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Outline:

* Introduction of quantum Hall effects
* Spin transition in the second Landau level
*12/5

- 8/3

* Tunneling measurements at 8/3 and 7/3
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tilt magnetic field technique

B... = B,/cos(0)

ho, oc B, E, = gUugB,, o€ By




ho, = gugB,o ?Bio/B, = 2m,/(g*m*)

Spin up and down levels cross m.— electron mass
¥ —
ot g*=-0.44
) E; m* = 0.067m,

gLpBiot
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Koch et al, PRB (1993)



Composite Fermion (CF) Model

J.K. Jain, 1989
B.l. Halperin, P.A. Lee, and N.Read,1993

one composite fermion = one electron + 2 flux quanta
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IQHE of CF
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8/5 state under Composite Fermion model

Jain, PRL (1989)
Halperin, Read, and Lee, PRB (1993)

v=8/5=2-2/5 <> v*=2 E
(electron) (CF) F

Spin up and down CF Landau levels crossing at

B.../B. = 2m_/(g*m*) m_— electron mass
g* — g-factor of CFs
R.R. Du et al, PRL (1995) m* — effective mass of CFs



* Spin transition in the second Landau level

*12/5



@ Pergamon Solid State Communications, Vol. 94, No. 2, pp. 107-112, 1995

Elsevier Science Ltd
Printed in Great Britain
0038-1098(95)00034-8 0038-1098/95 $9.50+.00

FRACTIONAL QUANTUM HALL EFFECT IN HIGHER LANDAU LEVELS

Lotfi Belkhir® and J. K. Jamn

conventional

a finite size effect, and that there is, in fact, no FQHE
at 12/5 in the thermodynamic limit.
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the 12/5 fractional quantum Hall state
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tilt at de-mag temperatures

* tilting done by tuning liquid
3He pressure. Almost no
heating at de-mag
temperatures.

* sintered silver powder heat
exchangers for electron
cooling.

 sample immersed in 3He
liquid.

h..__I

prédure inlet gdilver wire



Energy (eV)

* 30 nm wide, Al,,,Ga, ;,As/GaAs/Al,,,Ga, ,cAs QW
n=2.7%x10' cm2 and u=31%10° cm?/Vs
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spin transition at 8/5



8/5 state under Composite Fermion model

V=8/5 — v¥=2
(electron) (CF)

Spin up and down CF levels crossing at

Btot/Beff =j xzme/(g*m*)r J =1

> R. R. Du et al, PRL (1995)



What about the 12/5 state?

v=12/5 «> Vv*=2inthesecond LL?
(electron) (CF)

Btot/Beff = J xzme/(g*m*)

60 | s T ~ 10 mK- j=1,2,..
o~ - v=12/5 1
g  4op Bs o m*/m,~ 0.26 B,/2 ~ 0.55
D:} 20 L P RXX i W. Pan et al, PRB (2000)
g LY N, @) g*~ 0.6
4.5 5.0 55 6.0 R.R. Du et al, PRL (1995)

total (T) A.S. Yeh et al, PRL (1999)



Is the 12/5 state a CF state?

Is it non-Abelian spin-singlet QH state?

Ardonne and Schoutens, PRL (1999)
v=2k/(2kM+3)
if k=3, M=2,
v=3/5 2 2/5

Is it a spin unpolarized Bonderson and Slingerland state?
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Numerical calculation for the 3/5 state

6-electrons

v=3/5
0006 \\/'
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T. Chakraborty and P. Pietilainen, Phys. Rev. B 41, 10862 (1990)






* Spin transition in the second Landau level

- 8/3
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Collective excitations of fractional Hall states and Wigner crystallization
in higher Landau levels

A. H. MacDonald
National Research Council of Canada, Ottawa, Canada K14 OR6

8. M. Girvin
Surface Science Division, National Bureau of Standards, Gaithersburg, Maryland 20899
(Received 29 August 1985; revised manuscript received 2 December 19835)

An expression has been derived for the collective-excitation dispersion for fractional Hall states
which occur in higher orbital Landau levels in terms of the electron pair-correlation function in
these states. Explicit results for the n =1 Landau level have been obtained at fractional filling fac-
tors '."=3l and v=3|' based on Laughlin's trial wave functions for the ground state. The results at
1-=.} are qualitatively different from those in the lowest Landau level and are consistent with a
weak quantum Hall effect at this fraction for n =1. The results for v=% are similar to those in the
n =0 Landau level but the collective excitations have a higher energy. We associate this increase

v=+ are qualitatively different from those in the lowest Landau level



@ Pergamon Solid State Communications, Vol. 94, No. 2, pp. 107-112, 1995
Elsevier Science Ltd

Printed in Great Britain
0038-1098(95)00034-8 0038-1098/95 $9.50+.00

FRACTIONAL QUANTUM HALL EFFECT IN HIGHER LANDAU LEVELS

Lotfi Belkhir* and J. K. Jain

at this fraction. Our calculations conhrm this result
for strictly two-dimensional (2D) systems. However, we
find the surprising result that for wider quantum wells,

the exact ground state becomes closer to the Laugh-

lin state, and the FQHE at 7/3 becomes stronger; the
energy gap acquires its maximum value when the thicke-
ness is roughly equal to twice the magnetic length. This
is in contrast to the situation in the lowest LL, where
the FQHE is in general the strongest at zero thickness.
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Experimentally:
* 7/3 and 8/3 are true FQHE states

* Ag;3 =2 Agjs

Aoc B> A, 5/Ag/3 =By s/Bgss ~ 1



Density dependence of the 8/3 state

E. (Coulomb energy) = e2/er oc n%/2

E, (Zeeman energy) o< n



A o E_ (Coulomb energy) = e2/er oc n1/2

spin polarized ground state: A = oVn—T

energy gap

ele'ctron'dens'ity n



E.c n'/2, E (Zeeman energy) «c n

spin unpolarized ground state: A = a\F\—Bn—F

A

spin transition

energy gap

N
Cd

electron density



samples well width | density mobility [gat v=8/3 | W/l
(nm) (10 em2) [(10%V's)  [(nm)
A 60 0.5 10 29.2 2.1
B 60 0.6 9.1 26.7 2.2
C 56 0.77 13 23.6 2.4
D 45 1.15 13.8 19.3 2.3
E 33 2.1 23 14.3 2.3
F 30 2.6 24 12.9 2.3
G 30 3.1 31 11.8 2.5
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FQHE states in the second LL at low densities
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spin transition at v=8/3
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The apparent transition is

* a spin transition under CF picture?

* a spin transition, but from, for example, a
spin unpolarized interlayer pfaffian state

(Barkeshli and Wen, PRB 2010) to a spin
polarized pfaffian state?

* not a spin transition?



For the 8/3 state: £ zeeman energy

at the transition E. Coulomb energy
E.,/E_~ 0.006

For the 2/3 state:

E./E.~ 0.01 (from density and tilt magnetic field)
Eisenstein et al; Engel et al

For the 4/3 state:

E./E.~ 0.02 (from tilt magnetic field)

Du et al
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Temperature Dependence of Spin Polarizations at Higher Landau Levels

Tapash Chakraborty*
Max-Planck-Institute for Physics of Complex Systems, D-01187 Dresden, Germany

Pekka Pietildinen

Theoretical Physics, University of Oulu, FIN-90570 Oulu, Finland
(Received 16 June 1999)

We report our results on the temperature dependence of spin polarizations at » = | 1n the lowest as
well as in the next higher Landau level. They compare well with recent experimental results. At v = 3,
spin polarization has a smaller magnitude but is not much influenced by higher Landau levels. In sharp

contrast, for filling factor » = % we predict that, unlike in the case of v = % the system remains fully
spin polarized even at vanishingly small Zeeman energies.



Zeeman energy is important in the
8/3 and 12/5 ground states
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Single heterojunction (n=6.5x10%° cm™2)
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N=1

short range interactions
softened
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three-particle
cluster

or more exotic
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At the spin transition: £ zeeman energy

E. Coulomb energy

E./E_~0.013

For the 8/5 state:
E,/JE.~ 0.017 (from tilt magnetic field)
Eisenstein et al; Du et al
For the 3/5 state:
E,/E.~ 0.009 (from tilt magnetic field)

Engel et al
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true FQF
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5/2-state is a true FQHE state
with even-denominator

* R, is vanishingly small
» quantized Hall plateau

. Can’t be explained by
Laughlin’s theory

« Can’t be explained by CF
model

* Due to pairing of CF’s




Tilt magnetic field induced anisotropy in second Landau level
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N=1
N=2 3. Exotic N=0 Landau level
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CF activation mass around v=1/2, 3/2, %, %
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Tilt magnetic field induced anisotropy in second Landau level
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