

Overview  
oo

Discretization  
oooooooo

Diffusion  
oooooooooooo

Remap  
oooooooooooo

Reconstruct B  
oo

Integrated tests  
oo

Summary  
o

SAND2010-8719P

# Kull Magnetic Physics Overview

Thomas A. Gardiner

Sandia National Laboratories

December 15, 2010

# The Start of Kull Magnetics

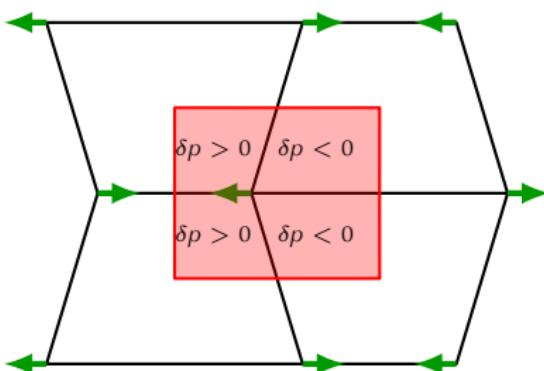
- Kull is an ASC HEDP code, originally developed at LLNL.
- In 2007 an MOU was signed making Kull jointly owned by LLNL and SNL.
- In 2008 we began developing in earnest the Magnetic Physics capabilities in Kull.
- The key challenge is to develop these capabilities in a manner which is interoperable with the existing algorithms.
  - Kull uses the (Caramana, Burton, Shashkov, Whalen) compatible hydrodynamics algorithm.
  - Kull supports arbitrary polygonal / polyhedral mesh elements.
- For Z-pinch applications Kull must be stable at LOW  $\beta$ .

# The Talk Overview

- Spatial Discretization (Lagrangian Ideal MHD)
  - Satisfying  $\nabla \cdot \mathbf{B} = 0$
  - Supporting arbitrary mesh elements
  - Hourglass stability
  - Successful Initial Tests
- Circuit Coupled Resistive Diffusion
- Magnetic Field Remap
- $B$ -field Reconstruction & second order corrections
- Integrated tests

# Compatible Hydro. Hourglass Stability

- Consider 4 quads, arrows showing nodal motion
- The CBSW compatible hydro. is stable for hourglass modes.
- Stability is derived from sub-zonal corner pressure corrections.
- Pressure corrections are derived from corner masses.

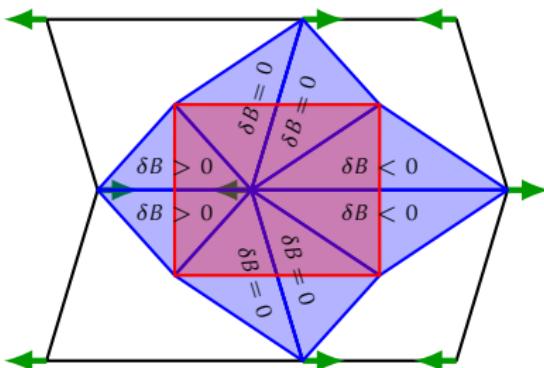


The hydrodynamics uses subzonal corner pressures.

# MHD Hourglass Stability

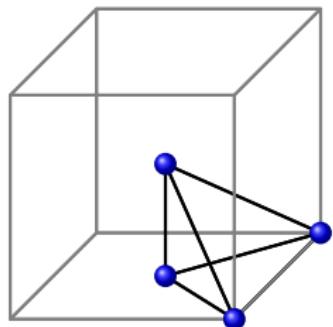
- Normal magnetic flux discretized on side faces.
- Flux is constant during Lagrange step.
- Physics based hourglass control (no knobs).
- Nodal force via Maxwell stress integral.

$$\mathbf{F} = \oint \left[ \frac{\mathbf{B} \otimes \mathbf{B}}{\mu_0} - \frac{|\mathbf{B}|^2}{2\mu_0} \mathbf{I} \right] \cdot d\mathbf{A}$$

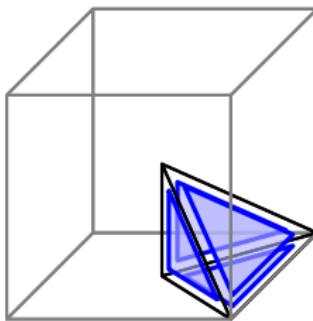


The MHD uses subzonal side magnetic fields.

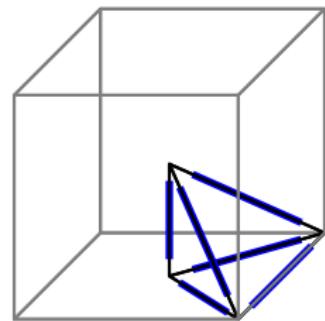
# Side Magnetic Field Mesh Elements



Nodelets



Facelets



Edgelets

- Extended KULL's infrastructure to support new elements.
- Many more unknowns: 5 NL/N, 10 EL/E, 8 FL/F, 30 EL/Z
- Our method supports arbitrary polyhedrons, not just hexes.

# Low $\beta$ MHD Equilibrium

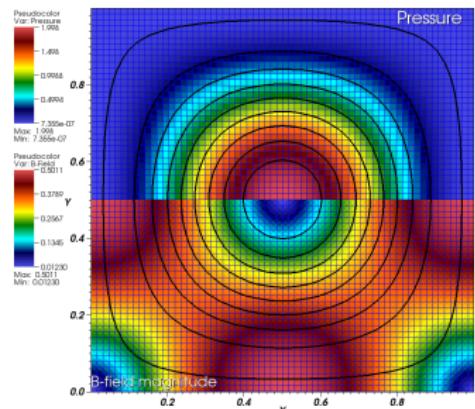
- The ideal MHD equilibrium is described by the Grad-Shafranov equation.

$$\nabla^2 \psi = -\mu \left( \frac{dP}{d\psi} \right) \text{ where } \mathbf{B}_p = \nabla \psi \times \hat{\mathbf{k}}$$

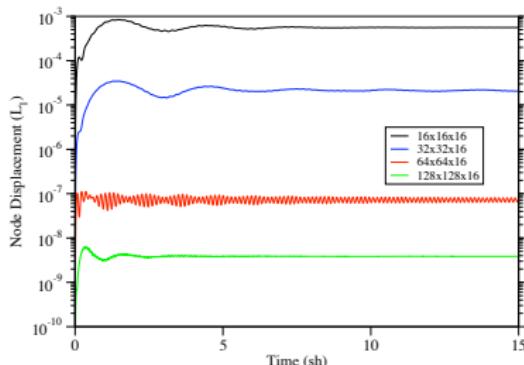
$$P(\psi) = 10^{-8} + 2 \left( \frac{\psi}{\psi_{max}} \right)^2 \text{ with } \psi = 0 \text{ B. C.'s}$$

- We solve this equation using relaxation giving  $\psi$  on nodelets.
- From  $\psi$  we initialize magnetic flux on facelets in Kull.
- Average  $P(\psi)$  on nodelets to get zone-average  $P$ .
- Due to averaging the pressure, and stress discretization differences, the initial state in Kull is a perturbed equilibrium.

# Robust Low $\beta$ MHD Equilibrium



$P$  and  $|\mathbf{B}|$  in Grad-Shafranov problem.

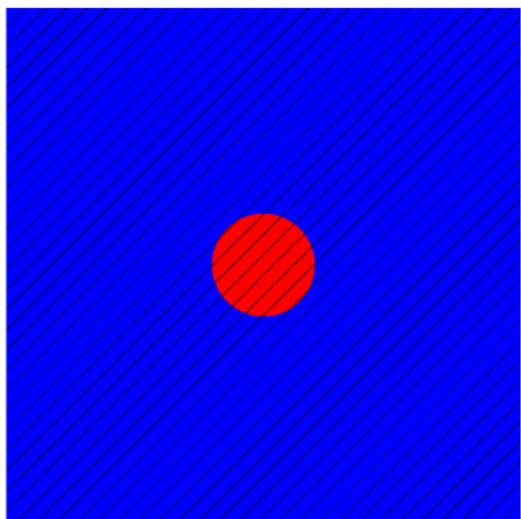


Maximum node displacement converges toward zero.

- 2D equilibria in 2D or 3D domain are accurately simulated.
- $\beta = P_{\text{hydro}}/P_{\text{mag}} \approx 10^{-7}$  near boundary.

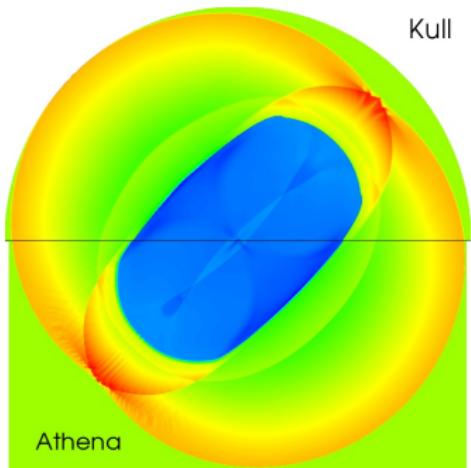
# MHD Blast Wave

- High pressure ( $P = 10$ ) region in a low pressure ( $P = 0.1$ ) ambient.
- Embed a uniform magnetic field ( $B^2/2\mu = 0.5$ )
- Plasma  $\beta = (20, 0.2)$  inside, outside
- Initially uniform density
- Similar to Sedov, but...

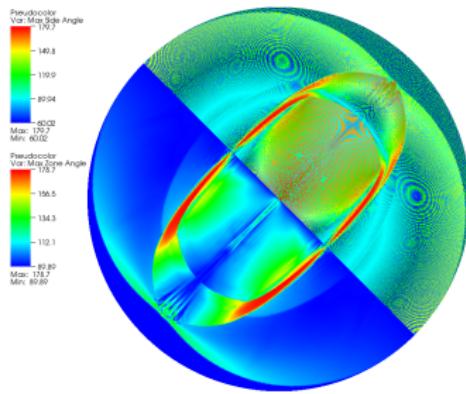


Pressure and Magnetic Field Lines

# MHD Blast Wave is Robust



Log Density



Maximum mesh angle (zone  
and side)  $\approx 180^\circ$ .

- Lagrangian KULL is compared to Eulerian Godunov Athena.
  - Complex shock / contact boundaries lines up.
  - Both codes show slow-mode corrugation instability.
  - Lagrangian KULL is stable at large mesh angles.

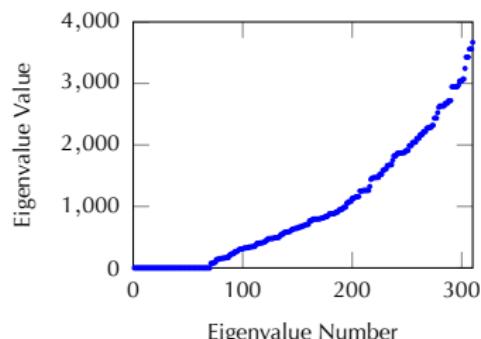
# Magnetic Diffusion Solves Ohm's Law

$$\nabla \times \frac{\Delta t}{\mu_0} \nabla \times \mathbf{E}^{n+1} + \bar{\sigma} \cdot \mathbf{E}^{n+1} = \nabla \times \frac{\mathbf{B}^n}{\mu_0}$$

Discretize  $\mathbf{E}$  with edge finite elements:

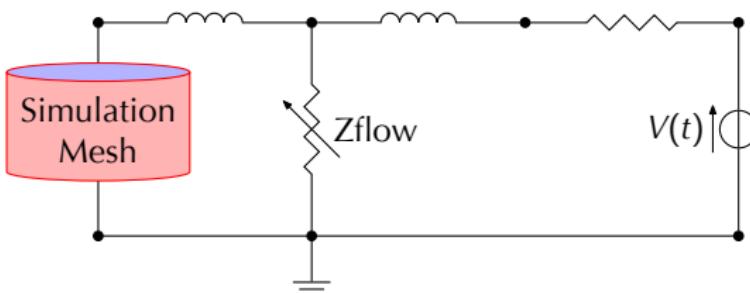
$$\mathbf{E} = \sum_e E_e \mathbf{w}^e$$

$$\mathbf{B}^{n+1} = \mathbf{B}^n - \Delta t \nabla \times \mathbf{E}^{n+1}$$



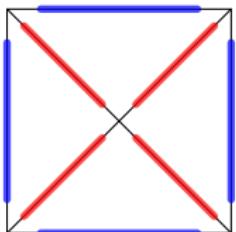
- This equation for the current is (nearly) singular
- In pure void,  $\sigma = 0$  and  $\mathbf{J} = \sigma \mathbf{E} = 0$ , so  $\mathbf{E}$  unconstrained
- Use CG with *hype*'s Auxiliary-space Maxwell Solver as preconditioner
  - Solves two, easier, nodal problems and projects to edge
  - In void, we add the constraint  $\mathbf{E} = \nabla \phi$  to make it non-singular
- Using pure void is more robust than using a small  $\sigma$ 
  - A small conductivity is resolution dependent:  $\sigma_{\text{small}} \sim 1/\Delta x$
  - Extra work for void is about 10% slower than using a floor

# Magnetic Diffusion can be driven by an external circuit

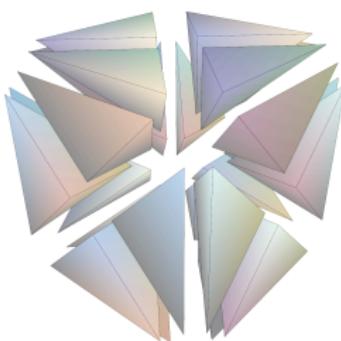


- Use an equivalent circuit for the Z-machine to drive the simulation load.
- Reused ALEGRA circuit code. (Thanks Tom Haill.)
- Circuit model uses IDA from Sundials.
- Total electric field is sum of two others:  $\mathbf{E} = \mathbf{E}_0 + / \mathbf{E}_1$ .
  - This means two linear solves to get parameters that are passed to circuit solver.
  - Circuit solver returns current and voltage across mesh, and we finalize solution.

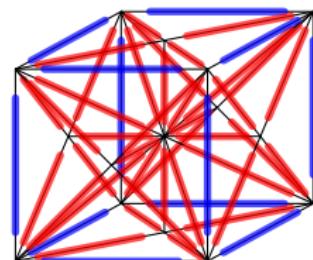
# Cost of robustness and generality is unknowns



6 vs. 2 edges/zone (RZ)



Each hex has 24 tets

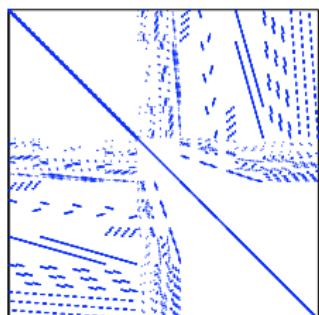


29 vs. 3 edges/zone (3D)

- Relative to a standard quad or hex discretization (in blue)
  - In 2D-XY, we have twice the unknowns
  - In 2D-RZ, we have thrice the unknowns
  - In 3D, we have 10 times the unknowns

What if we can eliminate some unknowns before  
*hypre* sees the matrix?

## During matrix assembly, we eliminate unknowns



Total 3D matrix  $\mathbf{A}$

- Full matrix is sum of tet matrices

$$\mathbf{A} = \sum_t \mathbf{A}_t$$

- We form groups of tets into clumps

$$\mathbf{A} = \sum_c \mathbf{A}_c \quad \text{with} \quad \mathbf{A}_c = \sum_{t_g} \mathbf{A}_{t_g}$$

- Edges are interior to the clump or on the boundary

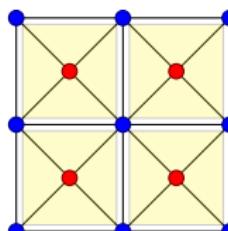
$$\mathbf{A}_c \mathbf{x}_c = \mathbf{y}_c \quad \rightarrow \quad \begin{bmatrix} \mathbf{A}_{ii} & \mathbf{A}_{ib} \\ \mathbf{A}_{bi} & \mathbf{A}_{bb} \end{bmatrix} \begin{bmatrix} \mathbf{x}_i \\ \mathbf{x}_b \end{bmatrix} = \begin{bmatrix} \mathbf{y}_i \\ \mathbf{y}_b \end{bmatrix}$$

- Interior edges are eliminated with Schur complement

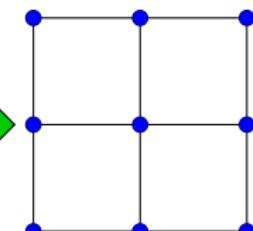
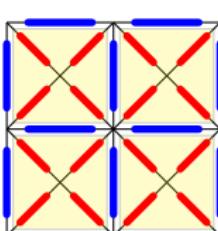
$$\left( \mathbf{A}_{bb} - \mathbf{A}_{bi} \mathbf{A}_{ii}^{-1} \mathbf{A}_{ib} \right) \mathbf{x}_b = \mathbf{y}_b - \mathbf{A}_{bi} \mathbf{A}_{ii}^{-1} \mathbf{y}_i \quad \rightarrow \quad \mathbf{A}_r \mathbf{x}_b = \mathbf{y}_r$$

- What tets do we choose when making clumps?

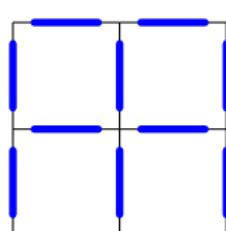
In 2D we eliminate the zone-interior unknowns



Reduce XY to node mesh



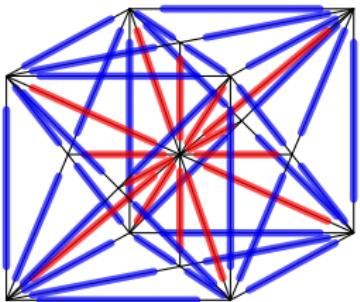
Reduce RZ to edge mesh



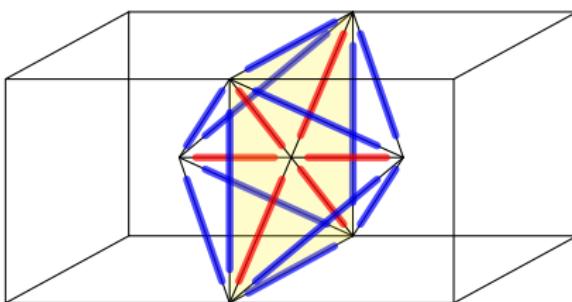
| Mesh Type   | rows/quad | matrix entries/quad | matrix entries/row |
|-------------|-----------|---------------------|--------------------|
| XY original | 2         | 14                  | 7                  |
| XY quad     | 1         | 9                   | 9                  |
| RZ original | 6         | 30                  | 5                  |
| RZ quad     | 2         | 14                  | 7                  |

- Number of unknowns and matrix entries are lower.
  - But matrix is less sparse
- We have recovered the same number of unknowns and nonzeros as the standard quad discretizations
  - But the discretization is not the same

# In 3D we must think outside the box



The tetrakis hexahedron is the obvious clump of tets



The octahedron that spans each face is a much better clump of tets

- Reduction increases matrix bandwidth
- Good performance tied more to matrix size than unknowns

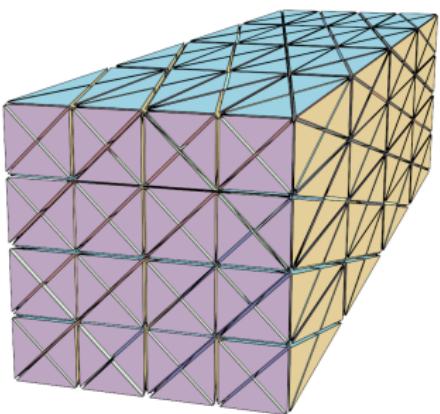
| Mesh Type              | rows/hex | matrix entries/hex | matrix entries/row |
|------------------------|----------|--------------------|--------------------|
| "tet'd" hex (original) | 29       | 461                | 16                 |
| tetrakis hexahedron    | 15       | 1107               | 74                 |
| octahedron             | 11       | 335                | 30                 |
| standard hex           | 3        | 99                 | 33                 |

A tetrakis hexahedron is a non-regular icositetrahedron (24-sided polyhedron) formed by adding square pyramids to the faces of a hexahedron. Eric W. Weisstein, *Mathworld*, <http://mathworld.wolfram.com/TetrakisHexahedron.html>

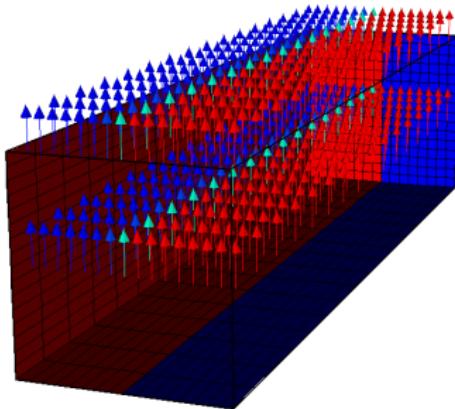
# The reduced matrix has nice mathematical properties

- Many of the original matrix properties carry over to the reduced matrix
  - The reduced matrix is sparse, unlike most Schur complements
  - The AMS preconditioner works on the reduced matrix
  - In 2D the reduced matrix has the same graph as a standard quad discretization
- Some properties are much better for the reduced matrix
  - The condition number is lower
  - The ratio between the strongest and weakest off-diagonals in the matrix is better, making it easier for AMS/AMG to make good choices about eliminating entries
  - In 2D the reduced matrix is even nicer than the standard quad discretization
- It is as if we discretized directly on the reduced mesh
  - But we get solutions for **all** of the original unknowns.

# Conductivity jump and varying aspect ratio



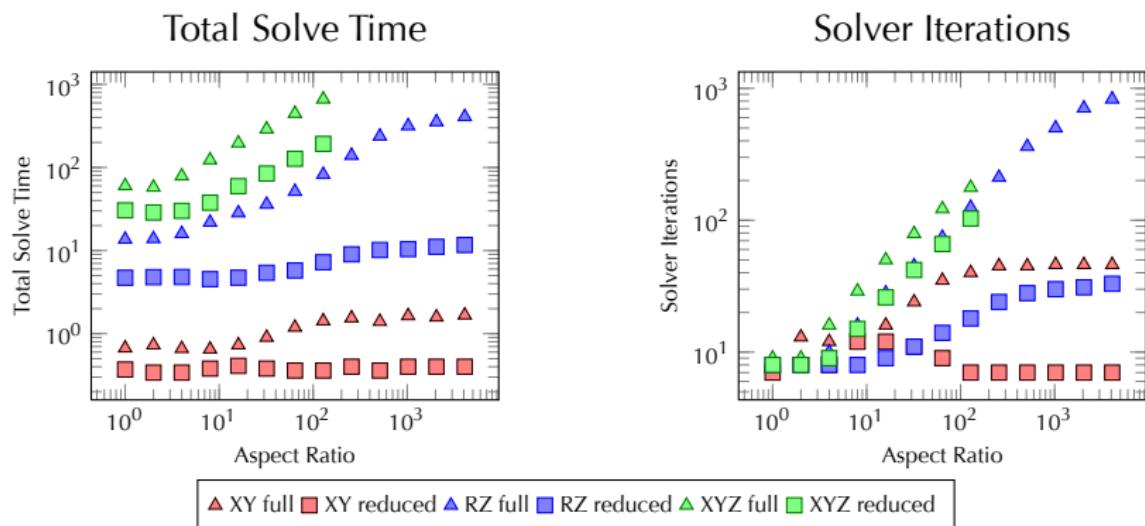
The mesh in the 3D problem



**B**-field (arrows) and conductor (red)

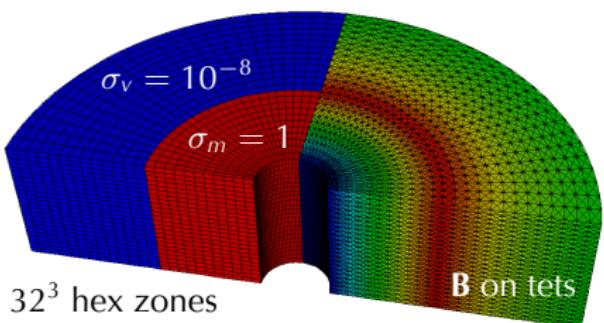
- A magnetic field diffuses from a void region into material
- The mesh is stretched to create zones with high aspect ratios, keeping resolution in the interesting direction fixed
- We compare run times and iteration counts for 2D-XY, 2D-RZ, and 3D-XYZ geometries

# Speed-up improves as aspect ratio increases



- Solve times are always faster with the reduced matrix
  - XY: 1.7-4.2 $\times$  , XYZ: 2.0-3.5 $\times$  , RZ: 2.9-35 $\times$ !
- Speed-up from smaller matrix and reduced iteration count
- Setup is faster, despite extra work

# Comparison of hex-only to sub-tet'd discretizations



- Run the same problem multiple ways
  - Kull: tet'd hex
  - Kull: reduced matrix
  - Ares: pure hex
- Both Kull methods solve same system
- *hypre* used to solve both

| Mesh        | rows | matrix entries | code setup | hypre solve | total time | iters |
|-------------|------|----------------|------------|-------------|------------|-------|
| Tet (K)     | 969k | 15.2M          | 18.5       | 107.0       | 125.5      | 13    |
| Reduced (K) | 367k | 10.9M          | 12.9       | 33.5        | 46.4       | 9     |
| Hex (A)     | 105k | 3.3M           | 5.9        | 16.4        | 22.3       | 18    |
| Ratio (K/A) | 9.3  | 4.6            | 2.2        | 2.0         | 2.1        | 0.5   |

- Kull runtime 2× slower for 9.3× more unknowns
  - Need to run convergence study, plotting error vs. runtime
- Condition number improves from hex to tet to reduced

# Magnetic Field Remap Overview

- Given a discrete solution ( $\phi_i = \int_{\Omega_i} \mathbf{B} \cdot d\mathbf{S}$ ) on an initial (old) mesh, determine the solution on a final (new) mesh.
- Overlay Method:
  - Realize the discrete solution on the old mesh  $\phi_i \rightarrow \mathbf{B}(\mathbf{x})$ .
  - Compute the  $\phi_i$  on the new mesh as an integral average.
- Advection Method:
  - Consider the old and new mesh as connected by advection from time states  $t^n$  and  $t^{n+1}$ .
  - Use Galilean invariance to transform problem to one of the magnetic field moving through the mesh.
  - Solve the remap problem as an advection problem.
- Analytically these methods are identical - not necessarily true numerically.
- Consequently, advection methods are CFL stability limited.

# Requirements & Solution Method

- Triangle / Tetrahedron mesh is refined relative to Zone mesh.
- Therefore, remap must be accurate & stable for  $CFL > 1$ .
- Remap must preserve  $\nabla \cdot \mathbf{B} = 0$  identically.
- Remap should be a local explicit operator.
- Solution: Use a vector potential to compute EMF.
  - Consistent Overlay and Advection method.
  - No CFL stability limit.
  - Parallel synchronization of EMF ensures  $\nabla \cdot \mathbf{B} = 0$ .

# Advection Method

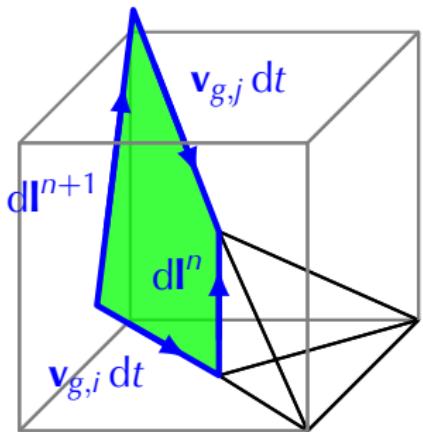
- A mesh nodelet is displaced by a distance  $\mathbf{d}$ .
- Consider this to occur over a time step  $\delta t = t^{n+1} - t^n$  with a constant velocity  $\mathbf{v} = \mathbf{d}/\delta t$ .
- Galilean invariance – the field moves through the mesh with a velocity  $\mathbf{v}_g = -\mathbf{d}/\delta t$ .
- Remap is governed by Faraday's law for an ideal fluid

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0$$

where  $\mathbf{E} = \mathbf{B} \times \mathbf{v}_g$ .

# Computing the CT EMF

- Constrained Transport integral relations depend on the “time” and edge integrated electric fields.



$$\begin{aligned} \int_{t^n}^{t^{n+1}} \int \mathbf{E} \cdot d\mathbf{I} dt &= \int_{t^n}^{t^{n+1}} \int (\mathbf{B} \times \mathbf{v}_g) \cdot d\mathbf{I} dt \\ &= \int_{t^n}^{t^{n+1}} \int \mathbf{B} \cdot (\mathbf{v}_g dt \times d\mathbf{I}) \\ &= \oint \mathbf{A} \cdot d\mathbf{I}' \end{aligned}$$

- Note that the result is gauge invariant.
- The gauge need not be parallel consistent.

# Multipolar / Poincaré Gauge

- This gauge is distinguished by its local gauge condition.

$$\mathbf{A}_m(\mathbf{x}, t) \cdot \mathbf{x} = 0$$

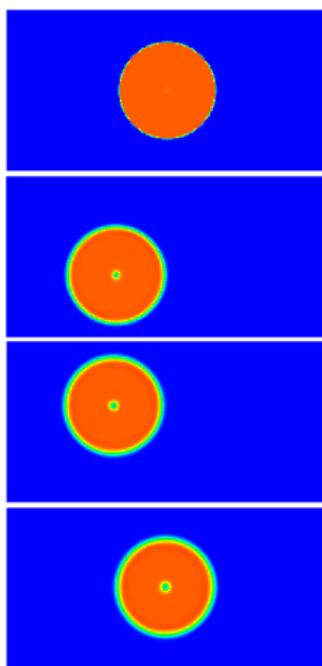
- From this one can construct an integral relation

$$\mathbf{A}_m(\mathbf{x}, t) = -\mathbf{x} \times \int_0^1 u \mathbf{B}(u\mathbf{x}, t) \, du$$

- It proves the existence of a local solution and is a generalization of  $\mathbf{A} = \frac{1}{2} \mathbf{B} \times \mathbf{x}$ .
- $\mathbf{A}$  is integrated outward in a breadth before depth manner.

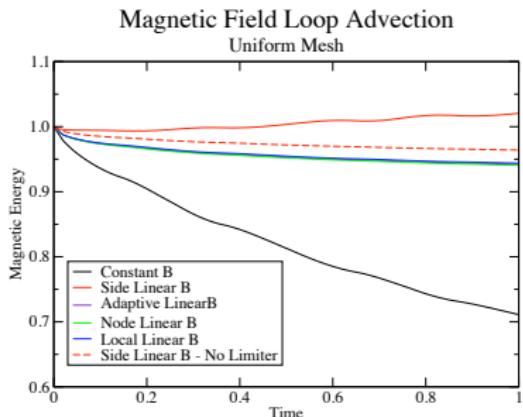
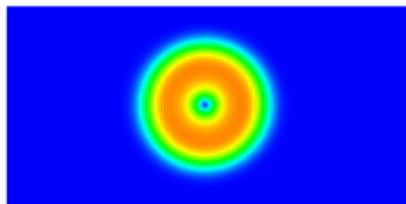
# Field Loop Advection

- The magnetic field is initialized as  $\mathbf{B} = B_0 \hat{e}_\theta$ .
- The current density is singular at the center and boundary.
- The magnetic field is advected in a Lissajous figure (figure 8) using the remap operator.
- Every 100 cycles the B-field returns to the initial position.
- Results for a linear reconstruction and MCD limiter shown on right.

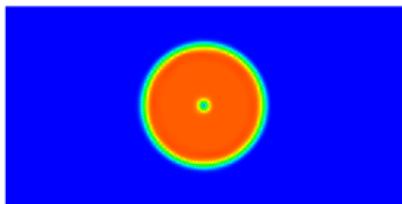


# Field Loop Energy Evolution

- The Constant B case loses  $\sim 30\%$  energy after 100 cycles.
- The Linear B (MCD) case loses  $\sim 5\%$  energy after 100 cycles.



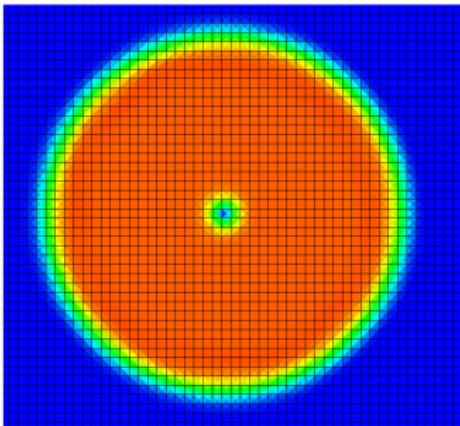
Constant B



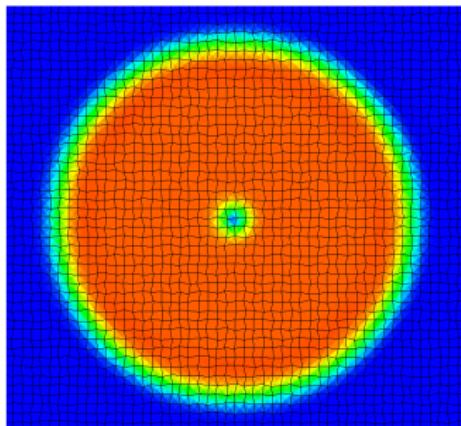
Linear B

# Field Loop Remap is Insensitive to Mesh

- Mesh is randomly distorted by moving nodes up to 30% of zone size.
- Magnetic energy evolution is identical to eye norm.



Uniform Mesh



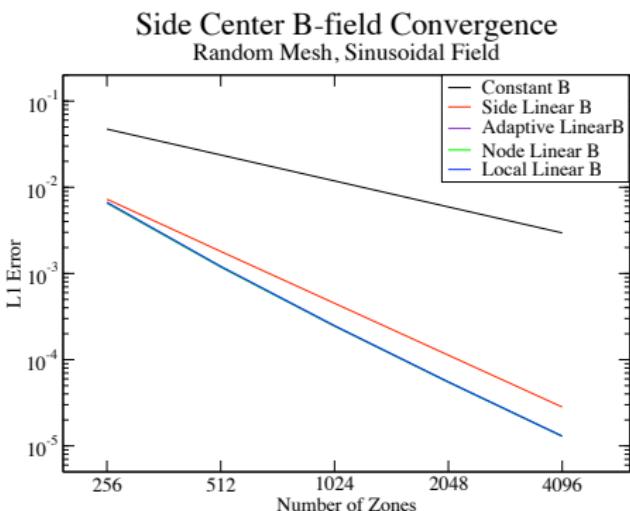
Random Mesh

# Magnetic Field Convergence

- I developed a variety of reconstruction alg.
- All recover a linear B-field exactly on an arbitrary (random) mesh.
- The magnetic field at side-center converges at order 2.
- The magnetic field is sinusoidal:

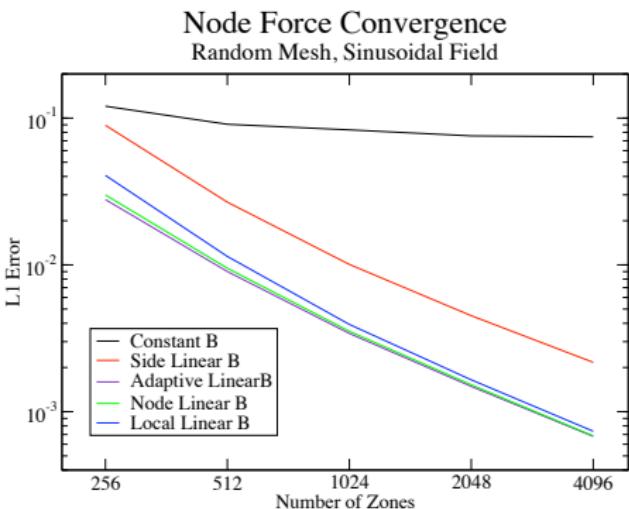
$$B_x = -\cos(kx) \sin(ky)$$

$$B_y = \sin(kx) \cos(ky)$$

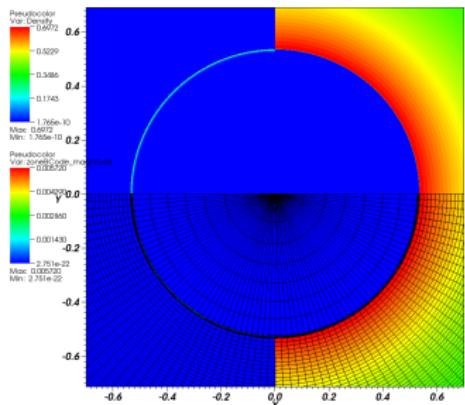


# Maxwell Stress Convergence

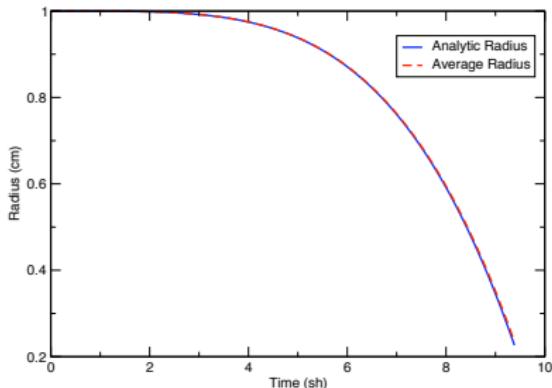
- The nodal force is exact for linear **B**.
- The nodal force converges at order 2 on a sinusoidal mesh.
- The nodal force converges at order 1.2 on a random mesh.  
(measurement error?)



# Thin Shell Imploding Liner



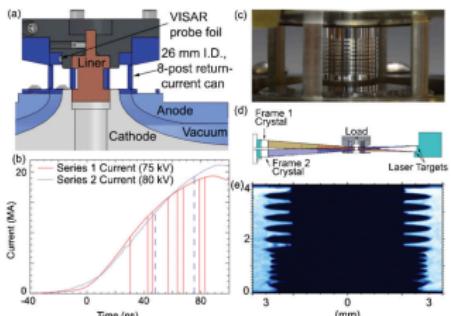
A thin cylindrical shell is imploded.



We agree well with analytic model

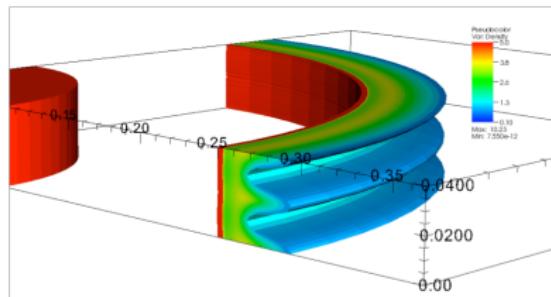
- Analytic, self-similar, thin shell implosion model (Slutz et al., Phys. Plasmas, v. 8, p. 1673 (2001))
- Useful test in  $(x, y)$ -,  $(r, z)$ - and  $(x, y, z)$ -geometries
- In  $(x, y, z)$ -geometry weakly dependent on angular resolution,  $\sim 10$  angular zones is sufficient.
- Either circuit or  $H$ -tangent boundary conditions

# MRT Unstable Imploding Liner



Perturbed Al liner seeds MRT growth.

- Measurements of Magneto-Rayleigh-Taylor Instability... (Sinars et al., Phys. Rev. Letters, v. 105, p. 185001 (2010))
- 25 & 400  $\mu\text{m}$  sinusoidal perturbations seed the instability.
- 15  $\mu\text{m}$  resolution radiographs capture liner outer surface evolution.
- Multiple images enable simulation verification.



3D MRT simulation at time = 75.5 ns.

## Summary

- Kull is a LLNL / SNL jointly owned ASC HEDP code
- We are developing the MHD capabilities to be consistent with the CBSW compatible hydro. scheme.
- Lagrangian calculations demonstrate a robust algorithm using a compatible **B**-field discretization on a triangle / tetrahedron sub-grid.
- Circuit coupled resistive diffusion is accelerated using a Schur complement.
- Magnetic Field Remap uses a consistent advection / overlay method via a vector potential.
- Limited **B**-field reconstruction resolves linear variation on an arbitrary (random) mesh exactly. Generally second order convergence...
- Magneto-Rayleigh-Taylor validation effort is underway.

Overview  
oo

Discretization  
oooooooo

Diffusion  
oooooooooooo

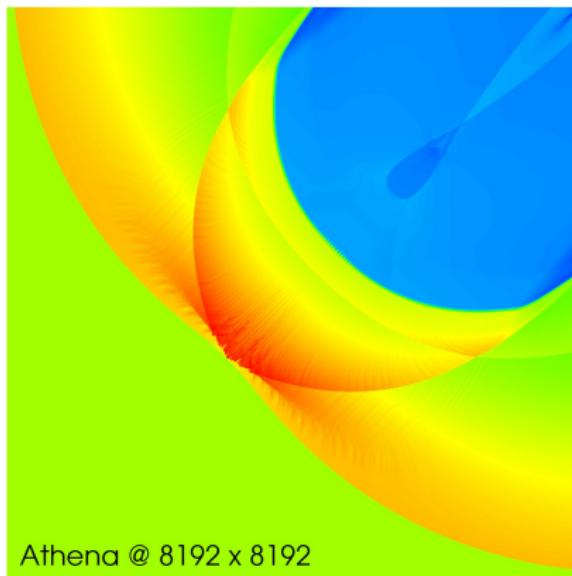
Remap  
oooooooooooo

Reconstruct B  
oo

Integrated tests  
oo

Summary  
o

# MHD Blast Wave Slow-mode Shock Corrugation Instability



Log Density