

PROJECT OBJECTIVES

Goal:

- Demonstrate the feasibility of significant thermal storage for dish Stirling systems to leverage their existing high performance to greater capacity
- Demonstrate key components of a latent storage and transport system enabling on-dish storage with low exergy losses
- Provide a technology path to a 25kW_e system with 6 hours of storage

Innovation:

- Leverage high performance heat pipes to support feasible system layout
- Develop and test high temperature, high performance PCM storage
- Optimize storage configuration for cost and exergy performance
- Latent storage *and* transport matches Stirling cycle isothermal input¹

¹Andraka, C.E., Rawlinson, K.S., Siegel, N.P., "Technical Feasibility of Storage on Large Dish Stirling Systems," Sandia report SAND2012-8352 (2012).

Q4 KEY RESULTS AND OUTCOMES

- PCM Candidate Evaluation
 - Acute attack of proposed containment experimentally verified, with 30% wall thickness affected in 150 hours
 - Containment coating development approach proposed
 - Coating chemistry evaluation underway, potential coating candidates identified through thermodynamic modeling
 - Additional PCM candidates re-evaluated, backup metallic selected
- Heat pipe advanced wick development
 - Porosimetry, strength measurements completed on 6 candidates
 - Best feasible wick solution selected for heat pipe testing
- Modeling
 - Parametric studies of PCM configurations with realistic boundary conditions completed, showing 95% exergetic efficiency for metallic PCM in all proposed configurations
 - Two papers accepted for publication

APPROACH

- PCM development and selection
 - Literature searches and modeling to develop candidate eutectics
 - Sample fabrication and characterization to develop properties
 - Modeling of compatibility with potential containment
 - Long-term testing of compatibility
- Storage optimization
 - Advanced modeling of PCM/heat pipe interfaces including free convection in combined solid/liquid states
 - Exergy and cost optimization
 - 2-D and 3-D models
- Heat Pipe
 - Felt wick enhancements for robust high performance
- Proof-of-concept hardware subscale demonstration

³Shabgard, H., Faghri, A., Numerical Simulation of Latent Heat Thermal Energy Storage (LHTES) Systems for Solar Steam Generation Applications, to be submitted to peer-reviewed journal (2013).

⁴Shabgard, H., Robak, C.W., Bergman, T.L., Faghri, A., "Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications," Solar Energy 86 (3) (2012) 816–830.

NEXT QUARTER

PCM candidate evaluation

- Continue thermodynamic and equilibrium evaluation of potential coatings, consider substrate and PCM
- Design and implement screening test for coating chemistry compatibility
- Perform coating chemistry screening tests for down-selection
- Optimize coating processes for chemistries, substrate, and shape
- Develop 150 hour applied coating compatibility test, fabricate hardware

2-D PCM model development

- Complete final revisions on 2-D papers for publication
- Revise parametric study to incorporate solar multiple

Heat pipe advanced wick development

- Complete fabrication of advanced wick(s) on test device substrate, deliver to Sandia for assembly into test device