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The	Start	of	Kull	Magnetics

• Kull	is	an	ASC HEDP code, originally	developed	at	LLNL.
• In	2007	an	MOU was	signed	making	Kull	jointly	owned	by
LLNL and	SNL.

• In	2008	we	began	developing	in	earnest	the	Magnetic
Physics	capabilities	in	Kull.

• The	key	challenge	is	to	develop	these	capabilities	in	a
manner	which	is	interoperable	with	the	existing	algorithms.

• Kull	uses	the	(Caramana, Burton, Shashkov, Whalen)
compatible	hydrodynamics	algorithm.

• Kull	supports	arbitrary	polygonal	/	polyhedral	mesh	elements.

• For	Z-pinch	applications	Kull	must	be	stable	at	LOW β.
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The	Talk	Overview

• Spatial	Discretization	(Lagrangian	Ideal	MHD)
• Satisfying ∇ · B = 0
• Supporting	arbitrary	mesh	elements
• Hourglass	stability
• Successful	Initial	Tests

• Circuit	Coupled	Resistive	Diffusion
• Magnetic	Field	Remap
• B-field	Reconstruction	&	second	order	corrections
• Integrated	tests



. .
Overview

. . . . . . .
Discretization

. . . . . . . . . .
Diffusion

. . . . . . . .
Remap

. .
Reconstruct B

. .
Integrated	tests

.
Summary

Compatible	Hydro. Hourglass	Stability

• Consider	4	quads,
arrows	showing	nodal
motion

• The	CBSW compatible
hydro. is	stable	for
hourglass	modes.

• Stability	is	derived	from
sub-zonal	corner
pressure	corrections.

• Pressure	corrections	are
derived	from	corner
masses.

..

δp > 0

.

δp > 0

.

δp < 0

.

δp < 0

The	hydrodynamics	uses
subzonal	corner	pressures.



. .
Overview

. . . . . . .
Discretization

. . . . . . . . . .
Diffusion

. . . . . . . .
Remap

. .
Reconstruct B

. .
Integrated	tests

.
Summary

MHD Hourglass	Stability

• Normal	magnetic	flux
discretized	on	side
faces.

• Flux	is	constant	during
Lagrange	step.

• Physics	based	hourglass
control	(no	knobs).

• Nodal	force	via	Maxwell
stress	integral.

F =

∮ [
B⊗ B
µ0

− |B|2

2µ0

]
· dA
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The	MHD uses	subzonal	side
magnetic	fields.
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Side	Magnetic	Field	Mesh	Elements

..

0

.

1

.

2

.

3

.

4

.

5

.
6

.
7

.

.

.

...

.

.

Nodelets

..

0

.

1

.

2

.

3

.

4

.

5

.
6

.
7

Facelets

..

0

.

1

.

2

.

3

.

4

.

5

.
6

.
7

Edgelets

• Extended	KULL’s	infrastructure	to	support	new	elements.
• Many	more	unknowns: 5	NL/N,	10	EL/E,	8	FL/F,	30	EL/Z
• Our	method	supports	arbitrary	polyhedrons, not	just	hexes.
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Low β MHD Equilibrium

• The	ideal	MHD equilibrium	is	described	by	the
Grad-Shafranov	equation.

∇2ψ = −µ
(
dP
dψ

)
where Bp = ∇ψ × k̂

P(ψ) = 10−8 + 2
(

ψ

ψmax

)2

with ψ = 0 B. C.’s

• We	solve	this	equation	using	relaxation	giving ψ on	nodelets.
• From ψ we	initialize	magnetic	flux	on	facelets	in	Kull.
• Average P(ψ) on	nodelets	to	get	zone-average P.
• Due	to	averaging	the	pressure, and	stress	discretization
differences, the	initial	state	in	Kull	is	a	perturbed	equilibrium.



. .
Overview

. . . . . . .
Discretization

. . . . . . . . . .
Diffusion

. . . . . . . .
Remap

. .
Reconstruct B

. .
Integrated	tests

.
Summary

Robust	Low β MHD Equilibrium

P and |B| in	Grad-Shafranov
problem.

0 5 10 15
Time (sh)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

N
od

e 
D

isp
la

ce
m

en
t (

L 1)

16x16x16
32x32x16
64x64x16
128x128x16

Maximum	node	displacement
converges	toward	zero.

• 2D equilibria	in	2D or	3D domain	are	accurately	simulated.
• β = Phydro/Pmag ≈ 10−7 near	boundary.
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MHD Blast	Wave

• High	pressure (P = 10)
region	in	a	low	pressure
(P = 0.1) ambient.

• Embed	a	uniform	magnetic
field (B2/2µ = 0.5)

• Plasma β = (20, 0.2)
inside, outside

• Initially	uniform	density
• Similar	to	Sedov, but...

Pressure	and	Magnetic	Field	Lines
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MHD Blast	Wave	is	Robust

Log	Density

Maximum	mesh	angle	(zone
and	side) ≈ 180◦.

• Lagrangian	KULL is	compared	to	Eulerian	Godunov	Athena.
• Complex	shock	/	contact	boundaries	lines	up.
• Both	codes	show	slow-mode	corrugation	instability.
• Lagrangian	Kull	is	stable	at	large	mesh	angles.
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Magnetic	Diffusion	Solves	Ohm’s	Law

∇× ∆t
µ0

∇× En+1 + σ · En+1 = ∇× Bn

µ0

Discretize E with	edge	finite	elements:

E =
∑
e

Eewe

Bn+1 = Bn − ∆t∇× En+1 .....
0
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• This	equation	for	the	current	is	(nearly)	singular
• In	pure	void, σ = 0 and J = σE = 0, so E unconstrained
• Use	CG with hypre’s	Auxiliary-space	Maxwell	Solver	as
preconditioner

• Solves	two, easier, nodal	problems	and	projects	to	edge
• In	void, we	add	the	constraint E = ∇ϕ to	make	it	non-singular

• Using	pure	void	is	more	robust	than	using	a	small σ
• A small	conductivity	is	resolution	dependent: σsmall ∼ 1/∆x
• Extra	work	for	void	is	about	10%	slower	than	using	a	floor
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Magnetic	Diffusion	can	be	driven	by	an	external	circuit

.............

Zflow

...

V(t)

.

Simulation
Mesh

• Use	an	equivalent	circuit	for	the	Z-machine	to	drive	the
simulation	load.

• Reused	ALEGRA circuit	code. (Thanks	Tom	Haill.)
• Circuit	model	uses	IDA from	Sundials.
• Total	electric	field	is	sum	of	two	others: E = E0 + IE1.

• This	means	two	linear	solves	to	get	parameters	that	are
passed	to	circuit	solver.

• Circuit	solver	returns	current	and	voltage	across	mesh, and
we	finalize	solution.
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Cost	of	robustness	and	generality	is	unknowns
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• Relative	to	a	standard	quad	or	hex	discretization	(in	blue)
• In	2D-XY,	we	have	twice	the	unknowns
• In	2D-RZ,	we	have	thrice	the	unknowns
• In	3D,	we	have	10	times	the	unknowns

What	if	we	can	eliminate	some	unknowns	before
hypre sees	the	matrix?
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During	matrix	assembly, we	eliminate	unknowns

Total	3D matrix A

• Full	matrix	is	sum	of	tet	matrices

A =
∑
t

At

• We	form	groups	of	tets	into	clumps

A =
∑
c

Ac with Ac =
∑
tg

Atg

• Edges	are	interior	to	the	clump	or	on	the	boundary

Acxc = yc →
[
Aii Aib
Abi Abb

] [
xi
xb

]
=

[
yi
yb

]
• Interior	edges	are	eliminated	with	Schur	complement(

Abb − AbiA
−1
ii Aib

)
xb = yb − AbiA

−1
ii yi → Arxb = yr

• What	tets	do	we	choose	when	making	clumps?
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In	2D we	eliminate	the	zone-interior	unknowns

..
Reduce	XY to	node	mesh

..
Reduce	RZ to	edge	mesh

Mesh	Type rows/quad matrix	entries/quad matrix	entries/row
XY original 2 14 7
XY quad 1 9 9
RZ original 6 30 5
RZ quad 2 14 7

• Number	of	unknowns	and	matrix	entries	are	lower.
• But	matrix	is	less	sparse

• We	have	recovered	the	same	number	of	unknowns	and
nonzeros	as	the	standard	quad	discretizations

• But	the	discretization	is	not	the	same
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In	3D we	must	think	outside	the	box

.

The	tetrakis	hexahedron	is
the	obvious	clump	of	tets

.

The	octahedron	that	spans	each	face	is	a
much	better	clump	of	tets

• Reduction	increases	matrix	bandwidth
• Good	performance	tied	more	to	matrix	size	than	unknowns

Mesh	Type rows/hex matrix	entries/hex matrix	entries/row
“tet’d”	hex	(original) 29 461 16
tetrakis	hexahedron 15 1107 74
octahedron 11 335 30
standard	hex 3 99 33

A tetrakis	hexahedron	is	a	non-regular	icositetrahedron	(24-sided	polyhedron)	formed	by	adding	square	pyramids	to	the	faces	of	a	hexahedron.
Eric	W.	Weisstein, Mathworld, http://mathworld.wolfram.com/TetrakisHexahedron.html

http://mathworld.wolfram.com/TetrakisHexahedron.html
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The	reduced	matrix	has	nice	mathematical	properties
• Many	of	the	original	matrix	properties	carry	over	to	the
reduced	matrix

• The	reduced	matrix	is	sparse, unlike	most	Schur	complements
• The	AMS preconditioner	works	on	the	reduced	matrix
• In	2D the	reduced	matrix	has	the	same	graph	as	a	standard
quad	discretization

• Some	properties	are	much	better	for	the	reduced	matrix
• The	condition	number	is	lower
• The	ratio	between	the	strongest	and	weakest	off-diagonals	in
the	matrix	is	better, making	it	easier	for	AMS/AMG to	make
good	choices	about	eliminating	entries

• In	2D the	reduced	matrix	is	even	nicer	than	the	standard
quad	discretization

• It	is	as	if	we	discretized	directly	on	the	reduced	mesh
• But	we	get	solutions	for all of	the	original	unknowns.

See	Brunner	and	Kolev, “Alegraic	multigrid	for	linear	systems	obtained	by	explicit	element	reduction,”

submitted	to SIAM Journal	on	Scientific	Computing, July	2010
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Conductivity	jump	and	varying	aspect	ratio

The	mesh	in	the	3D problem B-field	(arrows)	and	conductor	(red)

• A magnetic	field	diffuses	from	a	void	region	into	material
• The	mesh	is	stretched	to	create	zones	with	high	aspect	ratios,
keeping	resolution	in	the	interesting	direction	fixed

• We	compare	run	times	and	iteration	counts	for	2D-XY,
2D-RZ,	and	3D-XYZ geometries
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Speed-up	improves	as	aspect	ratio	increases
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Solver	Iterations
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. ..XY full. ..XY reduced. ..RZ full. ..RZ reduced. ..XYZ full. ..XYZ reduced

• Solve	times	are	always	faster	with	the	reduced	matrix
• XY:	1.7-4.2× , XYZ:	2.0-3.5×, RZ:	2.9-35×!

• Speed-up	from	smaller	matrix	and	reduced	iteration	count
• Setup	is	faster, despite	extra	work
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Comparison	of	hex-only	to	sub-tet’d	discretizations

...

B on	tets

.

σv = 10−8

.
σm = 1

.

323 hex	zones

• Run	the	same	problem	multiple	ways
• Kull: tet’d	hex
• Kull: reduced	matrix
• Ares: pure	hex

• Both	Kull	methods	solve	same	system

• hypre used	to	solve	both

matrix code hypre total
Mesh rows entries setup solve time iters
Tet	(K) 969k 15.2M 18.5 107.0 125.5 13
Reduced	(K) 367k 10.9M 12.9 33.5 46.4 9
Hex	(A) 105k 3.3M 5.9 16.4 22.3 18
Ratio	(K/A) 9.3 4.6 2.2 2.0 2.1 0.5

• Kull	runtime 2× slower	for 9.3× more	unknowns
• Need	to	run	convergence	study, plotting	error	vs. runtime

• Condition	number	improves	from	hex	to	tet	to	reduced
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Magnetic	Field	Remap	Overview

• Given	a	discrete	solution (ϕi =
∫
Ωi
B · dS) on	an	initial	(old)

mesh, determine	the	solution	on	a	final	(new)	mesh.
• Overlay	Method:

1. Realize	the	discrete	solution	on	the	old	mesh ϕi → B(x).
2. Compute	the ϕi on	the	new	mesh	as	an	integral	average.

• Advection	Method:
1. Consider	the	old	and	new	mesh	as	connected	by	advection

from	time	states tn and tn+1.
2. Use	Galilean	invariance	to	transform	problem	to	one	of	the

magnetic	field	moving	through	the	mesh.
3. Solve	the	remap	problem	as	an	advection	problem.

• Analytically	these	methods	are	identical	-	not	necessarily
true	numerically.

• Consequently, advection	methods	are	CFL stability	limited.



. .
Overview

. . . . . . .
Discretization

. . . . . . . . . .
Diffusion

. . . . . . . .
Remap

. .
Reconstruct B

. .
Integrated	tests

.
Summary

Requirements	&	Solution	Method

• Triangle	/	Tetrahedron	mesh	is	refined	relative	to	Zone	mesh.
• Therefore, remap	must	be	accurate	&	stable	for	CFL > 1.
• Remap	must	preserve ∇ · B = 0 identically.
• Remap	should	be	a	local	explicit	operator.
• Solution: Use	a	vector	potential	to	compute	EMF.

• Consistent	Overlay	and	Advection	method.
• No	CFL stability	limit.
• Parallel	synchronization	of	EMF ensures ∇ · B = 0.



. .
Overview

. . . . . . .
Discretization

. . . . . . . . . .
Diffusion

. . . . . . . .
Remap

. .
Reconstruct B

. .
Integrated	tests

.
Summary

Advection	Method

• A mesh	nodelet	is	displaced	by	a	distance d.
• Consider	this	to	occur	over	a	time	step δt = tn+1 − tn with	a
constant	velocity v = d/δt.

• Galilean	invariance	–	the	field	moves	through	the	mesh	with
a	velocity vg = −d/δt.

• Remap	is	governed	by	Faraday’s	law	for	an	ideal	fluid

∂B
∂t

+ ∇× E = 0

where E = B× vg.
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Computing	the	CT EMF

• Constrained	Transport	integral	relations	depend	on	the
“time”	and	edge	integrated	electric	fields.

..
dln

.dln+1

.

vg,i dt

.

vg,j dt
∫ tn+1

tn

∫
E · dl dt =

∫ tn+1

tn

∫
(B× vg) · dl dt

=

∫ tn+1

tn

∫
B · (vg dt× dl)

=

∮
A · dl′

• Note	that	the	result	is	gauge	invariant.
• The	gauge	need	not	be	parallel	consistent.
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Multipolar	/	Poincaré	Gauge

• This	gauge	is	distinguished	by	its	local	gauge	condition.

Am(x, t) · x = 0

• From	this	one	can	construct	an	integral	relation

Am(x, t) = −x×
∫ 1

0
uB(ux, t) du

• It	proves	the	existence	of	a	local	solution	and	is	a
generalization	of A = 1

2B× x.
• A is	integrated	outward	in	a	breadth	before	depth	manner.



. .
Overview

. . . . . . .
Discretization

. . . . . . . . . .
Diffusion

. . . . . . . .
Remap

. .
Reconstruct B

. .
Integrated	tests

.
Summary

Field	Loop	Advection

• The	magnetic	field	is	initialized	as
B = B0êθ.

• The	current	density	is	singular	at
the	center	and	boundary.

• The	magnetic	field	is	advected	in	a
Lissajous	figure	(figure	8)	using	the
remap	operator.

• Every	100	cycles	the	B-field
returns	to	the	initial	position.

• Results	for	a	linear	reconstruction
and	MCD limiter	shown	on	right.

Magnitude	of	B
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Field	Loop	Energy	Evolution

• The	Constant	B case	looses
∼ 30%	energy	after	100
cycles.

• The	Linear	B (MCD) case
looses ∼ 5%	energy	after
100	cycles. 0 0.2 0.4 0.6 0.8 1
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Field	Loop	Remap	is	Insensitive	to	Mesh

• Mesh	is	randomly	distorted	by	moving	nodes	up	to	30%	of
zone	size.

• Magnetic	energy	evolution	is	identical	to	eye	norm.

Uniform	Mesh Random	Mesh
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Magnetic	Field	Convergence

• I developed	a	variety	of
reconstruction	alg.

• All	recover	a	linear
B-field	exactly	on	an
arbitrary	(random)	mesh.

• The	magnetic	field	at
side-center	converges	at
order	2.

• The	magnetic	field	is
sinusoidal:

Bx = − cos(kx) sin(ky)

By = sin(kx) cos(ky)

256 512 1024 2048 4096
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Side Center B-field Convergence
Random Mesh, Sinusoidal Field
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Maxwell	Stress	Convergence

• The	nodal	force	is	exact
for	linear B.

• The	nodal	force
converges	at	order	2	on
a	sinusoidal	mesh.

• The	nodal	force
converges	at	order	1.2
on	a	random	mesh.
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Thin	Shell	Imploding	Liner

A thin	cylindrical	shell	is	imploded.
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We	agree	well	with	analytic	model

• Analytic, self-similar, thin	shell	implosion	model
(Slutz	et	al., Phys. Plasmas, v. 8, p. 1673	(2001)

• Useful	test	in (x, y)-, (r, z)-	and (x, y, z)-geometries
• In (x, y, z)-geometry	weakly	dependent	on	angular
resolution, ∼ 10 angular	zones	is	sufficient.

• Either	circuit	or H-tangent	boundary	conditions
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MRT Unstable	Imploding	Liner

Perturbed	Al	liner	seeds	MRT growth. 3D MRT simulation	at	time	=	75.5	ns.

• Measurements	of	Magneto-Rayleigh-Taylor	Instability…
(Sinars	et	al., Phys. Rev. Letters, v. 105, p. 185001	(2010)

• 25	&	400 µm	sinusiodal	perturbations	seed	the	instability.
• 15 µm	resolution	radiographs	capture	liner	outer	surface
evolution.

• Multiple	images	enable	simulation	verification.
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Summary

• Kull	is	a	LLNL /	SNL jointly	owned	ASC HEDP code
• We	are	developing	the	MHD capabilities	to	be	consistent
with	the	CBSW compatible	hydro. scheme.

• Lagrangian	calculations	demonstrate	a	robust	algorithm
using	a	compatible B-field	discretization	on	a	triangle	/
tetrahedron	sub-grid.

• Circuit	coupled	resistive	diffusion	is	accelerated	using	a
Schur	complement.

• Magnetic	Field	Remap	uses	a	consistent	advection	/	overlay
method	via	a	vector	potential.

• Limited B-field	reconstruction	resolves	linear	variation	on	an
arbitrary	(random)	mesh	exactly. Generally	second	order
convergence…

• Magneto-Rayleigh-Taylor	validation	effort	is	underway.



. .
Overview

. . . . . . .
Discretization

. . . . . . . . . .
Diffusion

. . . . . . . .
Remap

. .
Reconstruct B

. .
Integrated	tests

.
Summary

MHD Blast	Wave
Slow-mode	Shock	Corrugation	Instability

Log	Density
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