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Lecture 2: Outline

 The Schrodinger Equation
e Solution methods

SCHRODINGER'S CAT IS

AILAVIE

Den5|ty functional theorems
Homework
e Raffle winner




Dirac-von Neumann axioms

(something like Newton’s postulates for a quantum system)

 The observables of a quantum system are self-
adjoint operators A on a complex, countably
infinite Hilbert space.

* A state ¢ of the quantum system is a unit
vector of the Hilbert space.

* The expectation value of an observable A for a
system in a state ¢ is given by the inner
product (¢,Ad) in the Hilbert space.



The Schrodinger Equat
H(t)[y(t)) = @ﬁ Y ()

* This is essentially a statement of conservation of [ EGrEEs

energy in a quantum context

 The Hamiltonian, H, is an operator that when
acting on the wave function ¢ gives the energy,
an observable

* Inside the Hamiltonian is an kinetic energy
operator that uses the momentum operator

p=-ihV

which is straight from Hamiltonian mechanics, i.e.

the derivative of the Hamiltonian wrt position :
The double slit experiment: An illustration of the wave-particle duality |




The Schrodinger Equation

connection to classical mechanics
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1D oscillator in a harmonic/quadratic well

One set of solutions are standing waves which we call orbifals
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Quantum to Classical
the correspondence principle

Classical
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The Schrodinger Equation
the real Hamiltonian

..............................................................................................................
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The Hamiltonian is composed of Coulomb interactions,
electron-electron, electron-nucleus, nucleus-nucleus, and
kinetic energy, recall the momentum is related to VW
Locations of the electrons: r_i

Locations of the nuclei: R_|

Valence of the nuclei: Z_|



Methods of Approximation/Solution

Recall the Born-Oppenheimer approximation: the
electrons move and relax much faster than the nuclei,
so we are only simulating the electronic structure and
in most cases only the valence electrons

* Tight-binding

* Hartree-Fock

e Variational formulation

* Density Functional theory



Tight binding

Tight-binding assumes the superposition of isolated atom
wave functions located at each atomic site, i.e. assuming
minimal overlap of the wave functions, is a good
approximation to the true wave function

wir ’ — E b | Ry, ’ Cm r— R, ’
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And uses this ansatz to form Hamiltonian that can be
used to calculate electronic band structure (allowed
energies)

One artifact is that the energy of the electron is
approximately the ionization energy of an electron in an
isolated atom



Hartree-Fock

molecular orbitals

The ansatz (trial wave function) as a product of single-particle/isolated functions

U(xy,x2) = x1(x1)x2(X2).

The problem this guess does not satisfy the Pauli exclusion principle
(identical electrons can not occupy the same state) that requires antisymetry

v (xl ) X‘Z;) = —W (x‘.?.' Xl,)

The Slater determinant is the fix for this problem
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Unfortunately, electron correlation i.e. repulsion is neglected for
the electrons of opposite spin (exchange is accounted for)



Variational formulation and Basis functions

* The idea of basis functions comes naturally
from the variational statement (like the
Galerkin method of finite elements) of the
Schrodinger problem

(WIHIW)=E(WIW)

* A basis set for (approximate) solution of this
linear problem is a linear combination of
atomic orbitals or Gaussian-type orbitals,

* Other bases are useful, e.g. for a periodic
lattice, plane waves are the typical basis



Hohenberg-Kohn theorem
the germ of DFT

Theorem: the energy of a system of electrons in the presence of
an external field, due to the nuclei, is given exactly as a
functional of the electron density

n(r) = Y |y, ()

It allows us to solve for the €lectron density (a scalar field)
instead of 3N wave functions.

The energy is of the form:

E[n] = F[n] + [ v, (@)n(r)dr

ext

The functional (a map from a function to a scalar) F[n] is
independent of the external field, but unknown.



Kohn-Sham ansatz

a prescription for practical calculations

The energy is decomposed into terms with known form, e.g.
Coulomb interactions, and one (correction) term in particular of

unknown form: the exchange-correlation energy due to electron-
electron interactions.

E[n] = T,fn] + [ )

rr|

drdr' + E [n] + [ v, (f)n(r)dr

With this one can solve a system of fictitious non-interacting
electrons in an effective field (whose density is equal to the true
ground state density of the real interacting electrons).

h2

- Evz + Ve (1) y;(r) = £p7,(r)

Here, the pot;ntial V is defined as the derivative of E with respect ton
Verr (1) = Ve (1) + Py (r) + V. (¥)

And the 2" term is just the solution to the classical Poisson/electrostatics equation




DFT self-consistent algorithm

e Converges to the
minimum of the

Construct effective potential

v

Guess density n(r) 3

Ve () = Vo, (r) + Vyy[n] + V [n] given basis set i.e.
completeness is an
y issue
Solve KS equation * Note the system

energy is not
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associated with the
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Calculate new density and Compare
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Pseudo potentials

e The core electrons are

lumped into an effective ionic  { Core  Valence
potentlal. Wave function
* Only valence electron T T 3 -~
. ¥,
wavefunctions are computed '
explicitly
Potential
7’
e The oscillations in the actual U/trasoftzrefers to a low cutoff energy
wave function are due to the VT
. /
requirement that Y be !
orthogona| to the wave ¢ Nuclear Coulomb potential
/
functions of the core I
electrons.

We’'ll talk about LDA and GGA forms of the exchange-correlation energy & PAW next week



What can DFT calculate ?

* Ground state energy
* Forces on atoms/ equilibrium structure
* Charge density/electronic structure
* Band structure and density of states
Vibrational properties
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* Bond lengths are accurate within 1-2%.

e Vibrational frequencies are within 5-10%.
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QUANTUM

http://www.quantum-espresso.org/tutorials/

http://www.fisica.uniud.it/~giannozz/QE-Tutorial/

Quantum ESPRESSO is an integrated suite of open-source computer codes for
electronic-structure calculations and materials modeling at the nanoscale.

DR A
It is uses (like VASP) qlﬁ‘ w [ ﬂ
e density-functional theory, y ?

! ! O \ﬂj

plane wave ba_SIS’ Maintained by a consortium:
* pseudopotentials * Scuola Internazionale Superiore di Studi Avanzati,
* Abdus Salam International Centre for Theoretical

Physics (Trieste),
* CINECA National Supercomputing Center (Bologna),
* Ecole Polytechnique Fédérale de Lausanne,
* University of North Texas (Dallas)




0]
Ouunmum build
For a mac laptop:

./configure --disable-parallel FC=g95

http://www.guantum-espresso.org/download/

Click through download page on left

Download espresso-5.0.tar.gz

Tar —xvzf espresso-5.0.tar.gz

Cd espresso-5.0
.Jconfigure
Make all

May need:

* Mpi (e.g. openmpi)

* Fortran and c compiliers (e.g.
gcc with g++ & gfortran)



“Homework”

Calculate the ground state (zero temperature, equilibrium)
electron density of graphene using quantum espresso
Graphene is a sheet of carbon arranged in hexagons that tile a
plane

The C-C distance is about 1.42 Angstroms

What is the unit cell i.e. the smallest repeating unit? Trick
question there is more than one depending if you allow the cell
to be non-orthogonal




0.3

0.25
&control I N P UT . 02

calculation="scf'
0.15

restart_mode='from_scratch’,
prefix="graphene' "
pseudo_dir="./',

outdir="./tmp/’

0.05

&system
ibrav=8 orthorhombic ATOMIC_SPECIES
a=4.2750 C 12.0107 C.pz-rrkjus.UPF
b = 2.4682 / \
¢ =10.0000 ATOMIC_POSITIONS angstrom
nat=4 C 0.0000 0.0000 0.0
ntyp=1 C1.42500.0000 0.0
ecutwfc =18.0 , C2.13751.2341 0.0
&electrons C3.56251.2341 0.0
conv_thr = 1.0d-8
mixing_beta = 0.7 K_POINTS automatic

16161000



BONUS

Determine the out-of-plane spacing
sufficient to isolate the graphene
from its periodic images (hint change
c and observe the charge density)

Create a defect in the structure (e.g.
remove one nucleus) and recompute
the electron density

Relax the structure using ground-
state energy minimization (relax or
vc-relax)
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Lecture 3

Week 2 : Computational Quantum Mechanics

 Methods and approaches

* Schrodinger Equation — theoretical aspects and implementation details
e Electronic structure calculations — basis sets and properties

* Homework: Electronic structure around a defect

Week 3 : Application of Density Functional Theory
e Solution of Kohn-Sham equations and exchange-correlation functionals

* Brief survey of more advanced methods (coupled-cluster, perturbation
theory, configuration interaction)

* Homework: Calculation of separation energy between a metal substrate &
graphene



Reading Suggestions for Lec. 3 e
* Chapter 4 of LeSar X@,ﬁﬁﬁ&%ﬁ

* http://en.wikipedia.org/wiki/Density functional theory
* Chapter 3 of Schol
e Chapter 10, 6 of Martin

Richard M. Martin

| INTRODUCTION TO zj'ffi- % DENSITY

Electronic Structure

Basic Theory and Practial Methods
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Fundamentals to Applications
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Phil Dreike
Anton Sumali
Jeff Kay

Tom Laub

The winner is

Raffle




