
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

(—THIS SIDEBAR DOES NOT PRINT—)
D E S I G N G U I D E

This PowerPoint 2007 template produces a 42”x60” presentation
poster. You can use it to create your research poster and save
valuable time placing titles, subtitles, text, and graphics.

We provide a series of online answer your poster production
questions. To view our template tutorials, go online to
PosterPresentations.com and click on HELP DESK.

When you are ready to print your poster, go online to
PosterPresentations.com

Need assistance? Call us at 1.510.649.3001

Q U I C K S T A R T

Zoom in and out
As you work on your poster zoom in and out to the level that is
more comfortable to you. Go to VIEW > ZOOM.

Title, Authors, and Affiliations

Start designing your poster by adding the title, the names of the authors, and
the affiliated institutions. You can type or paste text into the provided boxes.
The template will automatically adjust the size of your text to fit the title
box. You can manually override this feature and change the size of your text.

T I P : The font size of your title should be bigger than your name(s) and
institution name(s).

Adding Logos / Seals
Most often, logos are added on each side of the title. You can insert a logo by
dragging and dropping it from your desktop, copy and paste or by going to
INSERT > PICTURES. Logos taken from web sites are likely to be low quality
when printed. Zoom it at 100% to see what the logo will look like on the final
poster and make any necessary adjustments.

T I P : See if your company’s logo is available on our free poster templates
page.

Photographs / Graphics
You can add images by dragging and dropping from your desktop, copy and
paste, or by going to INSERT > PICTURES. Resize images proportionally by
holding down the SHIFT key and dragging one of the corner handles. For a
professional-looking poster, do not distort your images by enlarging them
disproportionally.

Image Quality Check
Zoom in and look at your images at 100% magnification. If they look good
they will print well.

ORIGINAL	
 DISTORTED	

Corner	
 handles	

Go
od

	
 p
rin

/n
g	

qu

al
ity

	

Ba
d	

pr
in
/n

g	

qu

al
ity

	

Q U I C K S TA R T (c o n t .)

How to change the template color theme
You can easily change the color theme of your poster by going to the
DESIGN menu, click on COLORS, and choose the color theme of your
choice. You can also create your own color theme.

You can also manually change the color of your background by going to
VIEW > SLIDE MASTER. After you finish working on the master be sure
to go to VIEW > NORMAL to continue working on your poster.

How to add Text
The template comes with a number of pre-
formatted placeholders for headers and text
blocks. You can add more blocks by copying and
pasting the existing ones or by adding a text box
from the HOME menu.

 Text size

Adjust the size of your text based on how much content you have to
present. The default template text offers a good starting point. Follow
the conference requirements.

How to add Tables

To add a table from scratch go to the INSERT menu and
click on TABLE. A drop-down box will help you select rows
and columns.

You can also copy and a paste a table from Word or another PowerPoint
document. A pasted table may need to be re-formatted by RIGHT-CLICK
> FORMAT SHAPE, TEXT BOX, Margins.

Graphs / Charts
You can simply copy and paste charts and graphs from Excel or Word.
Some reformatting may be required depending on how the original
document has been created.

How to change the column configuration
RIGHT-CLICK on the poster background and select LAYOUT to see the
column options available for this template. The poster columns can
also be customized on the Master. VIEW > MASTER.

How to remove the info bars

If you are working in PowerPoint for Windows and have finished your
poster, save as PDF and the bars will not be included. You can also
delete them by going to VIEW > MASTER. On the Mac adjust the Page-
Setup to match the Page-Setup in PowerPoint before you create a PDF.
You can also delete them from the Slide Master.

Save your work
Save your template as a PowerPoint document. For printing, save as
PowerPoint of “Print-quality” PDF.

Student discounts are available on our Facebook page.
Go to PosterPresentations.com and click on the FB icon.

©	
 2013	
 PosterPresenta/ons.com	

	
 	
 	
 	
 	
 2117	
 Fourth	
 Street	
 ,	
 Unit	
 C	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 Berkeley	
 CA	
 94710	

	
 	
 	
 	
 posterpresenter@gmail.com	

Fault-Aware MPI (FA-MPI) is a novel approach to provide fault-tolerance
through a set of extensions to the MPI Standard. It employs a transactional
model to address failure detection, isolation, mitigation, and recovery via
application-driven policies. This approach allows applications to employ
different fault-tolerance techniques, such as algorithm-based fault
tolerance (ABFT) and multi-level checkpoint/restart methods. The goal of
FA-MPI is to support fault-awareness in MPI objects and enable applications
to run to completion with higher probability than running on a non-fault-
aware MPI. FA-MPI leverages non-blocking communication operations
combined with a set of TryBlock API extensions that can be nested to
support multi-level failure detection and recovery. Scalability and
Management of fault-free overhead are the key concerns. Failure models
supported by FA-MPI include but are not limited just to “process failures”
unlike other proposed systems [2][3].

Abstract	
 FA-­‐MPI’s	
 API	

Composing	
 an	
 ApplicaCons	
 with	
 FA-­‐MPI	

Conclusions	
 and	
 Future	
 Work	

References	

[1] Anthony Skjellum and Purushotham V. Bangalore. FA-MPI: fault-aware
MPI specification and concept of operations. Technical Report UABCIS-
TR-2012-011912, May 2012.
[2] Wesley Bland. User level failure mitigation in MPI. In Euro-Par 2012:
Parallel Processing Workshops, pages 499–504, 2013.
[3] Joshua Hursey, Richard L. Graham, Greg Bronevetsky, Darius Buntinas,
Howard Pritchard, and David G. Solt. Run-through stabilization: An MPI
proposal for process fault tolerance. In Recent Advances in the Message
Passing Interface, pages 329–332. Springer, 2011.
[4] Joshua Hursey, Thomas Naughton, Geoffroy Vallee, and Richard L.
Graham. A log-scaling fault tolerant agreement algorithm for a fault
tolerant MPI. In EuroMPI, pages 255–263, 2011.
[5] Message Passing Interface Forum. MPI: a message passing interface
standard version 3.0. Technical report, September 2012.
[6] Leslie G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, August 1990. ISSN 0001-0782.

This work was supported in part by the National Science Foundation under
grant CCF-1239962. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-
AC04-94AL85000.

Amin	
 Hassani1	
 Anthony	
 Skjellum1	
 Ron	
 Brightwell2	
 	

[1]	
 University	
 of	
 Alabama	
 at	
 Birmingham,	
 Birmingham,	
 Alabama	

[2]	
 Sandia	
 Na/onal	
 Laboratories,	
 Albuquerque,	
 New	
 Mexico	

A	
 Transac/onal	
 Model	
 for	
 Fault-­‐Tolerant	
 MPI	
 for	
 Petascale	
 and	
 Exascale	
 systems	

Acknowledgments	

TryBlock	

Timeout	

Failure	
 InjecCon	

Local	
 CompleCon	

We expect that applications using FA-MPI to run longer on larger machines
as compare to non-fault-tolerant versions of the application. In order to
achieve resiliency, some sacrifice in instantaneous performance cannot be
avoided. We expect to have slightly less performance because of the
synchronization call at the end of TryBlocks. We allow applications to run
slightly slower but with enough forward progress to reach the completion
of execution. FA-MPI allows the application to control the fault-free
overhead by setting the granularity of synchronization.

TryBlocks are the fundamental extensions enabling applications to
behave transactional using FA-MPI. It allows applications to
implement multiple levels of recovery.
int MPI_TryBlock_start(MPI_Comm comm, int flag, MPI_Request*
try_request);
•  Collective but not necessarily synchronizing
•  flag defines the need for global error propagation
int MPI_TryBlock_ifinish(MPI_Request try_request, MPI_Timeout
timeout, int count, MPI_Request[] array_of_requests, MPI_Status[]
array_of_statuses);
•  Synchronizing collective propagates global errors
•  Can be nested

Timeout is an effective mechanism to handle exceptional
behaviors properly, such as unexpected delay in response or
remote failure.
int MPI_Timeout_set_ticks(MPI_Timeout* timeout, int ticks);
int MPI_Timeout_get_ticks(MPI_Timeout timeout, int* ticks);
•  In units of MPI_Wtick();

Failure injection is a mechanism that allows both an MPI
implementation and user application to inject errors into MPI
consistently and to faciliate different methods of ABFT recoveries.
int MPI_Request_raise_error(MPI_Request request, int errcode);
•  Define error codes:

–  MPI_ERR_PROCESS_FAILED
–  MPI_ERR_REQUEST_FAILED
–  implementations can add additional error codes

FA-MPI is a set of extension APIs for the MPI standard to allow fault-
awareness using a transactional model. FA-MPI detects and propagates
failures in non-blocking communication calls, and notifies global failures to
the application. We expect applications using FA-MPI run to completion
with higher probability than the non-fault-aware versions. We are
currently developing the proposed API and we will publish further results
in near future publications. The subset of MPI we support are non-blocking
APIs in MPI-3 and logical extensions thereof in MPI-4 (e.g., complete
support for non-blocking collectives is expected in MPI-4).

Local completion functions do not destroy request handle upon
success. They add the timeout mechanism.

int MPI_Wait_local(MPI_Request request, MPI_Status *status,
MPI_Timeout timeout);
int MPI_Waitany_local(int count, MPI_Request array_of_requests[],
int *index, MPI_Status *status, MPI_Timeout timeout);
int MPI_Waitsome_local(int incount, MPI_Request array_of_requests
[], int *outcount, int array_of_indices[], MPI_Status
array_of_statuses[], MPI_Timeout timeout);
int MPI_Waitall_local(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[], MPI_Timeout timeout);

Or

Chane the semantics of MPI to not delete request handle. Timeout
can be added with:
int MPI_Request_timeout_set(MPI_Request request, Timeout
timeout)

Failure	
 NoCficaCon	

Failures can be revealed to the user after TryBlock's finish call.
Querying for failure is a mechanism for user to retrieve information
about local and global failures in the system.
int MPI_Get_failed_requests(MPI_Request try_request, int max, int*
count, int[] array_of_index);
int MPI_Get_failed_ranks(MPI_Request try_request, MPI_Group*
fgroup);
int MPI_Get_failed_objects(MPI_Request try_request, int max, int*
count, MPI_Comm[] array_of_communicators);

begin program
initialization;
if (restarted) then
 load data from last checkpoint (optional);
end if;

repeat
 while (more_work_to_do) do
 MPI_TryBlock_start(comm,global,req);
 computation, communication and/or I/O;
 local wait for operations to finish;
 inject local errors;
 MPI_TryBlock_ifinish(req);
 MPI_Wait_local(req, status, timeout);

 if (failure_happened) then
 isolate and mitigate the failure;
 if (recovery_needed) then
 break;
 end if;
 end if;
 periodically checkpoint;
 end while;
 if (recovery_needed) then
 do recovery procedure;
 end if;
until (more_work_to_do or restart_needed);
end program;

function submit_job(comm, tryreq, job)
 MPI_TryBlock_start(comm,global,tryreq);
 non-blocking send job;
 non-blocking receive results;
 MPI_TryBlock_ifinish(tryreq);
end function;

begin program
initialization;
create a communicator for each worker;
for (i from 1 to number_of_workers) do
 submit_job(comm[i], tryreqs[i], jobs[i]);
end for;
while (more_work_to_do and still_have_workers) do
 MPI_Waitany_local(req,idx,timeout);
 if (error_occured in tryreqs[idx]) then
 recover jobs[idx];
 free tryreqs[idx];
 submit_job(comm[idx], tryreqs[idx], jobs[idx]);
 else
 free tryreqs[idx];
 create new jobs[idx];
 submit_job(comm[idx], tryreqs[idx], jobs[idx]);
 end if;
end while;
end program;

begin program
initialization;
create a communicator with master;

while (more_work_to_do) do
start:
 MPI_TryBlock_start(comm,global,req);
 non-blocking receive job;
 if (not_more_work_to_do) then
 goto finish;
 end if;
 compute results;
 non-blocking send results;
finish:
 MPI_TryBlock_finish(req);
 if (error_happened) then
 do recovery;
 goto start;
 end if;
end while;
end program;

Data	
 Parallel	
 Master	
 Worker	

Fault-­‐Free	
 Overhead	

Four	
 Phases	
 of	
 Fault-­‐Tolerance	

FA-MPI allows failure detection and propagation through the TryBlock
mechanism. But after this first phase, failed components should be
isolated from other parts and then failure mitigation phase alleviate the
severity of failure. Finally recovery phase brings back the state of the
system to the healthy state before failure.
Sometimes continuing work with a failed communicator is impossible. FA-
MPI can provide API calls similar to the approach in [2] to shrink a sick
communicator to smaller size (and continue work with the new smaller
communicator) and possibly regrow it later by spawning new processes and
merge all into a new communicator. FA-MPI maintains single-assignment
properties of MPI objects (communicators, windows, and files) and
repairing or modifying any of these objects are not implied. Recovery
comprises another block of computation and communication and should
can be handled in a TryBlock even in the presence of faults. Any failures
during recovery can result in retry or rollback to the last checkpoint.
These all can be policies decided by the application with the help of FA-
MPI.

Applica/on	
 Execu/on	

Failure	

Detec/on	
 &	

Propaga/on	

Failure	

Isola/on	

Failure	

Mi/ga/on	

Failure	

Recovery	

MPI_COMM_WORLD

Communicator A Communicator B

MPI_TryBlock_finish

Fault

MPI_TryBlock_finish
 (retry)

Fault
MPI_TryBlock_finish

 (retry)

MPI_TryBlock_finish
 (Checkpoint)

MPI_TryBlock_finish

MPI_TryBlock_finish

MPI_TryBlock_finish

MPI_TryBlock_finish

MPI_TryBlock_finish

SAND2013-9179P

