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Outline:

• Introduction of quantum Hall effects

• Spin transition in the second Landau level

• 12/5

• 8/3 

• Tunneling measurements at 8/3 and 7/3
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Btot

tilt magnetic field technique

B

Btot = B/cos()

ħc  B, Ez = gBBtot  Btot

B



Btot
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ħc = gBBtotBtot/B = 2me/(g*m*)

Spin up and down levels cross me– electron mass
g* = -0.44
m* = 0.067me

gBBtot

ħc
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Koch et al, PRB (1993)



one composite fermion = one electron + 2 flux quanta

Composite Fermion (CF) Model

Beff = B – 2Φ0  n = B – 2nh/e

J.K. Jain, 1989
B.I. Halperin, P.A. Lee, and N.Read,1993
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R. R. Du et al, PRL (1995)



8/5 state under Composite Fermion model
Jain, PRL (1989)
Halperin, Read, and Lee, PRB (1993)

=8/5 = 2-2/5
(electron)

*=2
(CF)

EF

Spin up and down CF Landau levels crossing at  

Btot/Beff = 2me/(g*m*)

Btot

R. R. Du et al, PRL (1995)

me– electron mass
g* – g-factor of CFs
m* – effective mass of CFs
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theoretical proposals for the 12/5 state



the 12/5 fractional quantum Hall state



tilt at de-mag temperatures

• tilting done by tuning liquid 
3He pressure. Almost no 
heating at de-mag
temperatures.

• sintered silver powder heat 
exchangers for electron 
cooling. 

• sample immersed in 3He 
liquid.
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electron density distribution

• 30 nm wide, Al0.24Ga0.76As/GaAs/Al0.24Ga0.76As QW

• Low T, n=2.7×1011 cm-2 and μ= 31×106 cm2/Vs 



Rxx and Rxy data
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Rxx under tilt
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Rxy data for tilted angles
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=8/5=12/5

Eisenstein et al, PRL (1989)

spin transition at 8/5

activation energy versus Btot
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8/5 state under Composite Fermion model

=8/5
(electron)

*=2
(CF)

EF

Spin up and down CF levels crossing at  

Btot/Beff = j ×2me/(g*m*), j = 1

Btot

R. R. Du et al, PRL (1995)



What about the 12/5 state?

Btot/Beff = j ×2me/(g*m*)
j = 1, 2,…

g*~ 0.6
R. R. Du et al, PRL (1995)
A. S. Yeh et al, PRL (1999)

m*/me ~ 0.26 B
1/2 ~ 0.55

W. Pan et al, PRB (2000)

=12/5
(electron)

*=2 in the second LL ?
(CF)

EF

Btot



Is the 12/5 state a CF state?

Is it non-Abelian spin-singlet QH state? 

Is it a spin unpolarized Bonderson and Slingerland state?

v=2k/(2kM+3)

if k=3, M=2,  

v=3/5  2/5

Ardonne and Schoutens, PRL (1999)
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R.G. Clark, PRL (1989)

4/3 state under tilt 



T. Chakraborty and P. Pietilainen, Phys. Rev. B 41, 10862 (1990)

Numerical calculation for the 3/5 state
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Experimentally: 

• 7/3 and 8/3 are true FQHE states

• 7/3 ≈ 2 8/3 

  B  7/3/8/3 = B7/3/B8/3 ~ 1



Density dependence of the 8/3 state

Ec (Coulomb energy) = e2/r  n1/2

Ez (Zeeman energy)  n



spin polarized ground state:  = n
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Ec  n1/2, Ez(Zeeman energy)  n

spin unpolarized ground state:  = n–n–

electron density
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spin transition



samples well width 
(nm)

density  
(1011 cm-2)

mobility 
(106/V s)

lB at =8/3 
(nm)

W/lB

A 60 0.5 10 29.2 2.1

B 60 0.6 9.1 26.7 2.2

C 56 0.77 13 23.6 2.4

D 45 1.15 13.8 19.3 2.3

E 33 2.1 23 14.3 2.3

F 30 2.6 24 12.9 2.3

G 30 3.1 31 11.8 2.5



Top Loading Dilution Refrigerator

base temperature ~ 10 mK

magnetic field 14/16T



FQHE states in the second LL at low densities
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spin transition at =8/3



The apparent transition is

• a spin transition under CF picture?

• a spin transition, but from, for example, a 
spin unpolarized interlayer pfaffian state 
(Barkeshli and Wen, PRB 2010) to a spin 
polarized pfaffian state?

• not a spin transition?



For the 8/3 state:
at the transition
Ez/Ec ~ 0.006

Ez zeeman energy
Ec Coulomb energy 

For the 2/3 state:
Ez/Ec ~ 0.01 (from density and tilt magnetic field)

Eisenstein  et al; Engel et al

For the 4/3 state:
Ez/Ec ~ 0.02 (from tilt magnetic field)

Du et al
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Zeeman energy is important in the 
8/3 and 12/5 ground states
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Single heterojunction (n=6.5x1010 cm-2)

T ~ 7 mK

8/3 7/3

5/2



5/2 under tilt
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Zhang et al, PRL (2010)

B// along [110] B// along [110]
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short range interactions 
softened

N=1



pair

three-particle
cluster

or more exotic
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At the spin transition: 

Ez/Ec ~ 0.013

Ez zeeman energy
Ec Coulomb energy 

For the 8/5 state:
Ez/Ec ~ 0.017 (from tilt magnetic field)

Eisenstein  et al; Du et al

For the 3/5 state:
Ez/Ec ~ 0.009 (from tilt magnetic field)

Engel et al
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Pan et al, PRL (1999)

5/2-state is a true FQHE state
with even-denominator

• Rxx is vanishingly small
• quantized Hall plateau

3.2 3.6 4.0

0.3

0.4

0.5

T
e
 = 4 mK

R
xx

300

5/2

MAGNETIC FIELD [T]

5/2

2

R
xy

 (
h

/e
2
)

3

true FQHE at =5/2

electron mobility
17×106 cm2/Vs

Rxy =  
h 5

2e2

• Can’t be explained by 
Laughlin’s theory

• Can’t be explained by CF 
model

• Due to pairing of CF’s



Tilt magnetic field induced anisotropy in second Landau level
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m*/me ~ 0.26 B
1/2

CF  activation mass around =1/2, 3/2, ¼, ¾



Tilt magnetic field induced anisotropy in second Landau level
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Xia et al, PRL 





Quantum Hall state

Insulating state

Magnetic field

Rxx Experimentally observed minimum
(slightly different from the QH minimum)


