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Outline

• Aerodynamic design of NRT blades to create a scaled wake
Other scaling topics

• Characteristics of the wind for different size rotors
Atmospheric conditions at Swift

i



Scaling Perspective

• Wind turbines will continue to become larger

• Wind turbine designs can be scaled, but not every
dimensionless parameter can be kept constant

• Estimate which dimensionless parameters are most
important for research goals

• Experiment at a scale that meets scientific and budgetary
goals

Example

A wind turbine that is scaled down to wind tunnel size will have a
lower Cp because L/D ratio is sensitive to Re,
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NRT Design Motivation

• To better understand wind turbine wakes

• Study effects of rotors on downwind turbines
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Aerodynamic Objective

• Design wind turbine blades to be manufactured and flown
for research on wakes in an array

• Create same initial conditions velocity/momentum deficit at
rotor plane as fullscale machine

• What shape does the blade need to produce scaled wake?
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A Scaled Wake

UN NRT

C reate the same velocity field, kc
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How Is a Wake Created?

r, ( r r— (i) — CI W c

R) RUco 2 (.100 R

• Circulation is
proportional to lift

• Lift forces determine
shed circulation

• Same as induction:
ri = 47ra(1j,a)2
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Objective Function, Fit,

• most common wind turbine in USA, GE 1.5sle, GE37c

• full-scale turbine model provided by manufacturer

• modeled in WT_Perf

• A = 9

• smooth surface airfoil data from wind tunnel
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Objective Function, C1

• for a given circulation, C1 determines local solidity

• adequate stall margin

• efficient L/D

• smooth chord and twist distribution

• C1 = 0.6

r, (r) C1 W c

1=1) 2 Uoc R
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Airfoil Selection Criteria

• Re, ,' 2,000,000

• high quality, public, and low turbulence wind tunnel data

• fixed transition, roughness, and unsteady data

• roughness insensitivity

• thickness requirements
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Airfoil Selection
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Inverse Design
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Geometry
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NRT Blade
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NRT Blade

(nrtu3d.u3d)
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Pr(R2) = 0.49, Pr(R2.5) = 0.3, Pr(R3) = 0.05

10 15
U. OW

D [m] Ap2 cr [%] Prated [kw] CpR2 CTR2 Pr(R2) Pr(R2.5) Pr(R3) cf AEP [GW11]

27 9 6.4 195 0.462 0.863 0.49 0.30 0.05 0.30 0.51
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Free Wake Vortex Simulation - CACTUS
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Average Axial Velocity
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3D CFD, 11 m/s
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3D CFD

3D flow effects and uncertainty of root section performance not
an issue
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3D Printed Blade Mold at Oakridge
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Blade Design and Functional Scaling

iDesigned to Scale

• C(R) the spatial distribution of dimensionless, bound
circulation to shed equal trailing circulation

• Equal Fi(f?' ) between scales also means equal induction
and thrust coefficient (a(R) and CT), and the axial velocity
of the near wake

• Tip-speed-ratio, A, for equal tip vortex spacing and parallel
streamlines

• Equal initial conditions for velocity field in wake (U/U,0)

• Consideration of inflow and location in ABL

X Not Designed to Scale

• Ree, ReD, L I D, Cp, geometry, aeroelasticity, above
parameters outside Region 2
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Other Topics

• Ree and ReD
• Near wake is created by a distribution of forces, sufficient to
create equal far wake mixing and recovery?

• Turbulence intensity created largest differences in wake
recovery in LES

Table: Wake Reynolds Number, ReD

scale ReD x 10-6 110„ (R2) D (m)

subscale 7-12 4-8 27
full-scale 23-38 5-8 77
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Aeroelasticity

• Lock Number: ratio of aerodynamic to inertial forces

• Similarly, time rate of change of circulation

• Would create equal gust response

2r,

1(1 R R 

C ho (Wh 
C2 
) A2  K (1)

-! 
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Aeroacoustics

• Tip and airfoil self-noise acoustic power: SWL DC (C2R)5

NRT designed to have same max tip-speed as full-scale
(-,-', 74 m/s)
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NRT Conclusions

• Parameters were chosen to create scaled wake of GE 1.5
MW machine

• NRT scaled wake experiments will confirm F', )k, a, CT, are
important to wake structure
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Comparing Inflow Conditions

• Data from TTU 200 m meteorological tower

• Compare probability of subscale and full-scale inflow
conditions
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Scaled Inflow - Dimensionless Quantities

shear
Ut — Ub

7* =   (2)
Uh

turbulence intensity
o-(Uh) 

T I = (3)
Uh

veer
V = Ot — Ob (4)

lateral turbulence intensity

0-09h) 
LT I = (5)

Oh
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SWiFT Wind Resource
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Inflow Conclusions

• Inflow conditions may not be equal at same instant of time

• May need to wait longer for rarer event at subscale

• Range of TI, V, and LTI equivalent

• Late morning and afternoon average shear and veer are
equal between scales

• Full-scale turbines occasionally see higher shear above 75%
(Pr = 5%)
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Conclusions

• NRT designed to create scaled wake

• One design cannot do it all

• Scaling is always important as blades continue to become
larger

• Range of inflow conditions well represented at SWiFT
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