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Ocean Modeling in POP

Left: THCM, J. Thies; Right: POP website

Parallel Ocean Program(POP) is one of the models in the
Community Climate System Model (CCSM).

Physics of POP
Thin stratified fluid equations w/ hydrostatic and
Boussinesq approximations.
Coupled temperature & salinity advection-diffusion.
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Why Implicit?
Ocean codes have historically been explicit or
semi-implicit.

Motivation # 1: Spin Up
To spin up the ocean requires time integration lasting
for centuries.
This is, in effect, setup for another run, so the dynamics
don’t matter.

Motivation # 2: Bifurcation analysis of steady states.

Motivation # 3: Transient analysis above the CFL (see
Dana Knoll; Wed 4:30pm).
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POP Equations
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POP Test Problem
Sector

Rectangular (8 z nodes; number of x & y nodes vary).
Horizontally homogeneous thermal stratification
No forcing
Little fluid flow.
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The Coriolis Term (1)
Consider the Coriolis-Diffusion equation:

[

−∆ Ω

−Ω −∆

] [

u

v

]

=

[

f

g

]

.

(Periodic) Fourier analysis gives spectral radius:

ρJ =

(

16 cos2(2πh) + Ω2h4

16

)1/2

which means it converges if:

Ω <
4

h2
| sin(2πh)|.
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The Coriolis Term (2)
[

−∆ Ω

−Ω −∆

] [

u

v

]

=

[

f

g

]

.

Problem: Ocean models have kilometer scale h.

Solution: Ω is diagonal, so it can be block inverted.

(Periodic) Fourier analysis shows Block(2) Jacobi is stable
for any Ω and spectral radius,

ρB =

(

16 cos2(2πh)

16 + Ω2h4

)1/2

In fact, larger Ω ⇒ faster convergence.
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Smoothing Factor byΩ
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Coriolis Term & Time
Now consider the time-dependent version:

[

∂
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This adds a little more stability. . .
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Smoothing Factor by∆t
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AMG for Coriolis-Diffusion

Smooth

Smooth Smooth

Smooth

Solve
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AMG for Coriolis-Diffusion

Consider (Block) Jacobi, (Block) SGS and ILU(0) as
smoothers to a 2-grid method.

Coarse grid: Un-smoothed aggregation w/ 2 nullspace
vectors.
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2-Level AMG Convergence
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Sector: ∆x Refinement
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Sector: Large∆t
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Outline
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Schur Complements
Factor a block 2 × 2 matrix:

[

A BT

C D

]

=

[

I

CA−1 I

] [

A

S

] [

I A−1BT

I

]

where S = D − CA−1BT .

Approximate this factorization in order to precondition.

Now we’re left with two questions:
How to approximate A−1? (To isolate effect of S−1, we
will use LU).
How to approximate S−1?
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SIMPLE & Block SIMPLE
SIMPLE-like methods approximate S = D − CA−1BT , with

S = D − CF−1BT ,

where F = diag(A).

Wait a second!
Isn’t SIMPLE’s F a lot like a step of point Jacobi on the
convection-diffusion-Coriolis block?
Didn’t we just show that this is unstable for large Ω?

We’d best look at a Block SIMPLE as well.
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Sector: Large∆t
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Sector: ∆x Refinement
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A Quick Look at Probing
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Even Block SIMPLE has problems as ∆x gets small.

Graph coloring-based approach: Probing.

Idea # 1: Two columns with disjoint sparsity can be exactly
probed by a single matvec.
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A Quick Look at Probing
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Even Block SIMPLE has problems as ∆x gets small.

Graph coloring-based approach: Probing.

Idea # 1: Two columns with disjoint sparsity can be exactly
probed by a single matvec.

Idea # 2: If we know the “large” parts of the matrix a priori,
we can approximate the matrix by probing only those.
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A Quick Look at Probing

Even Block SIMPLE has problems as ∆x gets small.

Graph coloring-based approach: Probing.

Idea # 1: Two columns with disjoint sparsity can be exactly
probed by a single matvec.

Idea # 2: If we know the “large” parts of the matrix a priori,
we can approximate the matrix by probing only those.

Try two sparsity patterns:
CB - 9 point stencil.
(CB)2 - 27 point stencil.
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Sector: Large∆t
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Sector: ∆x Refinement
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Conclusions
Block methods are important for Coriolis-Diffusion.

AMG + Block Jacobi / Block GS works well.
Convection may require more powerful block
smoothers (Block ILU?).

Schur complement must capture (1,1)’s block nature.
Block SIMPLE is OK even w/ large timesteps.
Probing can do somewhat better w/ fine meshes.

Future work
Less mesh dependence.
Robust implementation in POP.
Harder & more realistic problems.
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