
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.  

Photos placed in 

horizontal position  

with even amount 

of white space 

 between photos 

and header 

Photos placed in horizontal 

position  

with even amount of white 

space 

 between photos and header 

Laser Combustion Diagnostics for 
Sooting Flames and Turbulent Pool 
Fires 
 
Sean Kearney 

Engineering Sciences Center 

Sandia National Laboratories 

Albuquerque, NM 87185 

(spkearn@sandia.gov) 

 

 

0 2 4 6 8 10
0

1

2

3

4

5
 

 

1

2

3

4

5

1

2

3

4

5

 

 

0 2 4 6 8 10
0

1

2

3

4

5
 

 

1

2

3

4

5

1

2

3

4

5

SAND2013-8970P



Overview 

Femtosecond CARS 

• Laser diagnostics in sooting and meter-scale fire systems (30 mins) 

• Sandia’s motivation for fire research 

• Advantages of and challenges of using laser diagnostics for fire studies 

• Coherent anti-Stokes Raman scattering (CARS) 

• Laser-induced incandescence (LII) 

• Laboratory and field measurements 

• Femtosecond CARS (15 mins) 

• Femtosecond shock interferometry (USI) 

• PIV measurements in unsteady wall turbulence 
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Radiative Heat Flux from Soot is the Dominant 
Source of Risk in a Fire-Accident Scenario 
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• Thermal radiation heat flux is 

generated and absorbed locally 

within the individual flame zones. 

• Radiative transfer equation 

 

Large-Scale Accident 

Local soot & temp 

fields add up to 

global heat flux 
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• Emission term 

• Temperature 

• absorption coeff  soot fv 

• Local not path integrated 

• Key measurement challenge! 

•Technical approach: 

• CARS thermometry 
• LII soot-volume-fraction 
• Fully turbulent fire plume requires meter scales! 



Challenges for Laser Measurements in Fire-Science Experiments 

 Environment: Experiments are 
typically performed outdoors      ---
FLAME Facility 

 Large-scale of the combustion 
system 

 Sooting combustion systems 

 Mie scattering, 
incadescence, PAH, C2… 

 Limits choice of optical 
techniques 

 Optical thickness 

 Fiber coupled diagnostics 

 Light pipes 

 Lightly Sooting or 
Nonsooting Fuels 

 Measurements become 
more invasive 
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Coherent anti-Stokes Raman scattering (CARS) 
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Collimating Lens

• Three pulsed laser beams (pump 

#1, pump #2, Stokes) crossed at a 

common focus 

• Signal is generated as a coherent 

beam within the crossing region 

• Signal beam contains information 

about the vibrational/rotational 

Raman spectrum of the probed 

gases 

• The signal is blue, or anti-Stokes 

shifted, away from background 

luminosity 

• Coherent Anti-Stokes Raman 

Scattering (CARS) 



CARS is a coupling of laser light with matter via molecular 
energy levels 

 

 Three photons interact with 
the molecule  

 The molecule scatters a 
photon 

 Frequency combination of laser 
light is tuned to the difference 
between energy levels 

Lasers 

Molecular Dipole 

CARS 

1 2  vib./rot. 

 transition 

Energy (cm−1) 

 virtual levels 

S 

Coherent Anti-Stokes Raman  



Broadband CARS 

 If all lasers are narrowband one energy level is 
probed 

 

 

 

 

 

 

 

 If one (or more) laser is broadband then a range of 
energy levels differences are probed 
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We can work with vibrational Raman or rotational Raman 
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• CARS spectra reflect temperature via their 
shape 

• Signal for transition from level i to level j 
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Rotational CARS of N2 

Vibrational CARS of N2 

• We measure the CARS spectrum and then fit 
the data to theoretical prediction 

• Measured parameters include: 
• Temperature: 2% accuracy 1-4% 

precision 
• Species 
• Pressure 



Dual-Pump CARS Approach for Spatially Resolved Pool-Fire Thermometry 

• Coherent, laser-like signal 

−Spatial discrimination, slow 

collection optics 

−Readily coupled to 

optical fibers 

• Blue-shifted signal permits 

spectral discrimination against 

red/IR flame emission 

• Spectrally tunable output 

positions CARS signal beam in 

“quiet” regions of the spectrum 

away from C2 interference 

PROBE VOLUME


S


1 

2


CARS

Focusing
Lens

Collimating Lens

CARS Beam Arrangement 

CARS = (1 – s) + 2 



Laboratory Measurements in C2H2-fueled Diffusion Flame Array 

Soot Volume Fraction by LII 

• Initial DP-CARS measurements 

performed in laboratory scale burners 

• “How much soot can DP-CARS handle?” 

• Tune pump-2 frequency to find “quiet” 

spectral regions 

• Observe levels of C2 Swan band 

interference in flames with ppm-level soot 
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Results from Heavily Sooting C2H2 Fuel Jet 

• Fits performed using Sandia CARSFT code 

• Both N2 and H2 Included in the Dual-Pump 

theoretical calculations due to close proximity of 

H2 rotational lines to N2 Q-branch 

• Combustion product susceptibility used in O2/N2 

stream and above Al. feed port 

• Acetylene susceptibility used in Fuel Jet 

• Temp and N2 mole fraction floated in fitting 
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Next Step: apply diagnostic for pool-fire 

measurements 



FLAME Facility Enables Full-Scale Testing with High-Fidelity 
Laser Diagnostics 

• Fire Laboratory for Accreditation of Models and 

Experiments (FLAME) Facility 

• Designed to facilitate deployment of optical 

diagnostics for full meter-scale fire testing 

• Optical Access Ports and Adjacent Lab Space at 

East,West, and South Positions Around Test Cell 

• Liquid and Gas-Fueled Fires up to 3-m in Base Dia. 

• Brings Laboratory Control to Full Scale Testing 

• Canonical Wind-Free Buoyant Fire Plume 

18.3 m DIA X 12.2 m HIGH 

TEST BAY 

West Laser Lab 

20 MW  

JP-8 Fire 



Dual-Pump CARS Instrument at FLAME 

 First-ever implementation of CARS for large-scale 
fire testing 

 Methanol and sooting methanol/toluene blends 
have been tested to date 

 Simultaneous mole-fraction measurements have 
been added to thermometry capabilities  

Methanol pool fire and CARS 

laser beams 



Results – Temperature and Species Data from a Methanol Pool Fire 

• First experiments conducted in 

methanol fire 

• Nonsooting fuel is simpler starting 

point for diagnostic development 

• N2,O2, H2 observed in DP-CARS 

spectra 

• Temperature and simultaneous O2 

data (ref. to N2) extracted 

2-m methanol fire 

& laser light pipes 
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LII Experiment (Santoro and Shaddix, 2002) 

Soot Particle Temperature Rise 

Laser-Induced Incandescence (LII) 

• in situ measurement of soot volume 

fraction  

• Soot particle size also possible with 

ns time resolved LII (TIRE-LII) 

• Soot particles heated to vaporization 

point (4000-5000 K) by absorption of 

laser radiation 

• Thermal emission from soot is 

monitored during and/or after laser 

pulse 

• Laser-heated soot emits in 

excess of background 

• Total emission ~ soot volume 

• Time decay of emission ~ dp 

• 2-D imaging 

• ns time resolution 

• 50-100 m spatial resolution 

• Calibration against light extinction or 

other known particle dist. is required 



Intensified 

CCD Camera 

Basement 

Level 

Uncooled 

Cone 

Relay Lens 

Pair 
Water 

Jacket 

Fiber-Optic 

Bundle 

IR Windows 
Optics  

Packaging 

Fire 

Level 

1064 nm  

Laser 

Sheet 

• Toluene/Methanol blended fuel, ranging from 

10/90 to 30/70 ratio, higher sooting propensity 

than pure methanol  

• 1064nm laser sheet, fluence ~ 1.14 J/cm2 

• LII probe, water-cooled jacket, 200mm 

achromatic relay lens pair, 1cm2 fiber-bundle 

(10 μm) couples signal to ICCD camera 

• Four stage automated translation system to 

position probe and adjust focus 

• Signal is filtered using IR-reflecting window 

gating reduces background emission from fire 

Laser-Induced Incandescence Instrument at FLAME 



Joint CARS/LII Measurements Performed in Premixed C2H4/air Flame 

Soot Profile 

laser 

measurement 

volume 

translated 

along constant-

height 

planes  

• Overlap of CARS and LII 

beams verified using laser burn 

paper 

• LII detection system pointed at 

CARS probe volume by imaging 

pump-beam overlap 

• CARS/LII volumes translated 

through gradient region and 

across burner and constant 

height 



FLAME Modifications for Profile 
Measurements 
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Profile Measurements in 10% Toluene Research Fuel Blend 

Sooting Fire

and CARS

light pipes

Sooting Fire

and CARS

light pipes

• 10% toluene added to methanol 

• Data recorded along radial profiles at 

3 heights: 0.5, 1.0 and 1.5 m 

• Encompasses “vapor dome” and 

actively burning regions 

• Constant fuel level for 1-2 hr burns 

• Measurements begin at plume center 

with highest possible CARS signal 

• Proceed radially outward – 

compensates for signal loss due to 

fiber thermal misalignment 

• 3000-5000 single-shot CARS/LII 

realizations before moving 

measurement volume 

• Several different burns at each height 

for ensemble averaging 

y = 0.5 m 

y = 1.0 m 

y = 1.5 m 

y = 0.5 m 

y = 1.5 m 

Beam 
Propagation 



Single-Shot Spectra Provide Simultaneous 
Temperature/Species Information in Sooting Fire 
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Sooting Fire

and CARS

light pipes

Sooting Fire

and CARS

light pipes

10% Toluene 

90% Methanol  

Blend 

• CARS spectra from sooting fire show 

N2,CO2, H2, and O2 

• Full ensemble of species data not 

available as of yet 

• Two representative spectra with theoretical 

fits (Sandia CARSFT code) shown here 



Temperature Measurements in Sooting Pool Fire 
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Single-Laser-Shot Spectra and Theoretical Fits 

Temperature PDFs from 

2 Separate 

Methanol/Toluene Burns 

• CARS is applied in a pool fire with a representative volume loading of O(0.1 ppm) 

• Measurement volume is 0.5 diameters above the center of the 2-m fuel pan 

• 3500 single-shot temperature realizations per burn used to construct pdfs 

• Wide std. dev. indicative of large-scale turbulent mixing in pool fire 

• Mean temperatures compare favorably with nearby TC reading 1210 K   



Radial Temperature Profiles 
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Temperature PDF 
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Femtosecond CARS 

24 

• Why develop fs CARS when ns CARS works pretty well? 
• Precision: 3-4× improvement in thermometry 
• Data rate: kHz data rates as opposed to 10 Hz 
• Time resolution: 10 ps or better (shock physics) 
• High-pressure environments 
• Background-free measurements 
• Particle-laden environments 

 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Experiment
Theory
Residual

40 80 120 160 200

T = 292.0 K

O
2
/N

2
 = 0.246

Probe Delay = 3.48 ps

Raman Shift (cm
-1

)

Model in the time domain Detect in the frequency/spectral domain 

FFT 



Sandia femtosecond CARS system 
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Probe beam E-field envelope measurements 
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A simple phenomenological model is implemented in 
Matlab for spectral fitting 

27 

• The time evolution of the 

molecular Raman response 

is calculated from 
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• This function, c, is then 

multiplied by the measured 

probe electric field to obtain 

the CARS signal field 

 ( ) ( ) ( )( )  ( )ttitEtE oprCARS c  exp

• The CARS spectrum is arrived 

at by Fourier transform of ECARS 
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Model validation in room-temperature air: 1.5-ps probe 

28 
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Single-laser-shot spectra 
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Single-shot temperature histograms 
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Low noise fs preparation pulses result can result in 
higher single-laser-shot precision 

31 

ns CARS 

fs CARS 

Room-temperature N2 spectra 



Thermometry results and observations 

32 

• We have demonstrated single-shot 
thermometry and concentration 
measurements in air at temperatures 
up to 800 K 

• Air temperatures are generally within 
2.5% of the tube-furnace control 
thermocouple, with some exceptions 
at T = 800 K. 

• Single-shot  temperature precision is 
1-2%. This superior to all but the best 
results obtained with ns-CARS 

• Excellent shot-to-shot spectral 
repeatability from low-noise fs 
preparation pulses 

• O2 measurements need additional 
refinement 

• Probe pulse energy must be 
increased to reach flame 
temperatures 
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SHBC for Efficient Probe Generation 

• SHBC = Second Harmonic Bandwidth 

Compressor (Spectra Physics/Light 

Conversion) 

• Enabling technology 

• This device is 35% or more efficient 

• It has increased probe pulse energy from 

10 J to as much as 1.1 mJ 

• Output bandwidth is ~3.5 cm−1 (~5.4 ps) 

• New probe (and signal) shifted to 400 nm 

• Will rapidly extent our present CARS 

implementation to flame temperatures 
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SHBC Output Spectrum and Pulse Shape 
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> 1 mJ/pulse! 
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Initial SHBC Rotational CARS Flame Spectra 
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• Near-adiabatic H2/air flame 
stabilized on a Hencken Burner 

• Temperature and O2/N2 ratio 
estimated from adiabatic 
equilibrium 

• 100-fs pump and Stokes beams 
at 800 nm 

• pump = stokes = 50J 

• probe = 1000 J at 400 nm 

• High probe energy and 2 

scaling of CARS signal enable 
flame measurements 

• Single-shot data acquired at 1 
kHz for temperatures in excess 
of 2000 K! 



Single-Laser-Shot Results From a Flame 
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• Single-laser-shot data at  = 0.48 

and 0.70 acquired at 1 kHz 

• Good signal-to-noise with EM gain 
• 1000 shots fit to model here 
• Temperature measurement 

precision 2.1% and 3.7%, 
respectively 

• ns R-CARS is typically 3-4% 
• O2/N2 precision is 4.2% and 11%, 

respectively  
• Good agreement with adiabatic 

equilibrium 
• Temperature to within 3% of 

equilibrium 
• O2/N2 within < 1% 
• Well within uncertainty due to 

metered flow rates 
• Can we achieve 1% precision 

without EM gain? 



1000 Single-Laser-Shot Spectra Show Superior Repeatability 
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Unsteady CARS spectra from room-temperature gas: 
single-etalon probe 
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AIR N2 



Summary of Single-Laser-Shot Results 
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Probe 

Duration (ps) 

Peak 

counts 

Furnace 

Thermocoupl

e (K) 

Mean CARS 

Temp. (K) 

RMS CARS 

Temp. (K / %) 

Mean CARS 

O2/N2 

RMS CARS O2/N2 (-- 

/ %) 

1.5 38,300 292.0 291.5 2.3 / 0.8% 0.267 0.003 / 1.1% 

1.5 9,700 382.4 390.0 6.11 / 1.6% 0.275 0.012 / 4.3% 

1.5  3,500 490.0 490.5 5.5 / 1.1% 0.258 0.006 / 2.5% 

1.5 6,500*  594.2 582.9 6.2 / 1.1% 0.259 0.005 / 1.9% 

1.5 49,100* 696.7 674.6 7.6/ 1.1% 0.250 0.005 / 2.0% 

1.5 27,000* 798.0 751.1 14.6 / 1.9% 0.252 0.0082 / 3.2% 

              

7.0 3,300* 540.9 521.1 19.5 / 3.7 0.266 0.023 / 8.6 

7.0 34,000* 798.0 761.5 19.9 / 2.6 0.260 0.0096 / 3.9 

* Indicates that detector’s electron-multiplying gain was used. 

 



Micro-Raman Diagnostics for MEMS Investigations 
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Application Example – Thermal Actuators 
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• Chevron Style Thermal 

Actuators 

• Electric Current = Device 

Motion 

• Potential Applications Include 

• Nonvolatile Memory 

• Mechanical Switches 

• Driving of Other 

Microsystems 

• Small 3-m leg widths make 

spatial resolution a challenge 

• First-ever resolved temperature 

profiles obtained from working 

thermal actuators 

• Dramatic improvement over 

existing infrared capability 

• Results have been used for 

validation of device heat-transfer 

models 
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Kearney et al., J. MEMS 15, 314-321, 2005.  



Multi-Parameter Capability -- Simultaneous Temperature/Stress 
Mapping 
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• Raman peak position is further 

influenced by stress in the material 

• Raman peak width is not impacted by 

stress 

• Difference between “peak” and 

“linewidth” temperatures is used to 

determine the avg. stress in a Si 

microbeam 

Beecham, Graham, Kearney et al., Rev. Sci. Inst. 78, 061301, 2007 (invited). 



PIV Investigation of Unsteady Turbulent Channel Flow 

 “Pulsating” Flow  Non-zero time-mean flow “AC” and “DC” 

 “Oscillating” Flow  Zero time-mean flow, “AC” only 

 When the AC component dominates there are 4 flow regimes parameterized by Red 
= Uod /n  

  Laminar: Red < 100 
  Disturbed Laminar: 100 < Red < 500-550 
  Intermittently Turbulent (IT): 500 < Red < 3000 
  Fully Turbulent: Red > 3000 

 

 

tUU o sin

ds

tUU o sin

ds
 nd 2



II. Dual-Magnification PIV Required for Wall Shear Stress and Bulk Flow 
Characterization 

• Low Magnification (0.33:1) 

• Images full channel 

• Characterize bulk flow 
 

• High Magnification (3.45:1) 

• Images near-wall region 

• Measure wall shear stress 
 

• DaVis Commercial Software 

• Iterative cross-correlation 

PIV interrogation 

• 64×64 window coarse grid 

used to estimate velocity 

magnitude and direction 

• Final result on 16×16 grid 

 (Pa) Low Mag. 

160 m res. 

High Mag. 

19.6 m res. 

0.1 1.7 0.2 

6 13.1 1.6 

Spatial Resolution in Wall Units 



Test Case, SEAWOLF Channel Flow at Red = 2033 
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Conditional Averages Can Confirm Hairpin-Vortex Signatures are/are not a Persistent 
Feature in Oscillating Wall Flows 

• We can further ask the question, “what does the velocity field look like 

given a vortex near the wall?” 

• The answer is arrived at by estimating the conditional average, as 

performed on steady flow data by Christensen and Adrian (JFM, 2001) 
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• The average velocity field given a swirling strength event, ci, at distance yo 

from the wall 

• Performed on our phase-resolved data sets for yo/H = 0.14 (45 < y+ < 120) 



Conditional Velocity Field – Late 
Acceleration  Stage 

71˚ 



Filtered Rayleigh Scattering (FRS) for Combustion Thermometry 

Laser sheet imaging through iodine filter 

Temperature sensitivity – Doppler broadening 

Number Density 

N ~ 1/T 
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FRS Response is Sensitive to Doppler Shift 

(Velocity), Temperature and Composition 
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Composition Bias in Diffusion-Flame 
Applications 
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• Large variations in scattering cross section across flame 

• Bias errors from 500-1000 K are possible! 

• Additional information regarding local chemical composition is 

required 

• Need information on N2, O2, CO2, CO, H2O, CH4 

• SOLUTION  Raman Imaging of Fuel Number Density in 

conjunction with a Mixture-Fraction-Based Model to 

approximate local gas-phase composition 

WHICH CURVE 

 DO YOU USE?! 



FRS-Raman Probing of Strain Induced Extinction in Flames 

Simultaneous OH/Acetone PLIF Flow Viz. 
C.J. Mueller and R.W. Schefer, Proc. Combustion Inst., 27, 1105-1112, 1998 

• 2-D slot flame is forced at 90-Hz where 

2 consecutive vortices interact with 

each other and the flame 

• Strain is sufficiently high to extinguish 

the flame 

• Facility and diagnostics allow 

systematic experimental probing of 

extinction event 



Results – Data Fidelity Single-Shot Measurements from 
Tube Furnace and Hencken Burner 

• Accuracy and precision of N2 CARS 

thermometry assessed with 2 lab 

standards 

• Tube-furnace thermocouple 

• Adiabatic flat flame  equilibrium 

calculated temperature 

• Ensembles of single-laser-shot CARS 

spectra acquired for a given 

furnace/flame setting 

• Temperature histograms constructed 

• TCARS,avg – Tstd = accuracy 

• TCARS,rms = precision 

• Single-shots CARS measurements 

are 14-70 K (3.5 to 5%) precise and 5-

40 K accurate for T from 500-2200 K 

• Bias at low temperatures results from 

errors in determining spectral response 

of detection system and is correctable 
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