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Introduction to Ocean Models & POP.
The Coriolis Term.

Pressure Coupling in POP.
Conclusions & Future Work.
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Ocean Modeling in POP

# Parallel Ocean Program(POP) is one of the models in the
Community Climate System Model (CCSM).

#® Physics of POP

o Thin stratified fluid equations w/ hydrostatic and
Boussinesq approximations.

o Coupled temperature & salinity advection-diffusion.
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}Why Implicit?

Ocean codes have historically been explicit or
semi-implicit.
Motivation # 1. Spin Up

# To spin up the ocean requires time integration lasting
for centuries.

o This is, in effect, setup for another run, so the dynamics
don’t matter.

Motivation # 2: Bifurcation analysis of steady states.

Motivation # 3: Transient analysis above the CFL (see
Dana Knoll; Wed 4:30pm).
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%POP Equations

Ou 877 apbc(sa T)
+ C1(u) — aquv Qv—l—()@@)\—l—ag )

— Dy(u,v) =0

ot
v 2 377 8pbc(sa T)
i 0 b — D —
8t+61(v)+a1u + u+oz4a¢+a5 90 o(u,v) =0
0S
E _I_CQ(S) —|—Cg(U,’U,S) _ D3(SaT) =0
oT
=7 +Co(T) + C3(u, v, T) = D3(8,T) = 0

on U ou ov

- —— tar— |dz=0

at " /_H <Ck6 OA o a¢> ’ @ Sandia
National
Laboratories

Block Preconditioning for Implicit Ocean Models — p.6/31



e '
%POP Equations
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; V" POP Test Problem

& Sector
o Rectangular (8 z nodes; number of x & y nodes vary).
o Horizontally homogeneous thermal stratification
# No forcing
o Little fluid flow.
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}Outline

® Introduction to Ocean Models & POP.

#® The Coriolis Term.
o Analysis of 2D Coriolis-Diffusion.
o Algebraic Multigrid (AMG).
o Convection-Coriolis-Diffusion Problems in POP.

#® Pressure Coupling in POP.
#® Conclusions & Future Work.
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}The Coriolis Term (1)

® Consider the Coriolis-Diffusion equation:

A Q u f
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o (Periodic) Fourier analysis gives spectral radius:

(16 cos?(2mh) + 92h4> b2
PJ = 16

which means it converges If:
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}’The Coriolis Term (2)

f
g

#® Problem: Ocean models have kilometer scale h.
#® Solution: €2 is diagonal, so it can be block inverted.
# (Periodic) Fourier analysis shows Block(2) Jacobi is stable

for any (2 and spectral radius,

16 cos?(2mh)
PB = 274
16 + Q<h

)1/2

# |n fact, larger () = faster convergence.
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Smoothing Factor
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J ' : Coriolis Term & Time

#® Now consider the time-dependent version:
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# This adds a little more stabillity. . .
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Smoothing Factor by At
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AMG for Coriolis-Diffusion
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AMG for Coriolis-Diffusion

Consider (Block) Jacobi, (Block) SGS and ILU(O) as
smoothers to a 2-grid method.

Coarse grid: Un-smoothed aggregation w/ 2 nullspace
vectors. Sandia
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2-Level AMG Convergence
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Iterations
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Ilterations

Sector: Large At
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}Outline

Introduction to Ocean Models & POP.
The Coriolis Term.
Pressure Coupling in POP.

o Schur Complement Preconditioners.

o Why SIMPLE Won't Suffice.
o A Quick Look at Probing.

Conclusions & Future Work.
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® Factor a block 2 x 2 matrix:

4 BT
C D

I

CA-1 T

where S =D — CA~ B,
#® Approximate this factorization in order to precondition.

# Now we're left with two questions:

}Schur Complements

] A1BT

» How to approximate A='? (To isolate effect of S—1, we

will use LU).

» How to approximate S—1?
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; SIMPLE & Block SIMPLE

® SIMPLE-like methods approximate S = D — CA~!B?, with
S=D-CFr'B"

where F' = diag(A).

® Walit a second!

o Isn’t SIMPLE’s F' a lot like a step of point Jacobi on the
convection-diffusion-Coriolis block?

o Didn’t we just show that this is unstable for large (2?
#® We'd best look at a Block SIMPLE as well.
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Solver lterations

Sector: Large At
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Solver lterations

Sector: Az Refinement
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Quick Look at Probing

# Even Block SIMPLE has problems as Az gets small.

#® Graph coloring-based approach: Probing.

# |dea # 1. Two columns with disjoint sparsity can be exactly

probed by a single matvec.
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}A Quick Look at Probing

Even Block SIMPLE has problems as Az gets small.

o o

Graph coloring-based approach: Probing.

# ldea # 1. Two columns with disjoint sparsity can be exactly
probed by a single matvec.

o ldea# 2: If we know the “large” parts of the matrix a priori,
we can approximate the matrix by probing only those.
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}A Quick Look at Probing

Even Block SIMPLE has problems as Az gets small.
Graph coloring-based approach: Probing.

ldea # 1. Two columns with disjoint sparsity can be exactly
probed by a single matvec.

ldea # 2: If we know the “large” parts of the matrix a priori,
we can approximate the matrix by probing only those.

Try two sparsity patterns:
o (B -9 point stencil.

o (CB)? - 27 point stencil.
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Solver lterations

Sector: Large At
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Solver lterations

Sector: Az Refinement
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Outline
Introduction to Ocean Models & POP.
The Coriolis Term.

Pressure Coupling in POP.
Conclusions & Future Work.
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Conclusions

# Block methods are important for Coriolis-Diffusion.
o AMG + Block Jacobi / Block GS works well.
o Convection may require more powerful block
smoothers (Block ILU?).
#® Schur complement must capture (1,1)’s block nature.
# Block SIMPLE is OK even w/ large timesteps.
o Probing can do somewhat better w/ fine meshes.

#® [Future work
o Less mesh dependence.
o Robust implementation in POP.
o Harder & more realistic problems.
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