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Outline

+ Aerodynamic design of NRT blades to create a scaled wake
Other scaling topics

+ Characteristics of the wind for different size rotors
Atmospheric conditions at Swift



Scaling Perspective

< Wind turbines will continue to become larger

+ Wind turbine designs can be scaled, but not every
dimensionless parameter can be kept constant

- Estimate which dimensionless parameters are most
important for research goals

-+ Experiment at a scale that meets scientific and budgetary
goals

A wind turbine that is scaled down to wind tunnel size will have a
lower C'p because L/D ratio is sensitive to Re.
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NRT Design Motivation

- To better understand wind turbine wakes
- Study effects of rotors on downwind turbines




Aerodynamic Objective

- Design wind turbine blades to be manufactured and flown
for research on wakes in an array

- Create same initial conditions velocity/momentum deficit at
rotor plane as fullscale machine

+ What shape does the blade need to produce scaled wake?

Ry, = 2.85 Ry,
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A Scaled Wake

Create the same velocity field, %



How Is a Wake Created?
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Objective Function, I',,

+ most common wind turbine in USA, GE 1.5sle, GE37¢c
- full-scale turbine model provided by manufacturer
- modeled in WT_Perf

“A=9

+ smooth surface airfoil data from wind tunnel



Objective Function,

- for a given circulation, C; determines local solidity
- adequate stall margin

- efficient L/D

+ smooth chord and twist distribution

c C1=0.6
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Airfoil Selection Criteria

* Re. ~ 2,000,000

- high quality, public, and low turbulence wind tunnel data
- fixed transition, roughness, and unsteady data

+ roughness insensitivity

- thickness requirements



Airfoil Selection

S814 (L = 0.24) and S825 (£ = 0.17)
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Inverse Design

- created inverse
design tool

- solved for chord and
twist
- iterate with WT_Perf

- converge of two
objective functions
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Geometry
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NRT Blade




NRT Blade

(nrtu3d.udd)
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Performance

Pr(R2) = 0.49, Pr(R2.5) = 0.3, Pr(R3) = 0.05

10 15

UX (m/s)

D [m] Az o[%] Pratea [KW| Cpp, Cry, Pr(R2) Pr(R2.5) Pr(R3) cf AEP [GWh]

27 9 6.4 195 0.462 0.863 0.49 0.30 0.05 0.30 0.51
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Free Wake Vortex Simulation - CACTUS
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Momentum Recovery

1.2

0.8
0 0.6
0.4
0.2

20



3D CFD, 11 m/s

Pressure Side

Suction Side

r(m)

2D BEMT agrees with 3d CFD separation location
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3D CFD

3D flow effects and uncertainty of root section performance not
an issue
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3D Printed Blade Mold at Oakridge




Blade Design and Functional Scaling

\/ Designed to Scale
- I'(%) the spatial distribution of dimensionless, bound
circulation to shed equal trailing circulation

* Equal I'(%) between scales also means equal induction
and thrust coefficient (a(%) and Cr), and the axial velocity
of the near wake

- Tip-speed-ratio, A, for equal tip vortex spacing and parallel
streamlines

- Equal initial conditions for velocity field in wake (U/Ux)

+ Consideration of inflow and location in ABL

X Not Designed to Scale

* Re¢, Rep, L/D, Cp, geometry, aeroelasticity, above
parameters outside Region 2

@)
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Other Topics

* Re.and Rep

- Near wake is created by a distribution of forces, sufficient to
create equal far wake mixing and recovery?

+ Turbulence intensity created largest differences in wake
recovery in LES

Table: Wake Reynolds Number, Rep

scale  Rep x 1079 U (R2) D (m)

subscale 7-12 4-8 27
full-scale 23-38 5-8 s
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Aeroelasticity

- Lock Number: ratio of aerodynamic to inertial forces
- Similarly, time rate of change of circulation
- Would create equal gust response

Cp R
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Aeroacoustics

- Tip and airfoil self-noise acoustic power: SWL  (2R)?

- NRT designed to have same max tip-speed as full-scale
(=74 m/s)
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NRT Conclusions

+ Parameters were chosen to create scaled wake of GE 1.5
MW machine

- NRT scaled wake experiments will confirm IV, A, a, Cr, are
important to wake structure
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Comparing Inflow Conditions
+ Data from TTU 200 m meteorological tower

- Compare probability of subscale and full-scale inflow
conditions

Ry, = 2.85 Ry,
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Scaled Inflow - Dimensionless Quantities
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SWIFT Wind Resource

[ subscale [ subscale
4 [ full-scale 8l [ full-scale

0.1 0.2 0.3 0.4 0.5
T TI
turbulence has equal

shear has equal modes
ranges

31



SWIFT Wind Resource
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vel

SWIFT Average Day
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Inflow Conclusions

- Inflow conditions may not be equal at same instant of time
+ May need to wait longer for rarer event at subscale

+ Range of T'I, V,and LTI equivalent

- Late morning and afternoon average shear and veer are
equal between scales

- Full-scale turbines occasionally see higher shear above 75%
(Pr=5%)
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Conclusions

- NRT designed to create scaled wake
< One design cannot do it all

- Scaling is always important as blades continue to become
larger

- Range of inflow conditions well represented at SWiFT

35



