SAND2013-9179P

A Transactional Model for Fault-Tolerant MPI for Petascale and Exascale systems
Amin Hassani! Anthony Skjellum?! Ron Brightwell?

[1] University of Alabama at Birmingham, Birmingham, Alabama
[2] Sandia National Laboratories, Albuquerque, New Mexico

4 Abstract A

Fault-Aware MPI (FA-MPI) is a novel approach to provide fault-tolerance
through a set of extensions to the MPI Standard. It employs a transactional
model to address failure detection, isolation, mitigation, and recovery via
application-driven policies. This approach allows applications to employ
different fault-tolerance techniques, such as algorithm-based fault
tolerance (ABFT) and multi-level checkpoint/restart methods. The goal of
FA-MPI is to support fault-awareness in MPI objects and enable applications
to run to completion with higher probability than running on a non-fault-
aware MPI. FA-MPI leverages non-blocking communication operations
combined with a set of TryBlock API extensions that can be nested to
support multi-level failure detection and recovery. Scalability and
Management of fault-free overhead are the key concerns. Failure models
supported by FA-MPI include but are not limited just to “process failures”
unlike other proposed systems [2][3].

Fault-Free Overhead

We expect that applications using FA-MPI to run longer on larger machines
as compare to non-fault-tolerant versions of the application. In order to
achieve resiliency, some sacrifice in instantaneous performance cannot be
avoided. We expect to have slightly less performance because of the
synchronization call at the end of TryBlocks. We allow applications to run
slightly slower but with enough forward progress to reach the completion
of execution. FA-MPI allows the application to control the fault-free
overhead by setting the granularity of synchronization.

Four Phases of Fault-Tolerance

FA-MPI allows failure detection and propagation through the TryBlock
mechanism. But after this first phase, failed components should be
isolated from other parts and then failure mitigation phase alleviate the

severity of failure. Finally recovery phase brings back the state of the
system to the healthy state before failure.

Sometimes continuing work with a failed communicator is impossible. FA-
MPI can provide API calls similar to the approach in [2] to shrink a sick
communicator to smaller size (and continue work with the new smaller
communicator) and possibly regrow it later by spawning new processes and
merge all into a new communicator. FA-MPI maintains single-assignment
properties of MPI objects (communicators, windows, and files) and
repairing or modifying any of these objects are not implied. Recovery
comprises another block of computation and communication and should
can be handled in a TryBlock even in the presence of faults. Any failures
during recovery can result in retry or rollback to the last checkpoint.
These all can be policies decided by the application with the help of FA-
MPL.

Application Execution

q Failure
RZZ:L‘\JII:TY Detection &
Proiaiatmn
o /
Failure Failure
Mitigation — Isolation

W W

FA-MPI's API

TryBlock

TryBlocks are the fundamental extensions enabling applications to
behave transactional using FA-MPI. It allows applications to
implement multiple levels of recovery.

int MPI_TryBlock_start(MPI_Comm comm, int flag, MPI_Request*
try_request);

+ Collective but not necessarily synchronizing

« flag defines the need for global error propagation

int MPI_TryBlock_ifinish(MPI_Request try_request, MPI_Timeout
timeout, int count, MPI_Request[] array_of_requests, MPI_Status[]
array_of_statuses);

+ Synchronizing collective propagates global errors

« Can be nested

Failure Injection

Failure injection is a mechanism that allows both an MPI
implementation and user application to inject errors into MPI
consistently and to faciliate different methods of ABFT recoveries.
int MPI_Request_raise_error(MPI_Request request, int errcode);
« Define error codes:

— MPI_ERR_PROCESS_FAILED

— MPI_ERR_REQUEST_FAILED

— implementations can add additional error codes

Timeout

Timeout is an effective mechanism to handle exceptional
behaviors properly, such as unexpected delay in response or
remote failure.

int MPI_Timeout_set_ticks(MPI_Timeout* timeout, int ticks);

int MPI_Timeout_get_ticks(MPI_Timeout timeout, int* ticks);

+ In units of MPI_Wtick();

Local Completion

Local completion functions do not destroy request handle upon
success. They add the timeout mechanism.

int MPI_Wait_local(MPI_Request request, MPI_Status *status,
MPI_Timeout timeout);

int MPI_Waitany_local(int count, MPI_Request array_of_requests[],
int *index, MPI_Status *status, MPI_Timeout timeout);

int MPI_Waitsome_local(int incount, MPI_Request array_of_requests
[1, int *outcount, int array_of_indices[], MPI_Status
array_of_statuses[], MPI_Timeout timeout);

int MPI_Waitall_local(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[], MPI_Timeout timeout);

Or

Chane the semantics of MPI to not delete request handle. Timeout
can be added with:

int MPI_Request_timeout_set(MPI_Request request, Timeout
timeout)

Failure Notification

Failures can be revealed to the user after TryBlock's finish call.
Querying for failure is a mechanism for user to retrieve information
about local and global failures in the system.

int MPI_Get_failed_requests(MPI_Request try_request, int max, int*
count, int[] array_of_index);

int MPI_Get_failed_ranks(MPI_Request try_request, MPI_Group*
fgroup);

int MPI_Get_failed_objects(MPI_Request try_request, int max, int*
count, MPI_Comm([] array_of_communicators);

Composing an Applications with FA-MPI

Data Parallel

begin program
initialization;
if (restarted) then

load data from last checkpoint (optional);
endif;

repeat
while (more_work_to_do) do

MPI_TryBlock start(comm,globalreq);
computation, communication and/or 1/0;
local wait for operations to finish;
inject local errors;
MPI_TryBlock ifinish(req);
MPI_Wait_local(req, status, timeout);

if (failure_happened) then
isolate and mitigate the failure;
if (recovery_needed) then
eak;

end if;

nd if;
periodically checkpoint;
end while;
if (recovery_needed) then
do recovery procedure;

until (more_work_to_do or restart_needed);
end program;

Master

function submit_job(comm, tryreq, job)
MPI_TryBlock_start(comm,global, tryreq);
non-blocking send job;
non-blocking receive results;
MPI_TryBlock _ifinish(tryreq);

end function;

begin program
initialization;
create a communicator for each worker;
for (i from 1 to number_of_workers) do
submit_job(comm(i], tryreas[il, jobs[il);
end for;
‘while (more_work_to_do and still_have_workers) do
MPI_Waitany._local(req, idx, timeout);
if (error_occured in tryregsfidx]) then
recover jobs[idx];
free tryreqsidx];
submit_job(comm[idx], tryreqs[idx], jobs[idx]);
else
free tryreqsidx];
create new jobs[idx];
submit_job(comm[idx], tryreqs[idx], jobs[idx]);
end if;
end while;
end program;

Worker

begin program
initialization;
create a communicator with master;

‘while (more_work_to_do) do
tart:

MP_TryBlock_start(comm,global, req);
non-blocking receive job;
f (not_more_work_to_do) then
goto finish;
end f;
compute results;
non-blocking send results;
finish:
MPI_TryBlock_finish(req);
i (error_happened) then
do recovery;
goto start;
end if;
end while;
end program;

\ i conm oo \

[oo | commcns |

—H
1

—MPI_TryBlock_finish— o~
—MPI_TryBlock_finish—
Fault ™

|

__MPI_TryBlock finish__

L
> (retry) —MPI_TryBlock_finish—

Fault
MPI_TryBlock_finish__

> (retry)
s

——+

—MPI_TryBlock_finish—

L
—MPI_TryBlock_finish—

f

—MPI_TryBlock_finish—

| MPLTryBlock_finish
‘ - (Checkpoint) ‘

Conclusions and Future Work

FA-MPI is a set of extension APIs for the MPI standard to allow fault-
awareness using a transactional model. FA-MPI detects and propagates
failures in non-blocking communication calls, and notifies global failures to
the application. We expect applications using FA-MPI run to completion
with higher probability than the non-fault-aware versions. We are
currently developing the proposed APl and we will publish further results
in near future publications. The subset of MPI we support are non-blocking
APIs in MPI-3 and logical extensions thereof in MPI-4 (e.g., complete
support for non-blocking collectives is expected in MPI-4).

References

[1] Anthony Skjellum and Purushotham V. Bangalore. FA-MPI: fault-aware
MPI specification and concept of operations. Technical Report UABCIS-
TR-2012-011912, May 2012.

[2] Wesley Bland. User level failure mitigation in MPI. In Euro-Par 2012:
Parallel Processing Workshops, pages 499-504, 2013.

[3] Joshua Hursey, Richard L. Graham, Greg Bronevetsky, Darius Buntinas,
Howard Pritchard, and David G. Solt. Run-through stabilization: An MPI
proposal for process fault tolerance. In Recent Advances in the Message
Passing Interface, pages 329-332. Springer, 2011.

[4] Joshua Hursey, Thomas Naughton, Geoffroy Vallee, and Richard L.
Graham. A log-scaling fault tolerant agreement algorithm for a fault
tolerant MPI. In EuroMPI, pages 255-263, 2011.

[5] Message Passing Interface Forum. MPI: a message passing interface
standard version 3.0. Technical report, September 2012.

[6] Leslie G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103-111, August 1990. ISSN 0001-0782.

Acknowledgments

This work was supported in part by the National Science Foundation under
grant CCF-1239962. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-
AC04-94AL85000.

