solutions instead of integrated quantities
- **Weaknesses:** high degrees of input structure (Dempster-Shafer) require many extrema
(bridging intervals and distributions breaks down as continuum is approached discretely)

Multiple Model Forms in UQ

Discrete model choices, same physics (additional dimensions for multi-{physics,scale})

- A clear hierarchy of fidelity (from low to high)
 - *Multifidelity UQ methods*: generate statistics for truth model leveraging less expensive models
- An ensemble of models that are all credible (lacking a clear preference structure): e.g., turbulence models
 - *Without (adequate) data*: epistemic model form uncertainty propagation
 - *With data*: Bayesian model selection
- Both hierarchy and peers
 - *Multifidelity inference*: calibration enables resolution of low complexity discrepancies



Multifidelity UQ using Stochastic Expansions

- High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ
- Low fidelity “design” codes often exist that are predictive of basic trends
- Can we leverage LF codes w/i HF UQ in a rigorous manner? → global approxs. of model discrepancy

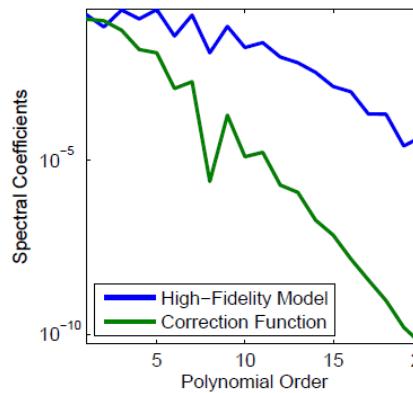
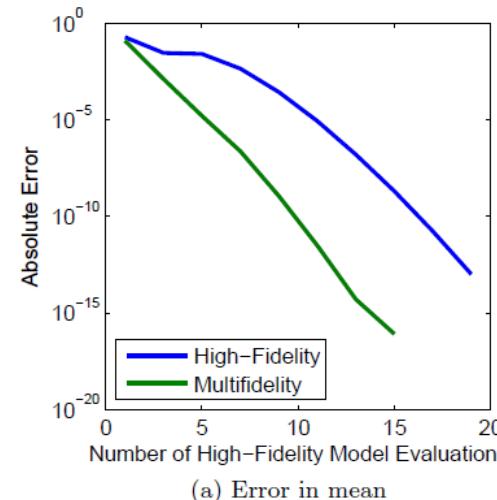
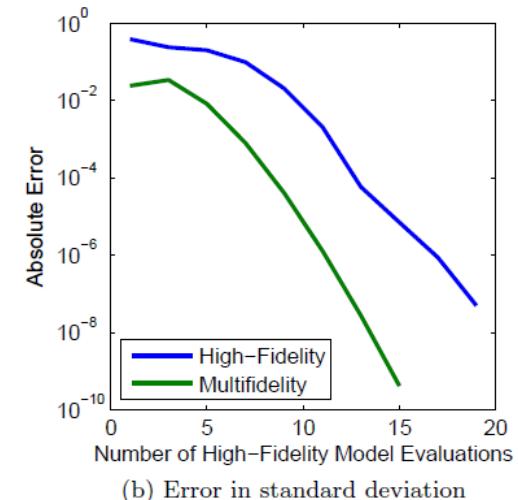
$$\hat{f}_{hi}(\xi) = \sum_{j=1}^{N_{lo}} f_{lo}(\xi_j) L_j(\xi) + \sum_{j=1}^{N_{hi}} \Delta f(\xi_j) L_j(\xi)$$

$$N_{lo} \gg N_{hi}$$

$$R_{high}(\xi) = e^{-0.05\xi^2} \cos 0.5\xi - 0.5e^{-0.02(\xi-5)^2}$$

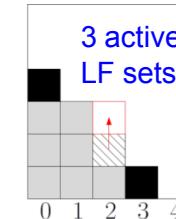
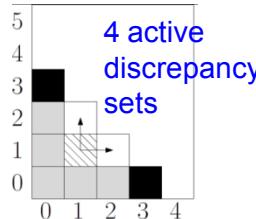
$$R_{low}(\xi) = e^{-0.05\xi^2} \cos 0.5\xi,$$

discrepancy



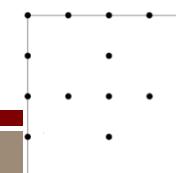
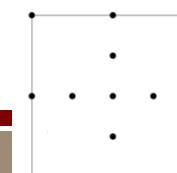
Adaptive sparse grid multifidelity algorithm:

- Generalized sparse grids for LF & each discrepancy level
- Greedy selection among multiple grids: $\max \Delta QoI / \Delta Cost$
- Refines discrepancy where LF is less predictive



Compressive sensing multifidelity algorithm:

- Target sparsity within the model discrepancy



Elliptic PDE with FEM

$$-\frac{d}{dx} \left[\kappa(x, \omega) \frac{du(x, \omega)}{dx} \right] = 1, \quad x \in (0, 1), \quad u(0, \omega) = u(1, \omega) = 0$$

$$\kappa(x, \omega) = 0.1 + 0.03 \sum_{k=1}^{10} \sqrt{\lambda_k} \phi_k(x) Y_k(\omega), \quad Y_k \sim \text{Uniform}[-1, 1]$$

$$C_{\kappa\kappa}(x, x') = \exp \left[-\left(\frac{x - x'}{0.2} \right)^2 \right]$$

QoI is $u(0.5, \omega)$.

LF = coarse spatial grid with 50 states.

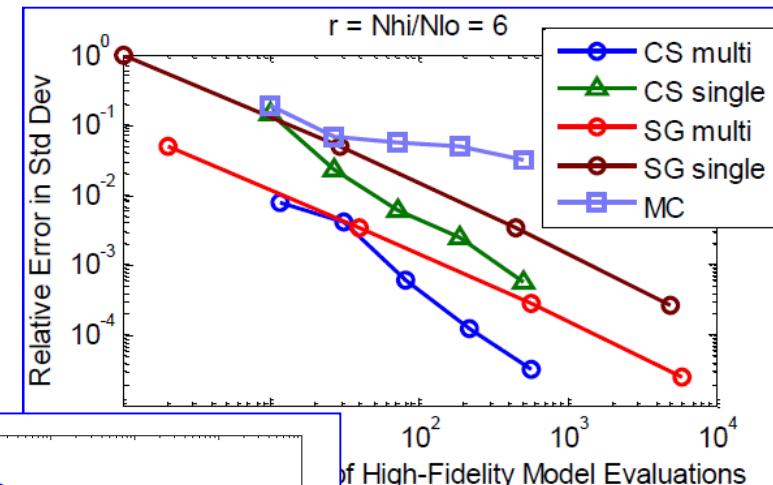
HF = fine spatial grid with 500 states.

Expense ratio = 40.

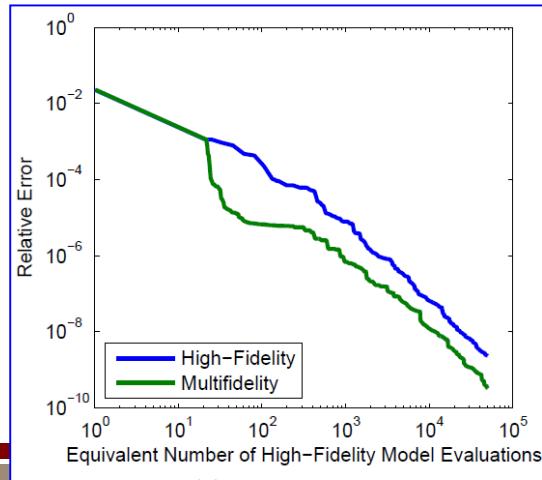
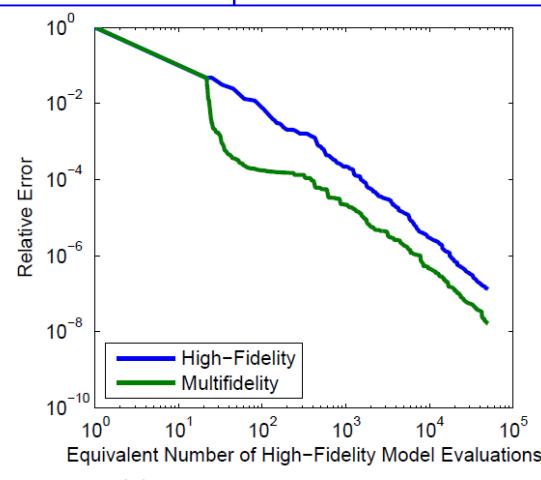
Static offset & uniform refinement

Static offset level = 1

	Relative Error in Mean	Relative Error in Std Deviation	High-Fidelity Evaluations	Low-Fidelity Evaluations
Single-Fidelity ($q = 3$)	5.3×10^{-6}	2.7×10^{-4}	1981	—
Single-Fidelity ($q = 4$)	4.1×10^{-7}	2.3×10^{-5}	12,981	—
Multifidelity ($q = 4, r = 1$)	4.7×10^{-7}	2.6×10^{-5}	1981	12,981



Adaptive Sparse Grid



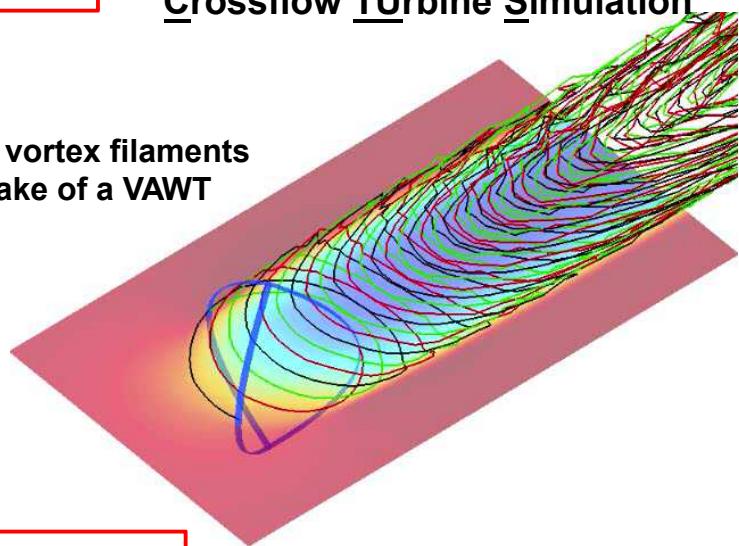
ASCR MF UQ example: VAWT Gust Response

Vertical-axis Wind Turbine (VAWT)

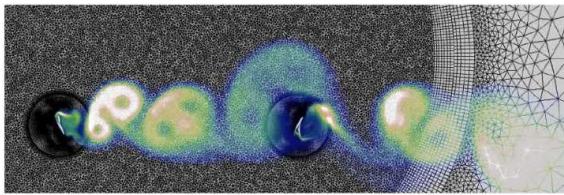
Low fidelity

CACTUS: Code for Axial and Crossflow Turbine Simulation

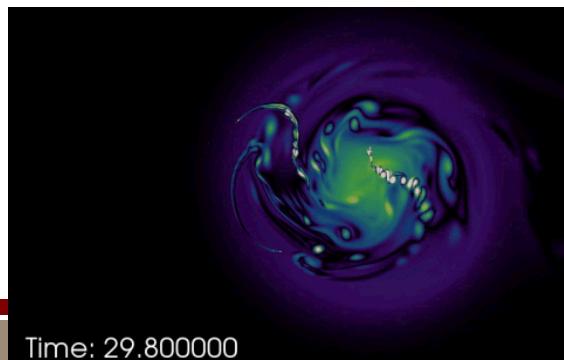
Computed vortex filaments
in the wake of a VAWT



High fidelity: DG formulation for LES



Time = 0.0



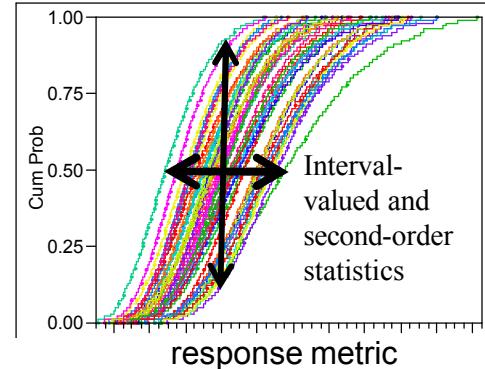
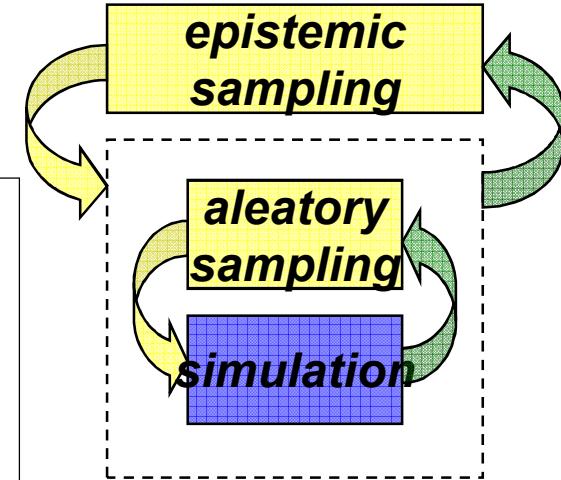
Time: 29.800000

Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE based on Stochastic Expansions

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge uncertainty): insufficient info to specify objective probability distributions

Traditional approach: nested sampling

- Expensive sims \rightarrow under-resolved sampling (especially @ outer loop)
- Under-prediction of credible outcomes



Algorithmic approaches

- Interval-valued probability (IVP), aka probability bounds analysis (PBA)
- Dempster-Shafer theory of evidence (DSTE)
- Second-order probability (SOP), aka probability of frequency

Increasing epistemic structure (stronger assumptions)

Address accuracy and efficiency

- Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)
- Outer loop:
 - IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP)
 - SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)

$$\begin{aligned}
 & \text{minimize} && M(s) \\
 & \text{subject to} && s_L \leq s \leq s_U
 \end{aligned}$$

$$\begin{aligned}
 & \text{maximize} && M(s) \\
 & \text{subject to} && s_L \leq s \leq s_U
 \end{aligned}$$

Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE based on Stochastic Expansions

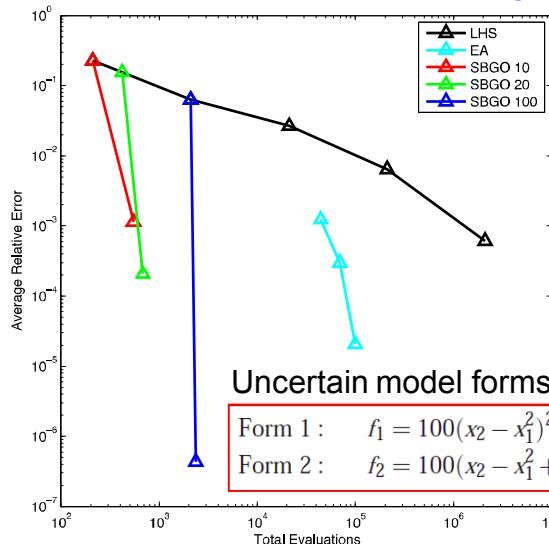
Interv Est Approach	UQ Approach	Expansion Variables	Evaluations (Fn, Grad)	Area	β
IVP SC SSG Aleatory: β interval converged to 5-6 digits by 300-400 evals					
EGO	SC SSG w = 1	Aleatory	(84/91, 0/0)	[75.0002, 374.999]	[-2.26264, 11.8623]
EGO	SC SSG w = 2	Aleatory	(372/403, 0/0)	[75.0002, 374.999]	[-2.18735, 11.5900]
EGO	SC SSG w = 3	Aleatory	(1260/1365, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]
EGO	SC SSG w = 4	Aleatory	(3564/3861, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]
NPSOL	SC SSG w = 1	Aleatory	(21/77, 21/77)	[75.0000, 375.000]	[-2.26264, 11.8623]
NPSOL	SC SSG w = 2	Aleatory	(93/341, 93/341)	[75.0000, 375.000]	[-2.18735, 11.5901]
NPSOL	SC SSG w = 3	Aleatory	(315/1155, 315/1155)	[75.0000, 375.000]	[-2.18732, 11.5900]
NPSOL	SC SSG w = 4	Aleatory	(891/3267, 891/3267)	[75.0000, 375.000]	[-2.18732, 11.5900]

IVP nested LHS sampling: converged to 2-3 digits by 10^8 evals

LHS 100	LHS 100	N/A	$(10^4/10^4, 0/0)$	[80.5075, 338.607]	[-2.14505, 8.64891]
LHS 1000	LHS 1000	N/A	$(10^6/10^6, 0/0)$	[76.5939, 368.225]	[-2.19883, 11.2353]
LHS 10^4	LHS 10^4	N/A	$(10^8/10^8, 0/0)$	[76.4755, 373.935]	[-2.16323, 11.5593]

Fully converged area interval = [75., 375.], β interval = [-2.18732, 11.5900]

Interval est w/ mixed-integer global opt



Drekar RANS turbulence: Spalart-Allmaras, k- ϵ with Neumann BC, k- ϵ with Dirichlet BC

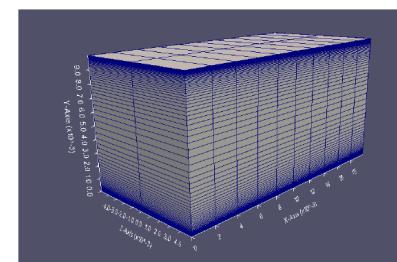


Figure 4. The steady-state x-velocity for typical realization computed using a RANS model in Drekar.

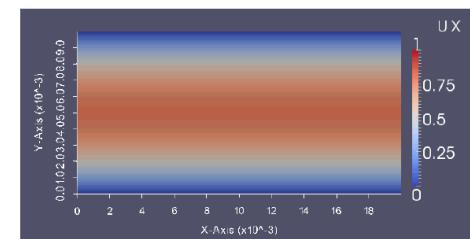


Figure 5. The steady-state x-velocity for typical realization computed using a RANS model in Drekar.

Method	Outer Evals	Total Evals	μ_{ux}	$\mu_{pressure}$
LHS	10	250	[0.727604, 2.78150]	[32.6109, 282.237]
SBGO	17	425	[0.622869, 4.44624]	[21.7321, 297.957]

Office of Science Example: SciDAC (PISCEES)

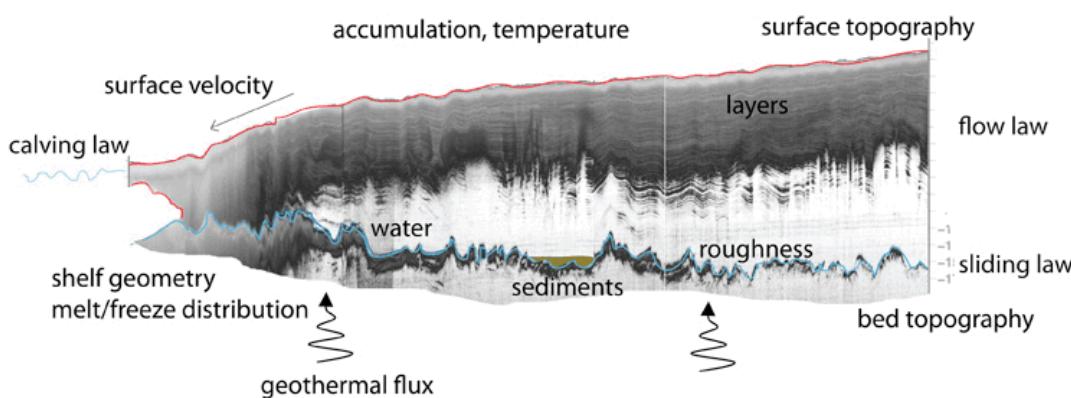
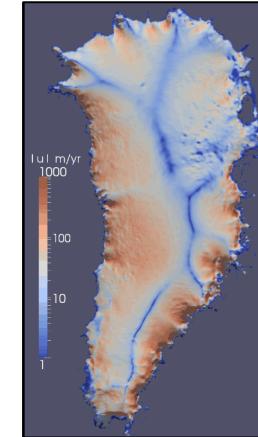
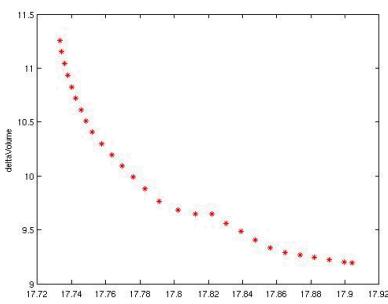


Figure 1: Schematic of observations, boundary conditions, and processes affecting ice sheet initialization.



Greenland surface ice velocity

CISM Pareto set calibration



CISM global sensitivity (PCE)

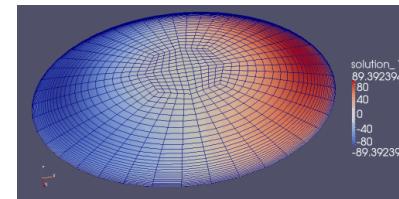
deltaArea Sobol indices:

Main	Total		
4.7513765309e-02	6.7248544556e-02	geothermal_flux	
9.1650860584e-01	9.3781166646e-01	flow_factor	
7.969645177e-03	2.6872229178e-02	basal_exponent	
Interaction			
9.1053996720e-03	geothermal_flux	flow_factor	
6.7048737120e-03	geothermal_flux	basal_exponent	
8.2731550851e-03	flow_factor	basal_exponent	
3.9245058634e-03	geothermal_flux	flow_factor	basal_exponent

deltaVolume Sobol indices:

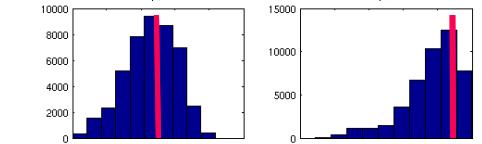
Main	Total		
2.3075148007e-04	5.8457999638e-04	geothermal_flux	
9.9465232748e-01	9.9546169642e-01	flow_factor	
4.2442002665e-03	4.9154442300e-03	basal_exponent	
Interaction			
2.0147681120e-04	geothermal_flux	flow_factor	
6.3351832896e-05	geothermal_flux	basal_exponent	
5.1889225839e-04	flow_factor	basal_exponent	
8.8999872203e-05	geothermal_flux	flow_factor	basal_exponent

Model problem: ice dome in FELIX



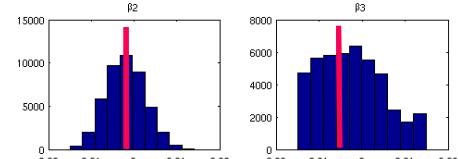
Known β solution: (2.9, .012, -.002, -.005)

Ice sheet initialization from (synthetic) data using Bayesian calibration



Basal sliding field (4 param):

$$\beta(x, y) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 r$$



Summary

UQ deployment faces a number of key challenges

- Severe simulation budget constraints and moderate to high random dimensionality
- Compounded by mixed uncertainties, nonsmoothness, rare events

Investments in scalable UQ R&D

- We are developing a broad suite of scalable and robust core UQ methods with a focus on addressing a critical gap that has existed with popular production methods
- Within the highlighted area of stochastic expansions:
 - Adaptive refinement, adjoint enhancement, sparsity detection
 - Suite of formulations: local / global, value / gradient, structured / unstructured, nodal / hierarchical
- We are building on this foundation
 - Multifidelity UQ, Mixed UQ including model form, Bayesian inference

Impact and deployment

- UQ tools deployed through Dakota (v5.3.1 released 5/15/13, v5.4 scheduled 11/15/13)
- Impact with NNSA (stockpile), Energy (wind, nuclear), and Climate (community earth/ice