
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

A Use Case Approach to
Deriving Power API

Requirements

Sue Kelly and Jim Laros
Sandia National Laboratories

Ryan Elmore, Steve Hammond, and Kris Munch
National Renewable Energy Laboratory

HPC Operations Review Meeting

November 5, 2013

SAND2013-9471P

Why Develop a Power API for HPC?
 Anticipated HPC computational needs within

reasonable power constraints require
significant advances in hardware power efficiency

 To achieve greatest efficiency, software at many levels will
need to coordinate and optimize the hardware power features
 Commodity pressures will drive useful innovations

 Our efforts are distinguished by HPC requirements at scale

 We found no existing API specification

 Goal is to create a generic power API for general adoption
within the HPC community

 Our intent is to
 help ASC field machines in the future within reasonable power budgets

 contribute to the national effort on Exascale, or at least extreme scale
scientific computing

2

Example Scenarios

 A job is entering a checkpoint phase. Application requests a
reduced processor frequency during the long I/O period.

 Developer is trying to understand frequency sensitivity of an
algorithm and starts a tool that analyzes performance and
power consumption while the job is running.

 Data Center has a maximum of capacity of nn MW. One HPC
system is down for extended maintenance. Other systems can
have a higher maximum power cap.

 Power company charges more for electricity during the day
than it does at night. Schedule jobs by allocating both node
and power resources accordingly.

3

IB power usage - offload vs. onload cards

Preliminary Study 2

4

2 Credit: to
Ryan Grant, SNL

Power API – A Use Case Approach

 Prior to specifying an API from scratch, we elected to create
formal use cases1 to model the ways power measurement
and control capabilities will be used in HPC systems.

 Use case approach is used to define SCOPE, INTERFACES, and
DATA REQUIREMENTS.

 Generally more intuitive than a laundry list of specifications.

5
1Ivar Jacobson. Object Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.

Use Case Concepts taken from
UML specification ISO/IEC 19501:2005
 Use Case – A specific way of using the system by performing some

part of the functionality.

 Actor – A representation of what interacts with the system. May be a
person, another system, or something else (e.g. cron or async event).

 Use cases are represented by ovals. Typical naming convention is a
verb followed by object. Subject is implied by the initiating actor.

 An actor is represented by a stick figure.

 There is no notion of where data resides or its layout. It’s like a
floating platter that one gets data off of, or puts data on.

Request Cash
Withdrawal

ATM Customer

Data

Power API Actors
and Systems
 A high level view of the entire

scope to be covered by the API

 A system can also be an actor

 A Runtime System is not called
out in this model. Portions of
it are implemented in these
Actor/Systems
 Resource manager(s)

 Application (Libraries)

 Operating Systems

7

8

Our
Use
Case
Model

Actor: HPCS Application
System: HPCS Operating System

9

Status & Next Steps

 Reviewed by Labs, Universities and Commercial partners

 Use Case document is sufficiently complete for our purposes;
will release as a Sandia Report by end of calendar year

 2014 L2 Milestone – Power API Definition/Specification

10

Power API Definition

 Early stages of definition/specification

 Lots of focus on foundation of API
 What the system will look like to the user

 What they can count on

 What the implementer must do

 How the implementer can extend

Base System
Definition
• Aids in program portability

• What a programmer can count on across
implementations

• Guaranteed top of hierarchy object –
Platform

• Portable point of reference

• Set of base DEFINED Platform Object types
that are organized in a DEFINED hierarchy.

• You can count on a cabinet being
below/underneath the platform object

• Set of base DEFINED Platform Object types
that can appear anywhere in hierarchy.

• Power Plane, for example

• Board object another possibility

• Implementation can EXTEND or add
Platform Object types.

• Allow implementer as much flexibility as
possible while documenting a meaningful
basis for portability

• We assume this will evolve as we refine the
API

• For example, socket might become a
defined platform object type since the goal
is to support more than just CPU devices

Extended System Definition

• Implementation provides an
Extended System Definition based
on Base System Definition

• Platform is top of hierarchy

• New Platform Object Types defined
and inserted into hierarchy

• Without violating defined order

• Node is below Cabinet

1. Cabinets have Chassis

2. Chassis have Board(s)

3. Boards have nodes

• Extended System Definition
leverages and defines separate
power planes underneath Socket
level to distinguish core control

13

Initialization
 Call to init() returns pointer to Platform Object type

 Can be top of hierarchy – Platform Object – or somewhere within the
extended system description (depending on where init() is called
from)

 Examples
 Called from Monitor Control -> Hardware interface init() returns

reference to Platform at top of extended system description

 Called from Operating System -> Hardware interface, init() required to
return reference to Node object3

 Application -> Operating System interface likewise required to return
Node object 3

143Node object could be a pointer to a hwloc object , for example, per http://www.open-mpi.org/projects/hwloc/

Other Features

 Navigation or Discovery calls
 Enable navigation or traversal through system description

 Implementation may allow discovery of entire hierarchy

 Given the Node you may be allowed to discover the entire platform

 Attributes
 Characteristics of objects

 Some will be defined for API defined object types

 Implementation can leverage attributes to extend capabilities

 Groups or Collections
 A way to relate objects in logical ways

 Again, some defined in API but can be extended by implementer

15

Questions…

16

