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Energy Storage System Safety at SNL
 Cradle‐to‐grave responsibility for NW power 
sources including safety and reliability

 High value, high consequence assets
 Unique opportunities and use conditions

Safety and Reliability of Energy Storage Systems for NW (NNSA)

Battery Safety R&D Program for Transportation

Safety and Reliability for Utility Energy Storage

 Born out of capabilities developed in the 
NW program

 Program support by DOE EERE OVT
 Cost and performance are primary drivers 
in the automotive industry

 Unique opportunities and use conditions

 Differentiated from transportation safety by 
scale, technologies, and use conditions

 Currently no government program supporting 
energy storage safety for the grid

 Recent utility safety incidents have highlighted 
the need for a focused effort in this area



Differentiating the Grid Energy 
Storage Safety Challenge
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 Variety of technologies
 Proximity to population
 Use conditions
 Design considerations
 System complexity
 Grid integration
 Scale and size

Subway regen system, SEPTA

US Marine Corps FOB, Afghanistan

Redox Flow Battery

SAFT 10 MWh storage system



Infrastructure for Energy Storage Safety
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Battery Abuse Testing Laboratory

Thermal Test Complex

Cell Fabrication Facility

Battery Calorimetry

Simulation and Modeling

Energy Materials R&D



Understanding Battery Safety
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V

A C

Materials R&D
• Non‐flammable electrolytes
• Electrolyte salts
• Coated active materials
• Thermally stable materials

Testing
• Electrical, thermal, mechanical abuse testing
• Failure propagation testing on batteries/systems
• Large scale thermal and fire testing (TTC)
• Development for DOE Vehicle Technologies and USABC

Simulations and Modeling
• Multi‐scale models for understanding thermal runaway
• Validating vehicle crash and failure propagation models
• Fire Dynamic Simulations (FDS) to predict the size, 

scope, and consequences of  battery fires

Procedures, Policy, and Regulation
• USABC FreedomCAR Abuse Testing Manual
• SAE J2464, UL1642
• Testing programs with NHTSA/DOT to influence 

policies and requirements



Battery Safety R&D Program Support
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Abuse Testing
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of separator  internal short

Thermal runaway

(Internal temperature limited due to ejection of cell contents)

50 kWh battery failure? 50 Mh battery failure?

 Abuse tolerance?
 Heat generation?
 Flammability?
 What happens to neighboring 

cells in a battery?

PL‐8570170‐2C_01 fire.mpg

12 Ah (~50 Wh) Cell Overcharge Abuse



Battery Calorimetry
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Differences in runaway enthalpy and reaction kinetics are related to 
oxygen release from the cathode and the electrolyte combustion

Can we have a higher 
energy cell that behaves 

(thermally) like a 
LiFePO4 cell?

Calorimetry of lithium‐ion cells with different cathode chemistries



Improving Runaway Response
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Materials choices can be made to improve the runaway response in cells
Reducing runaway enthalpy and kinetics has direct implications in battery system safety



Electrolyte Flammability
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• HFEs show higher autoignition temps in air compared to carbonates
• 50% HFE electrolytes show no ignition or flammability

Carbonate Electrolyte

50% HFE Electrolyte

Hydrofluoro ether (HFE) Electrolytes

G. Nagasubramanian et al. J. Power Sources 196 (2011) 8604‐8609



Battery System Field Failures
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Field failures could include:
 Latent manufacturing defects
 Internal short circuits

 Unique use or abuse conditions
 Control failure (low voltage, 

control systems, connectors, 
boards, not battery initiated)

Any single point failure that propagates through a entire battery 
system is an unacceptable scenario to ensure battery safety

Tesla Model S fire in October 2013, Washington 



Failure Propagation Testing
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10S1P and 1S10P configurations
2.2 Ah 18650 cell packs (92 Wh at 100% SOC)
Failures initiated by mechanical insult to the center cell (#6) 

10S1P

Limited propagation of the single point failure in the 10S1P pack 

10S1P pack.mp4



Failure Propagation Testing
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10S1P and 1S10P configurations
2.2 Ah 18650 cell packs (92 Wh at 100% SOC)
Failures initiated by mechanical insult to the center cell (#6) 

1S10P

Complete propagation of a single point failure in the 1S10P pack 
1S10P_1.mp4
1S10P_final.mp4



Quantifying Battery Fires
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Fire Dynamic Simulations (FDS) 
of Battery Fires

Test bay ceiling temperature

Simulated heat flux

 Scale up experiments to validate FDS models (Wh kWh MWh)
 Feedback to design storage systems 
 Inform fire suppression system design
 Provide to regulatory agencies (NFPA, NHTSA), utility companies, etc.

Measured heat flux

Experimental Data from 
Battery Fires



Standards, Regulation, and Policy
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 Unanticipated failure modes
 Stranded energy in battery systems

 State‐of‐health monitoring

 Disabling and discharging batteries

Fisker incident in the wake of Super Storm Sandy , New Jersey



Standards, Regulation, and Policy
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 USABC FreedomCAR Abuse Manual
 Testing development, evaluation, and validation

 Work on SAE J2464, UL 1642
 Testing support for NHTSA to influence 

regulation and policy



Summary
 Sandia has a long history of supporting battery safety and 

reliability for a variety of customers
 There is a gap in programs focused on grid storage safety and 

reliability
 Significant infrastructure and capabilities exists for 

performing this much needed work
 Examples from the lithium‐ion/vehicle field highlight the 

progress that has been made, challenges with deploying new 
technologies/scaling technologies, and opportunities ahead

 Fielding the most inherently safe chemistries and designs can 
help address the challenges in system‐level safety and 
reliability
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