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ABSTRACT

Transition metal dichalcogenides (TMDs) such as MoX, are known to undergo a structural phase
transformation as well as a change in the electronic conductivity upon Li intercalation. These
properties make them candidates for charge tunable ion-insertion materials that could be used in
electro-chemical devices for neuromorphic computing applications. In this work we study the
phase stability and electronic structure of Li-intercalated bilayer MoX, with X=S, Se or Te.
Using first-principles calculations in combination with classical and machine learning modeling
approaches we find that the energy needed to stabilize the conductive phase decreases with
increasing atomic mass of the chalcogen atom X. A similar decreasing trend is found in the
threshold Li concentration where the structural phase transition takes place. While the electronic
conductivity increases with increasing ion concentration at low concentrations, we do not observe
a conductivity jump at the phase transition point.
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1. INTRODUCTION

Autonomous vehicles (AVs) serve our national energy security goals as they offer efficiency
opportunities that could enable significant fuel consumption reductions. Unfortunately, with the
current technology the electrical power associated with on-board sensing or calculations for
driving decisions could reach quite large values of the order of kW. This is a consequence of the
fact that Si technology uses about a pJ/operation.

Neuromorphic computing is a novel computing architecture that hold the promise for advanced
computing with high energy efficiency, while being well suited for artificial intelligence (Al)
tasks. Neuromorphic computing can have a profound impact for securing national economic
interest in computation for autonomous vehicles and other sectors that require edge computing.
One route for realizing novel devices for neuromorphic computing is to leverage ionic/electronic
transport properties in electro-chemical devices. However, a major roadblock in the development
of electro-chemical devices is the lack of understanding the fundamental mechanisms that leads to
conductivity changes in the ion-insertion material used in neuromorphic devices.

Recently, a novel electro-chemical device called Li-lon Synaptic Transistor for Low Power
Analog Computing (LISTA) has been pioneered at Sandia by Talin et al. [2]. LISTA is 3-terminal
redox transistor which allows ion-insertion into a channel by applying a small gate voltage.
Through reversible Li intercalation, the channel electronic conductance (synaptic weight) can be
gradually changed. Hundreds of conducting states can be modulated in a controllable fashion
with switching times (< us) comparable to those measured in biological synapses [3, 4] and much
lower power (< fJ/operation [2]) than Si-based CMOS transistors.

In order to take the proof-of-concept LISTA device to scalable technology, it is important to
understand how it works at a fundamental level. Despite progress on the experimental front, the
mechanisms that leads to conductivity changes are not fully understood. In particular it is not
clear how the structural and electronic properties of the ion-insertion material evolve as a function
of ion concentration. For example, do ions intercalate into the channel in an ideal fashion, i.e
gradually and with uniform concentration, or rather they form co-existing domains of insulating
and metallic phases with sizes that depends on gate voltage? This and other similar questions
regarding the equilibrium and nonequilibrium intercalation regimes can be addressed
computationally via mesoscopic modeling approaches [1]. However, such models require
knowledge of the phase stability diagram as well as the electronic properties of the ion-insertion
materials as function of uniform ion concentration. Such knowledge can be obtained via
first-principles studies.

From a materials point of view, quasi-two dimensional layered systems are very attractive due to
their layered structure. Indeed, they can be very useful in electrochemical devices because the
weak van der Waals interaction between layers facilitates ion intercalation. As such, layered
systems can find applicability such as e.g. electrode materials for batteries with high energy
storage. A particular layered material class is represented by transition metal dichalcogenides
(TMDs) i.e. MoS,, MoSe; or MoTe,. These materials undergo a structural phase transformation
upon ion intercalation. This transition is accompanied by a change in the electronic conductivity,
which makes them candidates for charge tunable ion-insertion materials in electro-chemical
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devices for neuromorphic computing applications. Moreover, two-dimensional few-layer TMDs
are of interest for small-scale device fabrication which is desirable given that the write energy per
operation increases with channel size (resistance) [2]. While there is a large body work on ion
intercalation in bulk TMDs [5, 7, 8] or ion adsorption on monolayer TMDs [10], fewer studies
have focused so far on few-layer TMDs [9] such as bilayers[11, 12] and more such studies are
welcome.

In this work we perform a first-principles based study of the phase stability and electronic
structure evolution of Li ion-intercalated bilayer TMDs. We hypothesize that ab initio Density
Functional Theory (DFT) can be integrated with machine learning to efficiently predict the phase
stability and electronic structure evolution of ion-insertion layered materials. We explore this path
together with the more established cluster expansion method to obtain thermodynamic properties
and ultimately the phase stability diagram.

2. THEORETICAL FRAMEWORK

TMDs may take several polytype forms, such as the semiconducting 2H phase, metallic T phase
and semimetallic T phase. In few-layer TMDs, the metallic T phase is however unstable due to a
Peierls distortion that dimerizes the metal atoms leading to the formation of the T" phase. Thus,
we consider only two competing phases, namely 2H and T’ (see fig. 1-1). A large fraction of our
computational effort consists on estimating the free energy of these competing phases, from which
a phase diagram will be predicted. Ultimately, this allows us to make predictions regarding the
electronic conductivity of Li ion-intercalated bilayer TMDs as function of ion concentration.

2.1, Free energy expressions

To motivate our methodology a brief review of fundamental statistical mechanics is needed. The
canonical/Helmholtz (NT) free energy is

F(l’lLi, T) = kBTll’l(Z(I’lLi, T)) (1)

where kp is Boltzmann’s constant, 7" is temperature, and

E;
Z(ny;, T) = Zexp <_kBT) 2)

is the partition function. For brevity we have suppressed the dependence of the free energy on the
system stress as we focus on fully relaxed systems i.e. at zero stress. In Eq. (2) the sum is over all
possible configurations with np ; lithium atoms, and the energy E; is energy of configuration ;
relative to a chosen reference state. A minimum in F(n;) indicates the most likely concentration
of Li. The difference AF = F>yy — F1 between phases indicates which phase is more stable (and
eliminates the dependence on a reference state).
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(b) T

Figure 1-1 Atomic structure of bilayer MoX, layered material (a) 2H
phase and (b) T’ phase. Left panels: top view. Right panels: side view.
Color code for balls: Red = Mo; Yellow=X; Blue: Li.



The grand canonical free energy (uT) takes a similar form
O(u,T) = kgT In(Q(u, T)) 3)

where the partition function is

kgT

1

Qu,T) =Y exp ( Lol > Z(n;, T) 0))

In this case the sum is over all possible configurations (from ny; = O up to ny; = npax at saturation
of all low energy sites). With & the average number of Li can be computed:

exp ( {25 ) Z(ni, T)

aq) B Fmax
Q)

w5

&)

<”>MT =

The grand canonical potential informs us about how many Li reside on/in the bilayer if there is an
environmental reservoir of lithium (as in a electrochemical device) specified by the chemical
potential u.

In these free energy expressions the contribution to the entropy comes entirely from the
configurational degrees of freedom. We omit dependence on vibrational modes, electronic modes,
etc.. While the vibrational entropy can be significant, its contribution to the free energy difference
between phases is expected to be minor; the variation of the vibrational entropy across phases of
the same chemical species is typically small so that it does not affect significantly the relative
phase stability [13, 14]. Similarly, while the configurational entropy may converge slowly with
system size, its variation between chemically similar phases is expected to converge fast enough
to make it tractable to compute with feasible system/supercell sizes.

2.2, Method for obtaining total energies

To calculate the relative free energies and thus the phase diagram we need a set of energies {E;}
that sample the configurational space of each phase. We obtain these from first principles via DFT
calculations and hence are limited to small systems with a fixed number of bilayer lattice atoms
and varying number of intercalated lithium atoms. The configurational space of these small
systems can be sampled exhaustively using a surrogate model. We explored a number of
surrogate models: (a) cluster expansion, (b) an image based transfer learning neural network, and
(c) a graph convolution neural network.

2.2.1. Ab initio calculations

We calculate total energies as well as the electronic density of states (DOS) of Li ion-intercalated
bilayer TMD structures within the framework of ab initio DFT using the VASP code [15, 16]. We
use projector augmented wave (PAW) pseudo-potentials [17] and treat the exchange and

10



(a) 2H (b) T’

Figure 2-1 Side view of the atomic structure of bilayer MoSe; interca-
lated with a single Li ion. a) 2H phase. b) T’ phase. Color code for
balls: Red = Mo; Yellow=Se; Blue: Li.

correlation terms within the generalized gradient approximation with the PBE parameterization
[18]. The energy cutoff was set to 400 eV.

We consider bilayer structures where the two monolayers are rotated by 180° with respect to each
other. The translational alignment between the two MoX, monolayers is such that the Mo atoms
are vertically aligned, since we find the energy for this configuration to be the lower than for other
alignments.

We construct relatively small systems using supercells obtained by replicating in the x-y plane the
rectangular unit cell of bilayer MoX, with X=S, Se or Te. We use 4 x 2 lateral replicas with
lateral area of about 1.4x 1.2 nm? and vacuum separation along the z-direction of more than 15 A.
There are 32 Mo atoms and 64 X atoms in our supercells in the absence of ion intercalation, and
Nmax = 16 lithium atoms at saturation of the low energy sites.

There is a large configurational space associated with Li ion intercalation in between the MoX,
monolayers of the bilayer. To explore the configurational space it is sufficient to sample only
stable configurations as they carry most of the weight given that they correspond to local energy
minima hence are representative of a large number of configurations. For each phase we identify
low energy ion-intercalation sites and select the most stable one, as we find that it has an energy
several hundred meV lower than the other, metastable configurations. In the case of the 2H phase
we find that the Li ion is most stable when positioned half-way in between two vertically aligned
Mo atoms from different monolayers (see fig. 2-1a)) [12]. This results in octahedral coordination
to the X atoms (with bond length of about 2.8 A). In the T’ case the most stable Li site is not
vertically aligned with Mo while coordination with the closest six X neighbors is distorted from
the ideal octahedral case with four different bond lengths ranging from 2.72 A to 3.06 A (see fig.
2-1b). We have also checked in the MoS; case (for both phases) that Li ion adsorption yields an
energy significantly larger (by more than 100 meV) than Li ion intercalation, hence the focus of
this work is on ion intercalation.
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The Li ion-intercalation sites form a 16-site layer sublattice, i.e. there is one possible Li
intercalation site for each Mo, X4 bilayer formula unit. The Li-concentration x in the
stoichiometric formula Li,MoX; ranges from x = 0 (no intercalation, n;; = 0) to x = 0.5 at full (
ny; = 16) Li sublattice occupancy. The number of possible configurations for fixed ny; is

Nmax !/ (nLi! (Mmax — ni)!). Summing over ny; from O to 16 brings the total number of possible
configurations to 65536 per system/phase. We do not consider mixtures of phases (domains) in
the lateral (x-y) directions nor the possibility that two monolayers could belong to a different
phase.

For each of the three MoX; systems and for both 2H and T” phases we random sample the
configurational space with the number of intercalated Li ions np; spanning the entire range from 0
to nyuqy = 16. More exactly we study from first principles via DFT about 300 such configurations
approximately uniformly sampled across concentrations for each system/phase. Each
configuration is geometrically optimized by minimizing the stress tensor and relaxing the atomic
forces to better than 0.005 eV/ A. During optimization the Brillouin zone is sampled with a
4x4x1 k-point grid. Convergence in the electronic density of states of the relaxed structures is
achieved with a 10x10x 1 k-point grid size.

2.2.2. Cluster expansion method

Predicting the total energy of all possible distinct initial configurations is computationally too
intensive within ab initio DFT even for the relatively small 4 x2 supercell. To this end we employ
several models that can sample exhaustively the entire configurational space. The first we
consider is the Cluster expansion (CE) method [19, 20, 21], a classical technique based on a linear
coefficient model with a nearest neighbor expansion

where the features f, are formed from a polynomial expansion of binned nearest neighbors. Here
np is the total number of neighbors in the b-th bin. The bins we consider are annular rings with
width small enough such that they contain one type of neighbors. In a n-th order expansion f,
would be complete in powers of n, up to ncg. The coefficients ¢, are found via regression. In the
standard form, the polynomial order is set to ncg = 1. We have explored higher order
polynomials as well, i.e. ncg < 3 [22].

2.2.3. Machine learning methods

We have used several deep learning techniques such as crystal graph convolutional neural
network (CGCNN) [23] and transfer learning [24] of a pretrained image classification network.

The CGCNN formalism is based on a universal and interpretable representation of crystalline
materials. A crystallographic structure is interpreted as a graph whose nodes, corresponding to
atoms, are connected by edges, corresponding to bonds, with surrounding atoms. Each node and
edge is initialized with a vector of attributes (i.e., these could be elemental properties of a given
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Figure 2-2 llustration of how electrostatic potentials due to ions + unre-
laxed electronic orbitals can be used as input to re-trained deep neural
networks to predict total energies.
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atom and a Gaussian smeared distance of a bond). The CGCNN architecture then applies a
nonlinear graph convolution functions that iteratively update the atoms’ feature vectors with the
surrounding atoms and bonds. Critically, a pooling layer then produces an overall feature vector
for the entire crystal that satisfies invariance with respect to atom indexing (permutational
invariance) and number of atoms in the unit cell (size invariance). Training is performed to
minimize the difference between the CGCNN predicted property and, for example, DFT
computed formation energy of that crystal structure. Details can be found in [23], so we simply
write that the CGCNN function f, given parameterized weights W and crystal structure ,
provides a model for the DFT predicted energy formation energy

Eccenn = f(; W). (7N

We have also applied a transfer learning technique to an existing convolutional neural network
(CNN) originally trained on image recognition. To this end we have used googlenet, a 22-layer
deep CNN that has already learned to extract features from images. We replace the replace outer,
classification layer with a new regression layer and use transfer learning to re-train the network on
predicting energies based on images of the electrostatic potential field (see fig. 2-2).

Within both approaches the training set consists of hundreds of inputs and outputs. CGCNN uses
as input the atomic coordinates while within our transfer learning approach we use images of the
non-self-consistent electrostatic potential projected on a plane that passed through the Li-ion
layer. In both cases the output are the self-consistent DFT total energies.

3. SURROGATE MODEL COMPARISON

3.1. Monolayer MoS, 2H phase

We first compared the surrogate models using a less computationally intensive (but artificial)
system, namely an unrelaxed MoS, monolayer (ML) in the 2H form. We have generated 2550
configurations with Li ion randomly adsorbed on one face of the ML, with the possible adsorption
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sites forming a 16-site Li sublattice. The DFT calculations are carried non-self-consistently,
hence they are fast computationally but the output energies do not have physical significance.

Prior to the training process we transform total energies E into formation energies £ according to
a linear transformation:

E; = E; —ni[E (ng; = nimax) — E(n1; = 0)]/nmax — E (nz; = 0) )

This transformation reduces the energy range of the outputs by more than an order of magnitude,
from about 50 eV to about 3 eV (see fig. 3-1, which facilitates faster convergence during the
training process within the machine learning approaches.
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Figure 3-1 DFT formation energies of ML MoS, as function of the num-
ber of adsorbed Li ions per supercell.

Fig. 3-2 shows the performance of the CE method for predicting the energies of MLL MoS,. In the
standard version (ncg = 1), one achieves relatively good prediction accuracy with a mean average
error (MAE) of 36 meV. However, we find a significant improvement by increasing ncg to 2.

Fig. 3-3 shows similar results obtained via the two machine learning techniques mentioned
earlier. Panels a) and b) show the prediction error and predicted energies obtained within
CGCNN. In this case we find that the MAE is 20 meV. Panel c) shows the prediction error
obtained within the transfer learning technique for one particular retraining run which yields a
MAE of 29 meV. We find that fine-tuning within the transfer learning process yields MAE lower
than 20 meV, .i.e. on par with CGCNN. Since CGCNN is a more established technique for
predicting energies of physical systems than the transfer learning approach, we decided to use
only CGCNN for the rest of our machine learning simulations.

3.2. Bilayer MoS, T’ phase: average Li concentration as function of Li
chemical potential.

We have also compared CE and CGCNN using a realistic system, namely Li ion intercalated
bilayer MoS, (T phase). We generated 2500 configurations with Li ion intercalated in between
the monolayers and positioned randomly on a 16-site Li sublattice. The output energies were
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Figure 3-2 lllustration of the CE method applied to ML MoS,. Prediction
errors for a) ncg = 1 and b) ncg = 2. ¢) Comparison between the DFT
formation energies and those predicted within CE with ncr = 2.

obtained self-consistently within DFT, and relaxation of forces and stress was performed for each
configuration. CE ad CGCNN trained on a 80% subset of the data with the rest of configurations
being used for validation. The predicted energies were used to construct the grand canonical
potential as well as the statistical average of the number of Li ions (N) as function of Li chemical
potential. We find that differences between the two surrogate methods manifest themselves most
evidently in (N) >, thus we focus on the quantity next.

Fig. 3-4 shows (N) > vs. the Li chemical potential u for a relatively large range of y, calculated
based on energy predictions made via either CE or CGCNN. We estimated the chemical potential
in a Li-rich environment x*~""" from the DFT binding energy of elemental Li metal and find that
uli=rieh ~ _2 eV. Both CE and CGCNN predict that in a Li-rich environment intercalation is
complete, i.e. the Li ion concentration saturates to x = 0.5 Li ions / formula unit. The two models
agree overall up to |u| < 4.1 eV and even beyond this threshold one compares CGCNN with
standard CE (ncg = 1). The agreement between standard CE and CGCNN correlates with the fact
that they also yield a similar MAE~ 50 meV. Based on the more accurate energy prediction
(MAE~ 26 meV) within CE with ncg = 3, the region near low Li occupancy ((N) ~ 1) or high
chemical potential (|u| < 4.25) is probably not fully converged within CGCNN. Throughout the
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Figure 3-3 lllustration of two machine learning methods applied to ML
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rest of the paper we will only show results obtained within CE.

4. RESULTS: PHASE STABILITY AND ELECTRONIC
STRUCTURE EVOLUTION

4.1. Free energies and phase diagrams

Depending on the experimental conditions, the phase stability of Li ion intercalated bilayer TMDs
should be studied either within the canonical (NT) or the grand-canonical (uT) ensemble.

Figure 4-1 shows the Helmholtz (NT) free energy (left panels) and grand-canonical free energies
(uT) for three Li ion intercalated bilayer systems: MoS;, MoSe,, and MoTe,, with temperature T
set to room temperature T=300 K.
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Figure 3-4 Grand-canonical statistical average of the number of Li ions
as function of Li chemical potential for MoS, T’ phase. 7 = 300 K.

It appears that the T’ phase is preferred at high ion concentrations/low chemical potentials, as its
free energy becomes lower that the one of the 2H phase. Interestingly, as the chalcogen atom X
gets heavier, the energy needed to stabilize the T° phase smaller and the threshold ion
concentration/ chemical potentials where the 2H-T” transition takes place gets smaller/higher.

This trend can be clearly seen in fig. 4-2 which shows the phase diagram at T=300 K for the three
bilayer systems.

The upper plot shows that the stabilization energy of the T” phase decreases from ~ 0.55 eV /
formula unit for MoS,, to ~ 0.35 eV for MoSe; and finally decreases to only ~ 50 meV in the
case of MoTe,. A similar trend has been discovered in the case of Li ion adsorption onto MLL
MoX; [25]. Besides the stabilization energy, the threshold Li concentration where the 2H+T’
transition happens decreases as well, from x ~ 0.4 ions/formula unit for MoS,, to x =~ 0.3
ions/formula unit for MoSe; and finally to x ~ 0.05 ions/formula unit in the case of MoTe;.
Similarly, the lower plot in fig. 4-2 shows that the Li chemical potential threshold decreases as
well as the chalcogen atom X goes down on group 16 of the periodic table. As mentioned
previously, in a rich Li environment, the bilayers are likely taking the T” form and are fully
intercalated.
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Figure 4-1 Canonical (left panels) and grand canonical (right panels)
free energies for: a) MoS,, b) MoSe,, and c) MoTe; Li ion intercalated
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Figure 4-2 Free energy differences between competing phases for three
Li ion intercalated bilayer MoX, TMDs (X=S,Se and Te) obtained within
the: a) Canonical, b) Grand canonical picture. 7 = 300 K.

4.2. Density of electronic states
4.2.1. Trends in the DOS with increasing ion concentration

To make predictions regarding the electronic conductivity of Li ion-intercalated bilayer TMDs as
function of ion concentration we consider the electronic density of states (DOS) near the Fermi
level (EFr) for each system/phase. Indeed, within band theory DOS(EF) is directly proportional to
the electronic conductivity.

Fig. 4-3 shows the DOS as function of electron energy for MoSe,. Left panels refers to the case
of no Li ion intercalation. We notice that the 2H is semiconducting while the T” phase is
semimetallic. The right panel shows a similar quantity but for the case where one Li ion/supercell
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Figure 4-3 Electronic density of states as function of the electron en-
ergy measured from the Fermi level Er for bilayer MoSe, with: a) no Li
ion intercalation, b) one intercalated Li ion per supercell.

is intercalated in the bilayer. We note that for this doping level the DOS of both phases do not
renormalize appreciably. Instead, they can be obtained from the no-intercalation case by a simple
shift-up of the Fermi level. Due to the semiconducting band gap in the 2H case, the shift to the
left of the DOS 1is correspondingly large > 1 eV. Similarly the DOS shift in the semi-metallic T
case is very small. Because of this, the change in the DOS(Er) with low Li ion concentration is
expected to be small in the latter case while it can be large in the former one.

With larger ion concentration it is possible that the DOS renormalizes, i.e. cannot be obtained
from the no-intercalation case by a simple shift. This can be seen in fig. 4-4 which shows the
DOS of bilayer MoS; (T’ phase) for several intercalation levels. As previously noticed, at low ion
concentration the DOS can be obtained from the no-intercalation case by a simple, small shift
(compare blue and red lines). However, in the case of half-occupancy of the Li sublattice (x=0.25
ions/supercell), the DOS shows very low DOS(EF), clearly a renormalization feature that is not
evident for x=0.

4.2.2. Evolution of DOS(Er) with ion concentration

The evolution of DOS(EF) with ion concentration is obtained within the canonical ensemble by
statistically averaging the DFT calculated DOS(EF) for each of the ~ 300 configurations per
bilayer system/phase. We do not use a surrogate model to estimate DOS(EF) in the entire
configurational space, as we find that the CE method does not perform well when the training
output consists of DOS values (as opposed to total energies).

Fig. 4-5 illustrates in the case of the bilayer MoS,, our procedure for obtaining from the raw DFT
data the statistically averaged DOS(EFr) as function of ion concentration. We note the peculiar
feature of very small DOS(EF) for the T’ phase at half Li sublattice occupancy.

Fig. 4-6 summarizes our results for the evolution of DOS(EF) for each of the bilayer
system/phase. We note that for all three systems, DOS(EF) increases faster for the 2H phase than
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Figure 4-4 Density of states of Li ion intercalated bilayer MoS, T’ phase
for several ion concentrations.

for the T, such that at relatively low ion concentration the 2H phase is the most conductive
despite the fact that in the no-intercalation case it is semiconducting. In general, as the
concentration increases the 2H remains the most conductive, with the peculiar situation in the
MoS; case where the T’ phase seems to show very low conductivity near half Li sublattice
occupancy (x ~ 0.25). Importantly, as opposed to the expectation that a change in phase structure
from 2H to T correlates with a jump in electronic conductivity, we do not find this to hold for any
of the three bilayer TMDs. In fact our results suggest that as the system transitions between the
two phases, the conductivity suffers a decrease instead of a jump.

5. CONCLUSION

We have studied the phase stability and electronic structure evolution of Li-intercalated bilayer
MoX, with X=S, Se or Te. Using first-principles calculations in combination with classical and
machine learning approaches we find that the energy needed to stabilize the T” phase over the 2H
one decreases with increasing atomic mass of the chalcogen atom X. A similar decreasing trend is
found in the threshold Li concentration where the structural phase transition takes place. While
the electronic conductivity increases with increasing ion concentration at low concentrations, we
do not observe a conductivity jump at the 2H-T’ phase transition point.
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