

Advanced Packaging/Board-Level Life Prediction and Reliability JMP Five Year Plan for FY11-15

SAND2010-1850P

Performing Organization: **Sandia National Laboratories**

Principal Investigator: **Rajen Chanchani, PO Box 5800, MS-0352, 505-844-3482, chanchr@sandia.gov**

Customer	Collaboration
Dale Brandt, SNL Org. 05351, Tel: (505) 844-4710, djbrand@sandia.gov	<p>Board-level reliability project from the DOE side was funded by Dale Brandt for insertion of PBGA technology in NW (B-61 Lifetime Extension Project). There is a transition plan:</p> <ul style="list-style-type: none">Develop the board level reliability of PBGAs with manufacturing location at Honeywell, KCP.Transfer the acceptance and specification documentation for manufacturing by FY12.
Richard Flores, SNL Org. 01731, Tel: (505) 844-7220, floresr@sandia.gov	<p>Packaged Via-array Structured ASIC Component – level reliability for insertion into wider range of DOE, DOD and Aerospace applications.</p> <ol style="list-style-type: none">Deliver the reliability qualification results to be handed to the end-customers.
Davd Locker, AMRDEC, Tel: (256) 842-0163, david.Locker@us.army.mil	<p>Discussions going on.</p>
Jason L. Cook, US Army ARDEC, Tel: (973) 724-3920 Jason.Cook@us.army.mil	<p>Discussions going on</p>

Advanced Packaging/Board-Level Life Prediction and Reliability Quad Chart

What are you trying to do in this task?

- Develop Life Prediction models and reliability data for new technologies like low-cost PBGAs and CSPs and their reliability when surface mounted on a circuit boards.
- We are currently investigating reliability of 400 I/O PBGAs at component-level and at board-level.

What makes you think you can do it?

- SNL has all of the skills and infrastructure to do this. SNL also partners with Honeywell KCP to develop and manufacture electronics.
- Component and board-level reliability/life-prediction models will be developed with SNL's manufacturing partner Honeywell, KCP and wherever appropriate with outside vendors.

What difference will it make?

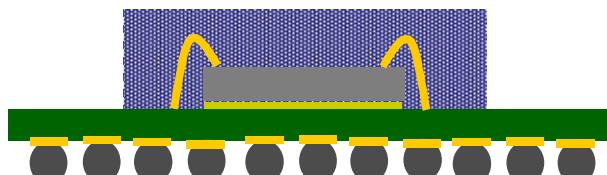
- This work is applicable to NW (DOE), DOD, aerospace, and consumer electronics.
- The insertion of the latest COTS technologies like PBGAs in these application will improve the circuit performance, and allow higher degree of integration and miniaturization at lower cost.

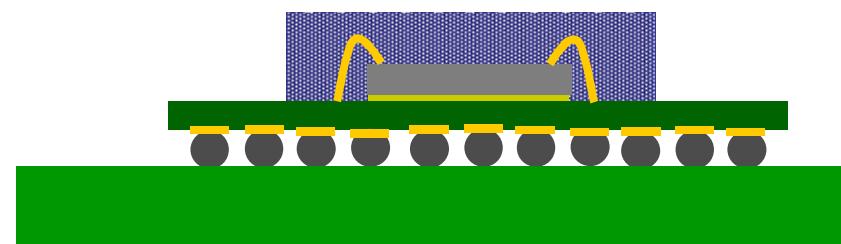
What / When / To Whom Will You Deliver?

- We will develop the reliability of new packaging technologies like PBGAs to TRL 6 for delivery to our DOE (NW), DOD and Aerospace customers.
- For Example: PBGAs are being developed for DOE use in B-61 Lifetime Extension Program.

Contacts

Name	Org	Role
Rajen Chanchani Chanchr@sandia.gov 505-844-3482	Sandia DOE Lab	Principal Investigator
Steve Wix sdwix@sandia.gov 505-844-0778	Sandia DOE Lab	Manager/ Task Leader
Kevin Ewsuk kgewsuk@sandia.gov 505-844-6958	Sandia DOE Lab	Manger

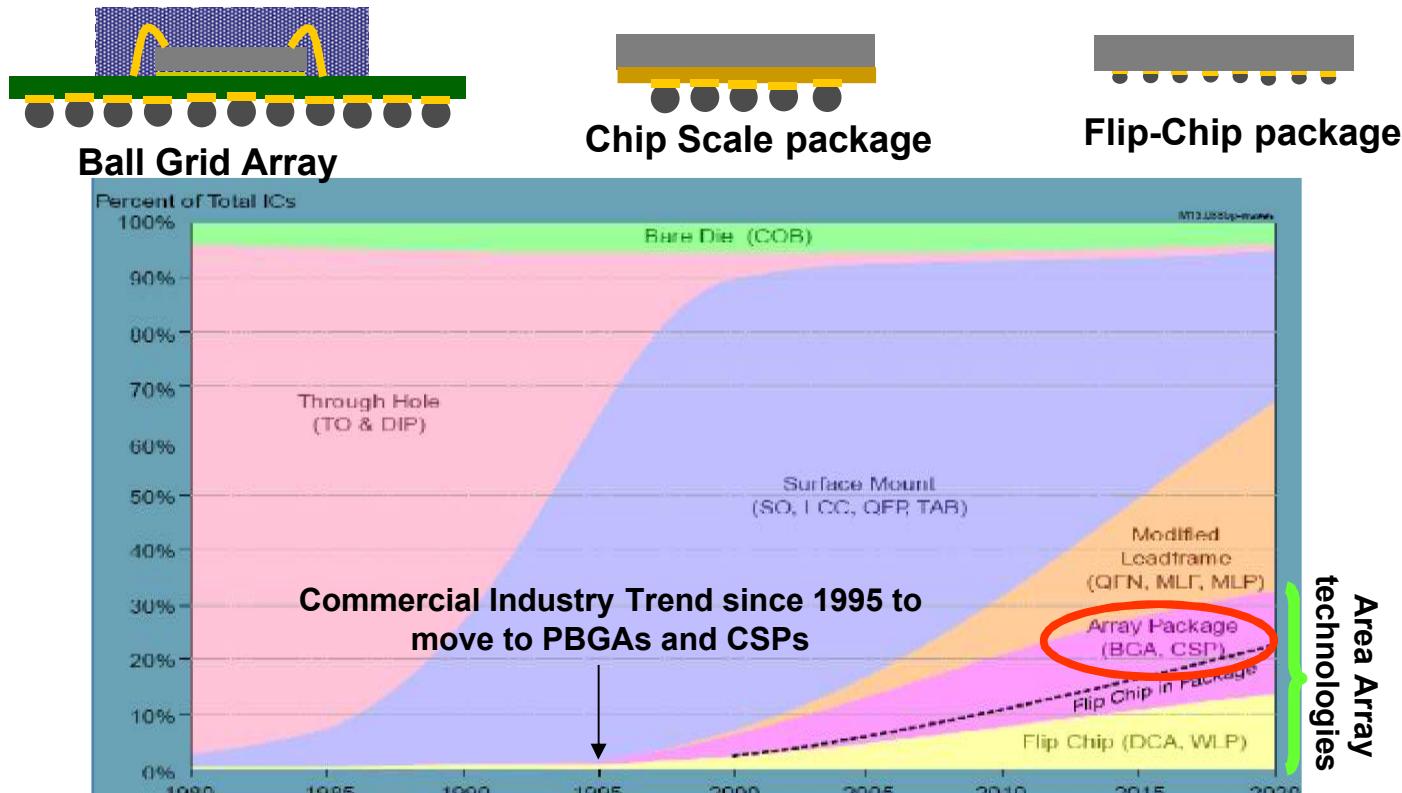

Advanced Packaging/Board-Level Life Prediction and Reliability


This has been started as a New Area Of Focus starting with Seed funding from JMP in FY10 because of considerable interest in high I/O density, low cost Area Array COTS Packages.

What are we trying to do in this task?

- Develop assembly processes, array solder joint inspection techniques, reliability data and life prediction models for **Plastic Ball Grid Array (PBGAs) and Chip scale Packages (CSPs)**.
- We are currently studying of 400 I/O PBGAs at component-level and at board-level.

PBGA
Component - level



PBGA
Board-level

Why Area Array Packaging Technology

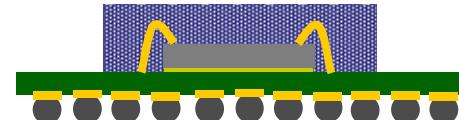
It is inevitable that the technology will be used in the future DOD, DOE and Aerospace applications.

Industry is moving towards Area array technologies because:

- I/Os in ICs are increasing at a fast rate. Periphery lengths cannot accommodate I/Os, thus area array are increasingly used.
- Smaller foot-print/height in X, Y, Z – dimension.
- Less materials used, lower weight
- In most cases lower cost

Why Area Array Packaging Technology

It is inevitable that the technology will be used in the future DOD, DOE and Aerospace applications.


Following the industry lead –

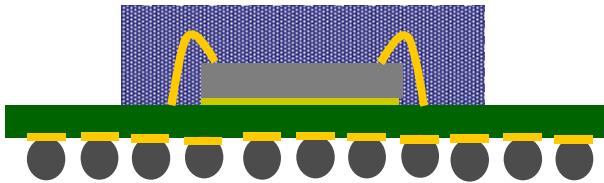
➤ The time has come for advanced area array packaging technologies insertion in NW (DOE), DOD, and aerospace applications

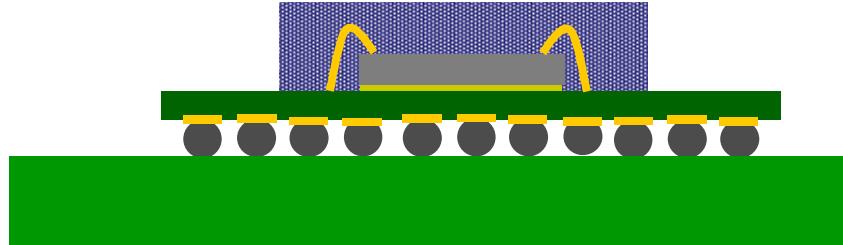
An Example: Currently, Sandia is fabricating 400 I/O Via-array Structured ASICs for use in NW (B-61 Lifetime Extension Program).

➤ The insertion of the latest COTS technologies like PBGAs in these application will improve the circuit performance, and allow higher degree of integration and miniaturization at lower cost.

In this project, our short Term Goal

Plastic Ball Grid Array


In this task, our Long Term Goal


Chip Scale package

Challenges involved in Area Array Technologies

PBGA Component

PBGA Component on a board

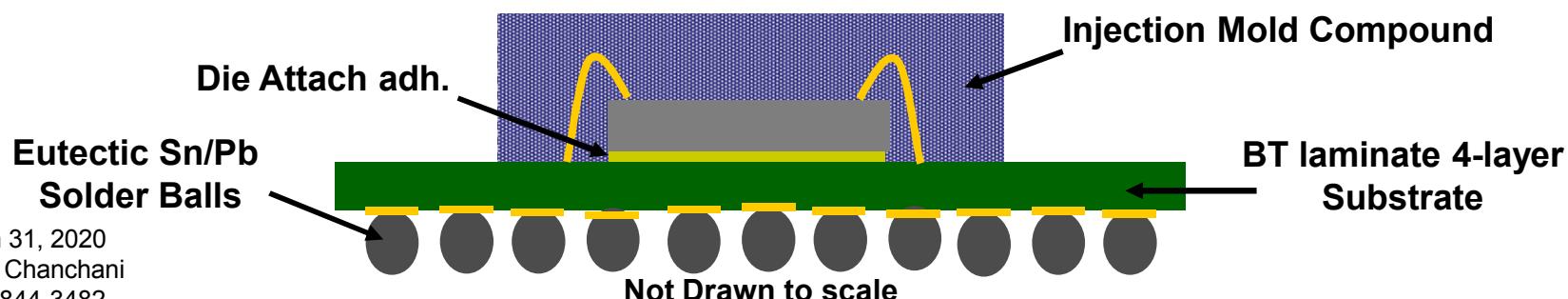
- We have selected Plastic Ball Grid Array Technology because it has a better thermal expansion match with Printed Circuit Boards.
- Ceramic BGA has higher thermal expansion mismatch will introduce another level of complexity involving the use Column Grid Array.
- Our work will address the following challenges:
 - a. Component-level reliability validating life prediction models of PBGAs under HAST, temperature cycling and Moisture sensitivity level tests.
 - b. Robust assembly Processes at Honeywell, KC (Honeywell, KC is trusted production site for DOE and DOD)
 - c. **Critical** - Solder joint inspection technique or method to assure acceptance criteria.
 - d. Solder joint reliability and life prediction models.

Advanced Packaging/Board-Level Reliability - Background

FY2010 Goals

- 1) Identify the initial components and the Board or MCM technologies for the study.
- 2) Literature search the reliability studies done on relevant Board-level Reliability.
- 3) Plan the tasks for FY 2011 and beyond.
- 4) Preliminary reliability testing of PBGAs components and board-level with Plastic BGAs which has been started for DOE use.

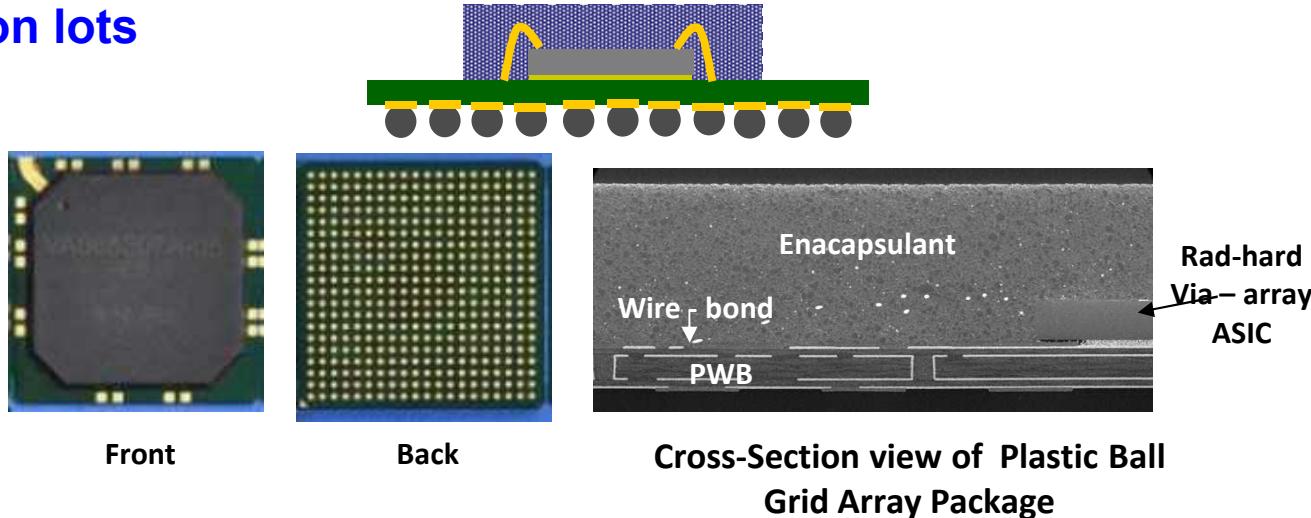
Component/Packaging Identified for the initial Study


Component: Structured ASIC (Via Array) IC Fabricated in SNL.

Packaging: Plastic Ball Grid Array packaged by injection Molding at i2A Technologies, CA

Package Size: 27 mm x 27 mm x 1.53 mm (without solder ball height)

of I/Os: 400


Eutectic Sn/Pb Solder balls: 0.76 mm diameter on 1.27 mm pitch

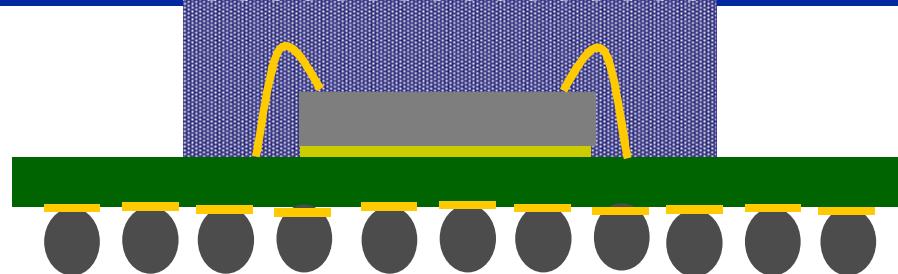
Component-Level Packaging and Testing

1. Component Packaging production at i2a Technologies – we have done 3 production lots

2. Component level Reliability

JEDEC Standard Tests:

1. Temperature Cycling
2. HAST
3. Moisture sensitivity
4. DPA

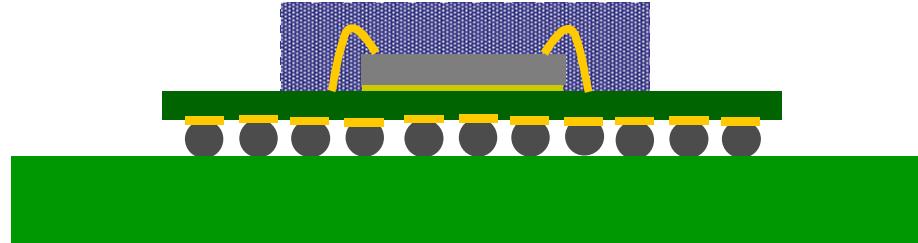

Preliminary Report on the Qualification plan in Other Enterprises

Standard	Source	Moisture Sensitivity Test	Temp Cycling	Unbiased HAST	Comments
JEDEC	Internet	Moisture Sensitivity Level, level 3IPC/JEDEC J-STD-020	-55 to +125°C, 700 cycles	130°C/85%R.H., 96 Hours	Industry Standard
Current SNL Qualification		Moisture Sensitivity Level, level 3IPC/JEDEC J-STD-020	-55 to +125°C, 1000 cycles	130°C/85%R.H., 350 Hours	
Endicott Interconnect	Internet	Not shown	-55 to +125°C, 1000 cycles	130°C/85%R.H., 96 Hours	
STAT ChipPAC	Internet	Moisture Sensitivity Level, level 3IPC/JEDEC J-STD-020	-65 to +150°C, 1000 cycles	130°C/85%R.H., 96 Hours	
Amkor	Internet	Moisture Sensitivity Level, level 3IPC/JEDEC J-STD-020	-55 to +125°C, 1000 cycles	130°C/85%R.H., 96 Hours	Monitoring Key Indices

Component – Level Evaluation

Preliminary Qualification Data

	Test Type	Batch 1		Batch 2	
		Sample Size	Results	Sample Size	Results
1	Initial Electrical Test	453	8 Failed (1.8%)	353	29 Failed (8.2%)
2	Temperature Cycling -55 +125 oC	77	Passed 1000 Cycles	77	Passed 1000 Cycles
3	HAST 130oC, 85% R.H.	77	Passed 350 Hours	77	Passed 168 Hours, failed 350 hours
5	MSL Level 3	11	Passed	11	3 Failed (27.2%)
6	DPA	5	Passed	10	Passed


No Smoking Gun yet Identified for batch 2 Failures

Work in progress

Board – Level Evaluation

Preliminary Plan

Three main goals:

1. Assure robust assembly process
2. Solder joint inspection and acceptance criteria
3. Solder joint reliability testing

To Address these Issues, we are initiating work to:

1. Design and fabricate the **daisy Chain** version of **IC** and **package** (Already started)
2. Use these Test dies to **develop robust assembly processes at honeywell, KC.**
3. Investigate **different techniques** and **criteria** to assure 'GOOD' solder joints after **assembly**. Develop an acceptance criteria.
4. **Develop reliability data and predictive lifetime models.**

Advanced Packaging/Board-level Reliability— Major Results To Date

FY10:

Component – Level Reliability Testing

- **Milestone 1:** Identified and developed the package and technology for initial study

Accomplishment:

- Identified Plastic Ball Grid array for structured ASICs for use in DOE (NW). We have obtained three production lot batches of these parts

- **Milestone 2:** Initiated preliminary qualification of the PBGA technology

Accomplishments:

- Have completed JEDEC testing on two production batches.

Board-Level Reliability Testing

- **Milestone 3:** Identified the component and Board technology for the initial study

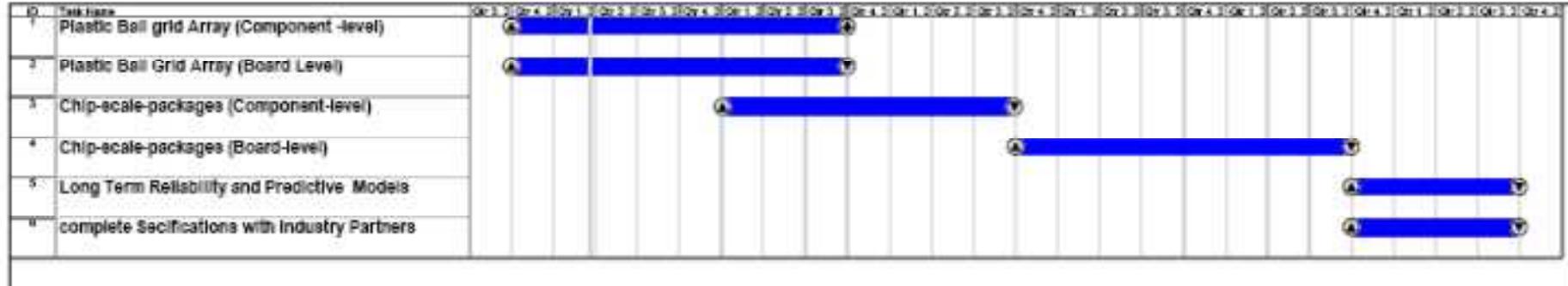
Accomplishment:

- Identified the PBGA and Polyimide-Glass Technologies for the first phase Studies

- **Milestone 4:** Design Test ICs and the Test packages

Accomplishment:

- Completed the IC daisy chain and currently designing the package.



Milestones/Deliverables for FY11-15

Task #	Milestones/Deliverables	Date	Metrics or Exit Criteria	DoD / DOE Linkage
1	<ul style="list-style-type: none">a. Complete JEDEC reliability testing of three production lots of PBGA packages.b. Complete Design and fabrication of Test PBGA packages for board-level reliabilityc. Identify other adv.packaging components (e.g. CSP) for insertion in DOE/DOD systems	1Q11	Report	AMRDEC/SNL
2	<ul style="list-style-type: none">a. Complete Component-level reliability testing of PBGA packages.b. Complete the development of the assembly processes for PBGAs on Polyimide-glass boards.c. Procure components for component-level testing of CSPs.	3Q11	Report	AMRDEC/SNL
3	<ul style="list-style-type: none">a. Complete the documentation and specification for solder acceptance criteria for board-level assembly of PBGAs.b. Initiate the reliability testing of CSPs.	4Q11	Report	AMRDEC/SNL
4	<ul style="list-style-type: none">a. <i>Complete the PBGA board-level reliability testing and predictive life-time models</i>b. <i>Complete the component-level testing of CSPs.</i>	4Q12	Report	AMRDEC/SNL
5	<ul style="list-style-type: none">a. <i>Complete the CSP board-level assembly and reliability testing</i>b. <i>Complete the predictive life-time models for CSP assemblies</i>	1Q13-4	Report	AMRDEC/SNL
6	<ul style="list-style-type: none">a. <i>Complete the long-term reliability testing and predictive life-time models for PBGAs and CSPs.</i>b. <i>Complete the development of the specifications for PBGAs and CSPs with industry partners</i>	3Q15	Report	AMRDEC/SNL

Advanced Packaging/Board-level Project Plan FY11-15

