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ABSTRACT

Surrogate model development is a key resource in the scientific modeling community for
providing computational expedience when simulating complex systems without loss of
great fidelity. The initial step to development of a surrogate model is identification of the
primary governing components of the system. Principal component analysis (PCA) is a
widely used data science technique that provides inspection of such driving factors, when
the objective for modeling is to capture the greatest sources of variance inherent to a
dataset. Although an efficient linear dimension reduction tool, PCA makes the
fundamental assumption that the data is continuous and normally distributed. Thus, it
provides ideal performance when these conditions are met.

In the case for which cyber emulations provide realizations of a port scanning scenario,
the data to be modeled follows a discrete time series function comprised of monotonically
increasing piece-wise constant steps. The sources of variance are related to the timing and
magnitude of these steps. Therefore, we consider using XPCA, an extension to PCA for
continuous and discrete random variates. This report provides the documentation of the
trade-offs between the PCA and XPCA linear dimension reduction algorithms, for the
intended purpose to identify key components of greatest variance in our time series data.
These components will ultimately provide the basis for future surrogate models of port
scanning cyber emulations.
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1 Introduction

In monitoring the behavior of physical or emulated computer experiments,
one is often interested in the number of certain events over time. For ex-
ample, quantities of interest may include the number of ports scanned, the
number of times a website is pinged, the number of alarms or alerts, the
number of packets sent per second, etc. While some quantities of interest
may be real numbers, the ones listed and many others are discrete with
binary or integer values.

In the progress of computer experiments, one records these quantities at
some frequency (e.g., every second). This results in long vectors containing
time series data characterized by discrete values such as the number of pack-
ets sent per second over a ten thousand second time interval. Computer ex-
periments often exhibit an inherent stochastic behavior due to: randomness
in timings of initializations, small changes in orderings of system calls, etc.
Thus, if an experiment is repeated with all controllable conditions exactly
the same, one run may result in a time series vector that differs significantly
from another time series vector generated from an independent run with the
same experimental configuration.

Our interest in this work is to understand how much of the inherent ran-
domness observed in time series vectors of discrete quantities from computer
experiments, or emulations, can be explained by a few underlying compo-
nents. For example, if we run a cyber emulation 100 times and take the time
series value at time, say, t = 2374 seconds, we may see realizations of this
value at this particular time slice which differ significantly across the 100
replicates. Our goal is to determine if there is an underlying representation
which can capture this variability and explain it with a relatively few vec-
tors, called principal components. This process of explaining a large data set
with a small number of components is common practice in the data sciences
and is referred to as dimension reduction.

The most versatile and widely used method for dimension reduction is
known as Principal Component Analysis (PCA). The statistical theory for
PCA has been established for decades [[12] [5] [9]] but assumes that the
vectors of data are all continuous valued. Recently, researchers at Sandia
have developed a version of PCA called XPCA that can inherently handle
discrete variables [1]. We present a brief overview of the theory for PCA and
XPCA in Section 2. Then, we apply PCA and XPCA to several datasets that
were generated as part of the SECURE Grand Challenge LDRD project.
These datasets involve 1000 replicates generated by cyber emulations of
various scanning scenarios, where the quantities of interest are realized as
the number of closed, open, and filtered ports found. These quantities are
all discrete values. A comparison of results of applying PCA versus XPCA
are presented in Section 3. We provide a summary discussion and analysis
of the differences in these two dimension reduction methods when applied



to cyber emulation experiment data in Section 4.

2 Dimension Reduction

The field of study related to dimension reduction is quite extensive. The
key to determining when one method is more appropriate than an alterna-
tive method relies on both an understanding of the data and the intended
purpose for which the latent space (i.e. lower-dimensional transformation)
will be used. In our case, the data is a time series of discrete values that are
monotonically increasing, replicating the behavior of a piece-wise constant
step function. For the use case of a latent space representation, we need to
first summarize the cyber emulation under consideration. Although we are
focused on emulating an attacker scanning for vulnerable ports, this is only
one part of a larger attack chain in which the defender tries to thwart the
attacker with various defensive strategies. Thus, the target exemplar that
is the focus of our report, is only a small component of the overall mod-
eling challenge that can be quite computationally expensive to implement.
Finding efficiencies here, without loss of fidelity, will buy us computational
gains as we continue to layer in more complexities. Given the redundancy
in a piece-wise constant step function, we know that we can reduce the time
series to the points for which a step occurs. The timing of these switches
and the size of a jump at each step is subject to the random nature of the
order for scanning the ports, probability of packets dropping, and additional
external emulation conditions. The details for these sources of variance will
be provided in Section 3. Here we want to emphasize the goal of model-
ing the components of the time series that contribute the greatest variation
in our realizations. Identifying a linear dimension reduction method that
captures the greatest variance in the experiments and inherently manages
discrete realizations is ideal.

The discreteness of data led us to exploring the use of XPCA. As an
extension of PCA, we thought it would be best to baseline our understand-
ing and use of XPCA in comparison to the widely used traditional PCA
method. In this section, we provide the fundamental principles of PCA and
the extensions that XPCA provides for discrete realizations, with a brief
summary for how these methods are applied to time series data.

2.1 PCA: Principal Component Analysis

Principal Component Analysis is a dimension reduction technique that has
been commonly used for exploratory data analysis for decades. The idea is
to reduce the dimensionality of the data while retaining as much of its vari-
ability as possible. It is credited to Karl Pearson [2] and Harold Hotelling [4].
Two excellent books on the topic are Principal Component Analysis [5] and
Functional Data Analysis [9]. The review article by Jolliffe and Cadima [6]



provides an overview of PCA summarizing the method and some of its recent
applications in data science.

The idea in PCA is to construct a linear representation of variable values
to highlight the variance present in the data. The exposition used in this
section follows that of Ramsay and Silverman [9]. We assume the data are
in a matrix X with N rows corresponding to N sample observations and L
columns corresponding to L variables of interest. To find the first principal
component, define f; as a linear combination of variable values:

L
fi = Zﬁjxm = X(L:)B, fori=1...N. (1)

J=1

The goal is to find the set of L x 1 coefficients 81 such that the variance of
fi across all rows is maximized.
The optimal 5; when applied to all observations will result in a vector
Y7 of dimension N x 1:
Y1 = Xpi. (2)

This vector identifies the strongest and most important mode of variation. [9]
The process is repeated with subsequent steps, to determine the sets of
coefficients 39, 3, .... that define the second, third, etc. most important
modes of variation. The coefficient vectors § are called loadings, and the
elements of the Y vector are called factor scores. The principal components
are given by X1, X33, etc. [6]. In summary, the principal components can
be represented by the system:

Y = X8. (3)

To provide more details and a common notation, we outline the typ-
ical use of PCA as it was applied in this report, noting that steps 2—
4 are inherent to the Python implementation of PCA provided by the
sklearn.decomposition library [8]:

1. Format the data and create the data matrix, X. We assume the data
come from a number of samples N generated from a process. Typically,
we might have N samples from physical experiments, observational
studies, or computational simulations. In the situation described in
this report, the samples come from a computer emulation called min-
imega.

Each sample is a vector; there is a sequence of data for each sam-
ple. This is sometimes called functional data analysis [9], especially
when the data represent functional values over time, also called time
series data. If each sample contains a data vector of length L, the
matrix dimension of X is NV x L. The objective of our dimension re-
duction analysis is targeted on the variable dimensions, L, where the



population statistics for each variable dimension is inherent in the N
observations of each.

. Center the data. This involves taking the mean of each column of X
and subtracting it from that column as shown in Equation 4, where X,
denotes the centered matrix, and X;; denotes the data matrix value
at row ¢ and column j.

. Generate the covariance matrix of the centered data matrix X, and
take the eigendecomposition of it. The covariance matrix of the nor-
malized data is calculated as:

X X,
V= N (5)

One then performs a singular value decomposition of V' to generate
the eigenvectors 3. [5] Typically, the process is only carried out until
the M principal components are identified that account for a certain
percentage of the variance. The first eigenvector (with the largest
eigenvalue) of V' corresponds to (1, the second eigenvector of V' cor-
responds to f2, etc. Note that the full 3 can be of size L x L but
typically is smaller, L x M.

To determine M, typically one examines the eigenvalues of the covari-
ance. [6] The trace (sum of the diagonal elements) of the covariance is
the sum of the variances of the original L variables. The percent to-
tal variance explained by principal component k is given by A /tr(V),
where )y, is the k" eigenvalue corresponding to principal component
k. By summing the first M eigenvalues and dividing by the trace of
the covariance matrix, one can obtain the total variance in the data
explained by the first M principal components. Often, a few principal
components can explain 95% or more of the variance, which demon-
strates the dimension reduction from L variables to M components.

. To perform a prediction, we can simply multiply the factor scores by
the loadings and add back the mean vector.

Xpred = YIBMT + X (6)

A final implementation note: the singular value decomposition is usually
not performed on the covariance matrix but on the centered data matrix.
Some care must be taken in this case to ensure the proper normalization of
the eigenvalues and variance information.
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2.2 XPCA: Extending PCA to Combinations of Discrete and
Continuous Variables

The standard PCA assumes the data has a normal multivariate distribu-
tion. That is the matrix are assumed to be continuous and each column has
a normal marginal distribution. The work of Clifford Anderson-Bergman,
Tamara Kolda, and Kina Kincher-Winota [1] extends PCA to account for
heterogenous variables including continuous, binary, and ordinal or discrete.
They do this by modifying the semiparametric copula-based principal com-
ponent analysis (COCA) method [3], which combines a Gaussian copula
with nonparametric marginals. A copula is a way to specify dependence
amongst random variables. [7]

In [1], the authors propose a new extended PCA (XPCA) method that
uses a Gaussian copula and nonparametric marginals and accounts for dis-
crete variables in the likelihood calculation. The authors use empirical distri-
bution functions for the nonparametric marginals and derive the likelihood
function and a fitting algorithm which can be applied to estimate the eigen-
vectors and eigenvalues. The XPCA approach is similar to PCA in that it
can be used to find latent structure in the data and perform dimensional-
ity reduction. In the application of interest in this report, all variables are
discrete, not a mix of continuous and discrete variables.

2.3 Time Series Dimension Reduction

In time series data, the variables for each observed sample point are simply
the points in that time series. There can be issues with discretization of
time series data. Chapter 8 of [9] is titled “Principal components analysis
for functional data.” It has a nice presentation of how to interpret the
principal components for time series as well as many practical numerical
implementation details.

The objective in port scanning cyber emulation experiments is to track
an attacker’s knowledge at a particular time, resulting in long vectors con-
taining time series data characterized by discrete values. Therefore, not only
do we need to exercise caution with PCA methods used on discrete realiza-
tions, but considerations of functional data analysis are also fundamental to
our approach.

3 Cyber Emulations of Port Scanning

In emulation of cyber attacks, port scanning is a key phase in the develop-
ment of an attacker’s knowledge relating to vulnerabilities (e.g., open ports)
in a cyber network. Once an attacker gains such knowledge they will then
continue with the execution of their attack by distributing payloads to the
vulnerabilities they have just learned there is access to. Through this in-
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spection, each key component of an attacker threat chain is critical to the
validation of cyber threat modeling. Details for the validation methods used
by additional team members on a parallel effort can be found in [11]. It is the
focus of our efforts outlined in this report to explore methods for obtaining
computational efficiency for modeling the emulation of port scanning.

In this section, we provide a brief description of the emulation exper-
imental design for port scanning. For simplicity and control of additional
sources of variance, these experiments are independent from the intrusion
detection system (IDS) emulations. Taking the resulting realizations gener-
ated by the scanning experiments, we then provide a detailed comparison
between traditional PCA and XPCA in providing the top components that
capture the greatest variance of the system while maintaining structural
fidelity in the latent space representations.

3.1 Experiments

Port scanning is a pivotal stage of the attack chains in cyber security. For
this reason, we focused our analysis on the results of the emulation exper-
iments that generate realizations for two distinct port scanning strategies.
The first is considered a “Slow & Stealthy” strategy where the attacker
prioritizes avoiding detection and forgoes any risks related to the time it
takes to learn each new vulnerability. In the slow and stealthy approach,
the attacker would choose a host-group size of 4 parallel ports probed si-
multaneously and a delay of 10 seconds. Alternatively, the second strategy
is referred to as the “Fast & Loud” approach. This approach, the attacker
prioritizes expediency at the risk of early detection and consequently misses
the opportunity for learning more vulnerabilities in the network. In the fast
and loud strategy, the attacker would instead choose to use a host-group
size of 6 and a scanning delay of 5 seconds.

We provide Table 3.1 that maps the scanning scenario type to the long
name we use for archiving each of the experiments. Table 2 provides the
summary of parameters for each aspect of the experiments.

’ Experiment Type | Reference Name

Slow & Stealthy 20190923 _c¢189 _parallel eab_demo
Fast & Loud 20190925_c24 _parallel_eab_demo

Table 1: Experimental Run Reference Names: The experimental type
allows us to reference quickly the type of experiment that was run for the
port scanning problem. The long name captures the date of the experiment,
the node it was run on, whether is was run in parallel, and the targeted
objectives for running the experiments.

As described by Vugrin et. al., the scanning experiments are performed
in a virtual test bed, run on the open source virtual machine management
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software minimega [11]. For automated experiment scenario management,
ScOrch is a Sandia developed python package that is integrated with min-
imega to provide efficient instrumentation and data extraction. For emulat-
ing a scanning scenario, the popular open source utility Nmap is used to
scan hosts and learn what services are available on each [10]. With these
tools, we are able to emulate a port scanning scenario with 24 Remote Ter-
minal Units (RTUs) represented by: 4 open, 8 closed, and 12 filtered. In
this experiment the objective is to simulate a CRASHOVERRIDE attack.
In this scenario we assume that the attacker already has remote access on an
Industrial Control System (ICS). With control over a Supervisory Control
and Data Acquisition (SCADA) machine (e.g., an engineering workstation),
the attacker scans for open ports for which they can then deploy a system
override protocol. Probing ports at random, the attacker is able to learn
what type of port they have targeted by the ssh response that is return
(open or closed) or the lack of a response (filtered or dropped).

In a real-world scenario, the response from a scanning probe can be
affected by external interference (e.g., background traffic). To emulate the
effects of external interference resulting in a packet loss, we assume a 10%
chance that a response to a scanning probe will be dropped. Therefore, the
realization that no response is sent back from a probe can not be assumed
to be a filtered port; there is a possibility it was either an open or closed
response that was lost when a packet was dropped. To mitigate the loss
of potentially valuable information, an attacker will consider resending the
probe. At the onset of the scanning, a decision will be made for the number
of times to resend a probe. Assuming the packet loss is an independent
event for each probe, using just one resend lowers the attacker’s likelihood
of missing an open port from a 10% chance to a 1% chance. However, this
comes with an increased computational cost for the attacker as well as an
increased probability that the attacker will be detected.

The second source of random behavior is emulated by permuting the
order of the ports to be scanned. The order that an attacker will scan
the ports will determine if an open port is found on the first probe, or
maybe not until the 10" or the 18" probe. Therefore, we run 1000 (or
more) emulations generating a time series of realizations representing the
cumulative number of each type of port found at time £. Since a probe
can result in no response, which can occur from sequential packet losses, we
represent an attacker’s knowledge of a system at time ¢ to be the number of
known open, closed, and inconclusive ports.

For quick reference, we provide Table 2 listing the key parameters for
the emulytics scanning experiments.

For simplicity, we have reported only the pertinent details of the emu-
lytics experiments relative to the port scanning scenarios in support of our
analysis on dimension reduction. For those that are interested in learning
more about the the cyber threat modeling we again direct the reader to [11].
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Parameter Value

Packet loss 10%
Network Nodes 24 RTU:

4 open, 8 closed, 12 filtered

Parameter Value
Nmap Number of resends 1

Probe timeout 0.5 seconds

Parameter Value
Slow, Stealthy | Host-group 4

Scan-delay 10 seconds

Parameter Value
Fast, Loud Host-group 6

Scan-delay 5 seconds

Table 2: Scanning Emulation Parameters

3.2 Evaluation of Dimension Reduction

To initiate the discussion for the dimension reduction analysis, we provide a
further description of data resulting from the cyber emulytics scanning ex-
periments. As mentioned in the previous section, the realizations generated
by each of the 1000 runs of the experiment are a time series tracking the
knowledge an attacker has of the network at each time step. It is impor-
tant to note that although we will be analyzing a time series with a refined
uniform mesh, this is not the format of the results tracked by ScOrch. In-
stead, during the run for the scanning scenario, the pcap file generated by
ScOrch captures the timestamp and response of each port that is probed.
Although this is sufficient for representing the knowledge obtained by an
attacker at each time ¢, it does not provide the appropriate data structure
to validate against a mathematical model for scanning. Therefore, the de-
cision was made to generate the results of scanning to align with the same
time discretization that is utilized by a mathematical model!. The results
are a discrete time series of piece-wise constant step functions, where each
uniform time step captures information in the pcap file documenting when
knowledge about a port is obtained. For convenience, we provide Figures
1 - 3 for examples. These are all pulled from the fast and loud scanning
strategy. Each of the port types are plotted independently from each other,
since we will focusing the dimension reduction analysis on each port type as
an independent analysis.

These example plots were selected from a handful of realizations to
demonstrate different behaviors. The time series in example 1 in Figure 1

!For more information regarding the mathematical model of scanning and the valida-
tion of the cyber emulations, the reader can again reference Vugrin et. al. [11]
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provides an illustration of a simple example that directly produces the be-
havior that is expected from the port scanning situation. Next, example 2
in Figure 2 provides a nice example for a closed port results in two sequen-
tial packet drops. In this situation, the knowledge obtained at the end of
the scanning process is 4 open, 7 closed, and 13 inconclusive ports (note
the correct behavior is supposed to be 4 open, 8 closed, and 12 inconclusive
ports). Another interesting observation is that the attacker (lucky in this
realization!) would learn of 2 open ports (50% of the vulnerabilities) from
their first probe, noting that 6 hosts are used in this situation. Finally,
example 3 in Figure 3 illustrates a realization for which the attacker will
not learn about a single open port until about a third of the way into the
scenario. At that time, they learn of three (out of four) open vulnerabilities.

Now consider the 1000 experimental runs that were used to generate
1000 time series realization for each of the three types of ports. The length
of the time series will depend on the scanning strategy. For the slow and
stealthy strategy, the attacker uses 4 hosts and a delay of 10 seconds. In
this case, it will take approximately 175 seconds to scan the 24 RTU net-
work. Alternatively, when the attacker uses a fast and loud strategy, the 6
hosts and 5 second delay will get the job done in approximately 60 seconds.
Therefore, the original time series data dimensions are strategy specific. The
data structure is a matrix where each row represents each of the 1000 re-
alizations from the 1000 emulytic runs for the experiment. The columns of
our datasets capture the original time series dimensions. Depending on the
strategy, this will be either 60 seconds or 175 seconds, where each dimension
represents one second in that time series.

15
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Given the redundancy in the time series datasets that inherently cap-
ture such large ranges of variability, we now focus on the evaluation of a
latent space representation that captures the majority of the variance with
a minimal number of components.

As we mentioned earlier, we focused our exploratory data analysis on
using XPCA in comparison to traditional PCA. This analysis involves the
linear dimension reduction methods (1. PCA, and 2. XPCA),two different
scanning scenarios (1. slow and stealthy, and 2. fast and loud), with three
classes of time series realizations relating to each of the three port types (1.
open, 2. closed, and 3. inconclusive). For each combination, we calculate
the variance explained for the first principal component and the contribu-
tions from each of the subsequent components to capture the total variance
explained up to the tenth component. As a primary objective, we focused
on the comparison in total variance explained between PCA and XPCA.
Figures 4 and 5 provide these results, where the shapes in the plots are used
to indicate the port type and the colors distinguish PCA versus XPCA. The
strategies are plotted separately given the distinction in their original dimen-
sion representations. In both strategies, we see that the variance explained
in the first principal component for XPCA is drastically lower than that of
that for PCA. This was an unexpected result and one that requires more
research and attention to determining the discrepancy in the two methods
that results in such distinction.

In Figure 4 we plot the total variance explained for the slow and stealthy
strategy (175 original dimensions). This plot shows that the PCA compo-
nents will converge close to 100% variance explained within the first 8-10
components. Alternatively, since we truncate the analysis at 10 components,
we have yet to see this convergence in the XPCA components.

In consideration for the more aggressive scanning strategy, Figure 5
shows that both linear dimension reductions converge close to 100% variance
explained within the first 10 components. Again, we see the convergence to
full variance explained occurring more quickly with traditional PCA compo-
nents. If capturing variance explained in the fewest number of components
was our only objective, then it appears that traditional PCA outperforms
XPCA.

To assess the fidelity of the latent space representation, we performed
dimension reduction for each method at 6-dimensions and 10-dimensions
then evaluated the reconstruction error back in the original time dimension.
To measure the reconstruction error, we take the vector difference between
the reconstructed time series with the original time series and evaluate the
2-norm of that difference. The results of this analysis have been summa-
rized in Tables 3 - 6. Aligned with the corresponding variance explained,
we provide the minimum, maximum, and mean reconstruction error across
all 24 targeted analysis. For the 12 scenarios for which we reconstructed
the original time series from n XPCA components, we are able to obtain
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Figure 5: Fast & Loud Variance Explained

perfect reconstruction. In comparison to traditional PCA, the maximum re-
construction error from XPCA is approximately half that of the maximum
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reconstruction error from PCA.
For a more detailed summary of all of the experiments and the corre-
sponding reconstructions, we provide comparison plots in Appendix A.

‘ Slow & Stealthy H Open ’ Closed ‘ Inconclusive ‘

| Variance Explained || 95.77% | 95.63% | 95.77% |
Min 0.5964 | 0.7741 0.4948
Mean 1.7552 | 2.6293 2.5299
Max 7.1306 | 9.7563 13.039

‘ Fast & Loud H Open ‘ Closed ‘ Inconclusive ‘

| Variance Explained | 98.66% | 98.22% | 98.66% |
Min 0.0235 | 0.1085 0.0105
Mean 0.4517 | 0.7616 0.1458
Max 3.5327 | 5.5633 7.3703

Table 3: 6-Dimension PCA Summary: variance explained and recon-
struction error (min, mean, max), for each experimental run (low-slow ver-
sus high-fast) accounting for all three categories of ports (open, closed, and
inconclusive)

‘ Slow & Stealthy H Open ’ Closed ‘ Inconclusive ’

| Variance Explained || 74.83% | 75.44% | 70.56% |
Min 0 0 0
Mean 0.18396 | 1.3698 1.9203
Max 6.3246 | 10.9545 13.0767

‘ Fast & Loud H Open ‘ Closed | Inconclusive ‘

| Variance Explained || 89.58% | 87.96% | 91.35% |

Min 0 0 0
Mean 0.0424 0.05 0.1
Max 2.2361 | 5.1962 7.8102

Table 4: 6-Dimension XPCA Summary: variance explained and re-
construction error (min, mean, max), for each experimental run (low-slow
versus high-fast) accounting for all three categories of ports (open, closed,
and inconclusive)
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‘ Slow & Stealthy H Open ’ Closed ‘ Inconclusive ‘

| Variance Explained || 98.68% [ 98.47% |  98.68% |
Min 0.0617 [ 0.1214 |  0.0377
Mean 0.7725 | 1.3402 1.0475
Max 6.2919 | 8.1558 |  8.1489

‘ Fast & Loud H Open ‘ Closed ‘ Inconclusive ‘

| Variance Explained || 99.99% | 99.97% |  99.99% |

Min 0.0005 | 0.001 0.0021
Mean 0.0088 | 0.021 0.0202
Max 1.4464 | 1.7595 2.5931

Table 5: 10-Dimension PCA Summary: variance explained and re-
construction error (min, mean, max), for each experimental run (low-slow
versus high-fast) accounting for all three categories of ports (open, closed,
and inconclusive)

‘ Slow & Stealthy H Open ‘ Closed ‘ Inconclusive ‘
| Variance Explained || 88.48% | 89.03% | 87.97% |

Min 0 0 0
Mean 0.0455 | 0.1258 0.3048
Max 4.4721 | 7.746 8.9443
‘ Fast & Loud H Open ‘ Closed ‘ Inconclusive ‘
| Variance Explained [| 99.34% [ 99.07% [ 98.07% |
Min 0 0 0
Mean 0.002 0.009 0.003
Max 2.2361 | 5.1962 7.8102

Table 6: 10-Dimension XPCA Summary: variance explained and re-
construction error (min, mean, max), for each experimental run (low-slow
versus high-fast) accounting for all three categories of ports (open, closed,
and inconclusive)
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4 Conclusion

In this report, we compare PCA with XPCA on discrete value time series
data from port scanning emulation experiments. The objective for this anal-
ysis is to derive a lower dimensional representation for a discrete time series
function composed of piece-wise constant steps. The PCA or XCPA can
find the key principal components that capture the greatest variance in the
stochastic experimental realizations. With these components, we can then
design a surrogate model to capture the random behavior that is the driving
factor for that variance.

Our main finding of this work is that PCA performs better with respect
to variance explained but worse with respect to reconstruction error on these
discrete time series data sets. Our original goal was to target a lower dimen-
sional representation that captures a majority of the variance and drops a
marginal amount of variance based on a predefined threshold. It seems that
traditional PCA can do this job with fewer components, but does so at the
risk of introducing loss of fidelity when we examine the reconstruction error.
Our assessment is that XPCA requires more components but then is able to
do a better job than PCA because there is not “noise” from the sum of con-
tinuous components which do not quite add up to the discrete values in the
PCA reconstructions as shown in Figures 6-17 in the Appendix. Therefore,
the XCPA is better suited for obtaining acccurate reconstructions of time
series data to target a surrogate model that efficiently captures the salient
random behavior with only marginal loss of fidelity.

The next steps will be to look into the computational complexity trade-
off between the algorithms, relative to the two objectives of reconstruction
error and variance explained.
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A Reconstruction Visualizations

In addition to understanding the variance explained, we also emphasize the
reconstruction error comparison between PCA and XPCA. Although a table
with summary statistics is a useful reference for seeing these distinctions at
a high level, we have provided here the direct comparisons between the
emulytics experiment results compared to the reconstructions derived from
each of the PCA and XPCA latent spaces. These tell a more comprehensive
visual story for how the attack strategy for scanning, as well as the choice
of dimensions, results in differences between PCA and XPCA.
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