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Fault-Aware MPI (FA-MPI) is a novel approach to provide fault-tolerance 
through a set of extensions to the MPI Standard. It employs a transactional 
model to address failure detection, isolation, mitigation, and recovery via 
application-driven policies. This approach allows applications to employ 
different fault-tolerance techniques, such as algorithm-based fault 
tolerance (ABFT) and multi-level checkpoint/restart methods. The goal of 
FA-MPI is to support fault-awareness in MPI objects and enable applications 
to run to completion with higher probability than running on a non-fault-
aware MPI. FA-MPI leverages non-blocking communication operations 
combined with a set of TryBlock API extensions that can be nested to 
support multi-level failure detection and recovery. Scalability and 
Management of fault-free overhead are the key concerns. Failure models 
supported by FA-MPI include but are not limited just to “process failures” 
unlike other proposed systems [2][3].  
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We expect that applications using FA-MPI to run longer on larger machines 
as compare to non-fault-tolerant versions of the application. In order to 
achieve resiliency, some sacrifice in instantaneous performance cannot be 
avoided. We expect to have slightly less performance because of the 
synchronization call at the end of TryBlocks. We allow applications to run 
slightly slower but with enough forward progress to reach the completion 
of execution. FA-MPI allows the application to control the fault-free 
overhead by setting the granularity of synchronization.  

TryBlocks are the fundamental extensions enabling applications to 
behave transactional using FA-MPI. It allows applications to 
implement multiple levels of recovery. 
int MPI_TryBlock_start(MPI_Comm comm, int flag, MPI_Request* 
try_request); 
•  Collective but not necessarily synchronizing 
•  flag defines the need for global error propagation 
int MPI_TryBlock_ifinish(MPI_Request try_request, MPI_Timeout 
timeout, int count, MPI_Request[] array_of_requests, MPI_Status[] 
array_of_statuses);  
•  Synchronizing collective propagates global errors 
•  Can be nested 

 

Timeout is an effective mechanism to handle exceptional 
behaviors properly, such as unexpected delay in response or 
remote failure. 
int MPI_Timeout_set_ticks(MPI_Timeout* timeout, int ticks);  
int MPI_Timeout_get_ticks(MPI_Timeout timeout, int* ticks); 
•   In units of MPI_Wtick(); 

Failure injection is a mechanism that allows both an MPI 
implementation and user application to inject errors into MPI 
consistently and to faciliate different methods of ABFT recoveries. 
int MPI_Request_raise_error(MPI_Request request, int errcode);  
•  Define error codes: 

–  MPI_ERR_PROCESS_FAILED 
–  MPI_ERR_REQUEST_FAILED 
–  implementations can add additional error codes 

FA-MPI is a set of extension APIs for the MPI standard to allow fault-
awareness using a transactional model. FA-MPI detects and propagates 
failures in non-blocking communication calls, and notifies global failures to 
the application. We expect applications using FA-MPI run to completion 
with higher probability than the non-fault-aware versions. We are 
currently developing the proposed API and we will publish further results 
in near future publications. The subset of MPI we support are non-blocking 
APIs in MPI-3 and logical extensions thereof in MPI-4 (e.g., complete 
support for non-blocking collectives is expected in MPI-4).  

Local completion functions do not destroy request handle upon 
success. They add the timeout mechanism. 
 
int MPI_Wait_local(MPI_Request request, MPI_Status *status, 
MPI_Timeout timeout); 
int MPI_Waitany_local(int count, MPI_Request array_of_requests[], 
int *index, MPI_Status *status, MPI_Timeout timeout); 
int MPI_Waitsome_local(int incount, MPI_Request array_of_requests 
[], int *outcount, int array_of_indices[], MPI_Status 
array_of_statuses[], MPI_Timeout timeout); 
int MPI_Waitall_local(int count, MPI_Request array_of_requests[], 
MPI_Status array_of_statuses[], MPI_Timeout timeout); 
 
Or 
 
Chane the semantics of MPI to not delete request handle. Timeout 
can be added with: 
int MPI_Request_timeout_set(MPI_Request request, Timeout 
timeout) 

Failure	
  NoCficaCon	
  
Failures can be revealed to the user after TryBlock's finish call. 
Querying for failure is a mechanism for user to retrieve information 
about local and global failures in the system. 
int MPI_Get_failed_requests(MPI_Request try_request, int max, int* 
count, int[] array_of_index);  
int MPI_Get_failed_ranks(MPI_Request try_request, MPI_Group* 
fgroup); 
int MPI_Get_failed_objects(MPI_Request try_request, int max,  int* 
count, MPI_Comm[] array_of_communicators); 
 

begin program 
initialization; 
if (restarted) then 
    load data from last checkpoint (optional); 
end if; 
 
repeat 
    while (more_work_to_do) do 
        MPI_TryBlock_start(comm,global,req);  
        computation, communication and/or I/O;  
        local wait for operations to finish; 
        inject local errors; 
        MPI_TryBlock_ifinish(req); 
        MPI_Wait_local(req, status, timeout); 
 
        if (failure_happened) then 
            isolate and mitigate the failure;  
            if (recovery_needed) then  
                break; 
            end if; 
        end if; 
        periodically checkpoint; 
    end while; 
    if (recovery_needed) then 
        do recovery procedure; 
    end if; 
until (more_work_to_do or restart_needed); 
end program; 
 

function submit_job(comm, tryreq, job) 
    MPI_TryBlock_start(comm,global,tryreq); 
    non-blocking send job; 
    non-blocking receive results; 
    MPI_TryBlock_ifinish(tryreq); 
end function; 
 
begin program 
initialization; 
create a communicator for each worker; 
for (i from 1 to number_of_workers) do 
    submit_job(comm[i], tryreqs[i], jobs[i]); 
end for; 
while (more_work_to_do and still_have_workers) do 
    MPI_Waitany_local(req,idx,timeout); 
    if (error_occured in tryreqs[idx]) then  
        recover jobs[idx]; 
        free tryreqs[idx]; 
        submit_job(comm[idx], tryreqs[idx], jobs[idx]);     
    else 
        free tryreqs[idx]; 
        create new jobs[idx]; 
        submit_job(comm[idx], tryreqs[idx], jobs[idx]); 
    end if; 
end while; 
end program; 
 

begin program 
initialization; 
create a communicator with master; 
 
while (more_work_to_do) do 
start: 
    MPI_TryBlock_start(comm,global,req); 
    non-blocking receive job; 
    if (not_more_work_to_do) then  
        goto finish; 
    end if; 
    compute results; 
    non-blocking send results; 
finish:  
    MPI_TryBlock_finish(req); 
    if (error_happened) then 
        do recovery; 
        goto start; 
    end if; 
end while; 
end program; 
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Four	
  Phases	
  of	
  Fault-­‐Tolerance	
  
FA-MPI allows failure detection and propagation through the TryBlock 
mechanism. But after this first phase, failed components should be 
isolated from other parts and then failure mitigation phase alleviate the 
severity of failure. Finally recovery phase brings back the state of the 
system to the healthy state before failure. 
Sometimes continuing work with a failed communicator is impossible. FA-
MPI can provide API calls similar to the approach in [2] to shrink a sick 
communicator to smaller size (and continue work with the new smaller 
communicator) and possibly regrow it later by spawning new processes and 
merge all into a new communicator. FA-MPI maintains single-assignment 
properties of MPI objects (communicators, windows, and files) and 
repairing or modifying any of these objects are not implied. Recovery 
comprises another block of computation and communication and should 
can be handled in a TryBlock even in the presence of faults. Any failures 
during recovery can result in retry or rollback to the last checkpoint. 
These all can be policies decided by the application with the help of FA-
MPI.  
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