
Intrepid MiniTensor: A Small Vector and Tensor Library
Alejandro Motay, Jakob T. Ostieny, WaiChing Suny, Qiushi Chenz

yMechanics of Materials, Sandia California; zGlenn Department of Civil Engineering, Clemson University

SAND2013-9451P



Motivation

Implementation of complex constitutive models in Albany LCM
(Laboratory for Computational Mechanics).

Compact representation of expressions, ease of use.

Expandable by leveraging the above.

Optimization for small vectors and tensors.

Accurate algorithms [Higham, 2008].

Blitz++, TVMet, Eigen.

2



Features

Vectors, second-order to fourth-order tensors.

Static (for production) and dynamic (for research) storage.

Storage replaceable with any linear access memory model.

Basic manipulation, linear algebra, geometry and mechanics.

Emphasis in accurate algorithms.

Fully templated, plays well with Sacado.

3



Simple Case

Static Storage

#include "Intrepid_MiniTensor.h"
using namespace Intrepid;
using boost::tie;
...
Tensor<double, 3> const A(RANDOM_UNIFORM);
Tensor<double, 3> R, U;

tie(R, U) = polar_right(A);

Tensor<double, 3> const B = R * U;

double const error = norm(B - A) / norm(A);
...

Dynamic Storage

#include "Intrepid_MiniTensor.h"
using namespace Intrepid;
using boost::tie;
...
Tensor<double> const A(3, RANDOM_UNIFORM);
Tensor<double> R(3), U(3);

tie(R, U) = polar_right(A);

Tensor<double> const B = R * U;

double const error = norm(B - A) / norm(A);
...

4



More Complex Case
...
double const pi = acos(-1.0);

double phi = pi * random_uniform<double>();
double theta = 2.0 * pi * random_uniform<double>();

Vector<double, 3> const n(sin(phi) * sin(theta), cos(phi), sin(phi) * cos(theta));

phi = pi * random_uniform<double>();
theta = 2.0 * pi * random_uniform<double>();

Vector<double, 3> const m(sin(phi) * sin(theta), cos(phi), sin(phi) * cos(theta));

phi = 2.0 * pi * random_uniform<double>();
theta = 2.0 * pi * random_uniform<double>();

Vector<double, 3> const a = phi * m;
Vector<double, 3> const b = theta * m;

Tensor<double, 3> X = exp(skew(a));
Tensor<double, 3> Y = exp(skew(b));
Tensor<double, 3> D = exp(diag(Vector<double, 3>(RANDOM_NORMAL)));

Tensor<double, 3> A = X * D * transpose(Y);

Tensor<double, 3> U, S, V;

tie(U, S, V) = svd(A);

Tensor<double, 3> B = dot(U, dot_t(S, V));

double const error = norm(B - A) / norm(A);
...

5



Testing the Polar Decomposition

J := detF = �1�2�3; � := log J ;


i := log �i ; � = �1 + �2 + �3
(1)


i � N (�
 ; �
) ) � � N (3�
 ;
p
3�
) (2)

�J = exp

�
�� +

�2�
2

�
= exp

 
3�
 +

3�2

2

!
(3)

�2J =
�
exp(�2�)� 1

�
exp(2�� + �2�)

=
�
exp(3�2
)� 1

�
exp(6�
 + 3�2
)

(4)

�J  1; �J  2; N  107

6



Polar Decomposition: Stretch

� � t (s)

Lam�e -15.55 0.20 8.17
SVD -15.02 0.25 23.43
Iterative -15.32 0.22 11.49
Projection -15.71 0.21 10.13

7



Polar Decomposition: Rotation

� � t (s)

Lam�e -15.33 0.35 8.17
SVD -15.31 0.18 23.43
Iterative -15.38 0.24 11.49
Projection -15.68 0.18 10.13

8



Inverse: Numerical

� �

Matlab -15.94 0.28
MT Gauss-Jordan -15.98 0.27

9



Inverse: Analytical

� �

MT Analytical -16.23 0.27
Matlab -16.30 0.27
MT Gauss-Jordan -16.32 0.27

10



Work in Progress

Expression templates may not o�er much performance gain.

Support for complex numbers and corresponding algorithms.

Better and faster algorithms for some current functionality.

Extend functionality.

11



References I

N.J. Higham. Functions of Matrices: Theory and Computation. SIAM,
Philadelphia, 2008.

12


