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• Motivations

• Mechanical testing of Geo-architected rocks

• Machine learning applications at laboratory scale

• Machine learning applications at field scale
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4 I Background & Motivations

• Motivations

• Fluid injection or withdrawal causes changes in pore pressure, resulting in

induced seismicity during subsurface energy activities

• Reduce risks of induced seismicity and improve subsurface energy activities
(unconventional resource recovery, geological carbon storage, geothermal

energy recovery)

• Goals

Induced (human-caused) seismicity

Direct fluid pressure
effects of injection

(fluid pressure
diffusion)

Well Fault

Increase in pore
pressure along
fault (requires

Permeable high-permeability
reservoir/ pathway)
aquifer

Changes in solid stress
due to fluid extraction or injection

(poro-thermoelastic effects,
changes in gravitational loading)

itti
Permeable

reservoir/aquifer

\lcittb,Dcrwtty, utyr*i il:45F,?

Fault

Change In loading
conditions on fault
(no direct hydrologic
connection required)

USGS: http://earthquake.uscis.gov/Research/induced/modeling.php

(1) Delineate fracture and failure mechanisms using well-controlled experiments

(2) Determine poro-elastic coupling mechanisms that lead to induced seismicity

during fluid injection into subsurface (Chang et al., 2018; Chang and Yoon (2018))

(3) Develop/apply machine-learning techniques for seismic wave data analysis and event detection

• Approaches

An ambitious integration of controlled mechanical failure experiments coupled with micro-

CT imaging, acoustic sensing, modeling of fracture initiation and propagation, and machine
learning for event detections and waveform characterization



Linkage between geomechanical and geophysical processes in mechanical
5 discontinuities

• Precursor(s) to the induced seismicity from existing
fault/fracture systems is key

• Changes in the spectral contents of waveforms are likely due to
wave propagation + faulting processes - initiation, propagation
and coalescence of pre-existing discontinuities loaded in mixed
mode I-11-111 (Damage Mechanics Challenge, AGU 2019 session)
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■ Motivations

■ Mechanical testing of Geo-architected rocks

■ Machine learning applications at laboratory scale

■ Machine learning applications at field scale



7 Integrated approach for geomechanical and geophysical measurements

Geo-architected Rock
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8 Powder Based 3D Printing Process

powders
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9 Geo-architected Rock

A geo-architected rock is a rock analog that is fabricated and structured
using conventional or unconventional methods to develop controlled
features in specimens that promote repeatable experimental behavior.

*Material Properties I

*Unconfined Compressive Strength Test

*Ultrasonic Compressional & Shear Wave Measurements

*Tensile Failure of Geo-Architected Rock I
(three point bending test)



10  Rock Variability: "Shale"
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I11 Observations of Fracture Resistance in Layered Geological Media

A. A thin section of Mancos shale
after Indirect tensile testing

Qua rtz

Geo-architected
Rock

B. Lateral strain based on digital C. Phase field modeling results
image correlation measurements

Anaft-ter CH).

(crack initiation Et propagation)

Na et al. (2017, JGR); Yoon et al. (2019, AAPG Memoir 102)

Short Traverse (V)



12 I Material Properties: Unconfined Compressive Strength Tests
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13 I Material Properties: Unconfined Compressive Tests
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14 Three Point Bending Experiments: Repeatability
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1 5 Load-Displacement Behavior
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17  Earthqualce Forecasting On Lab Scale Induced Seismic Events

1=
• Kaggle: LANL Earthquake Prediction

Use seismic signals (acoustic emissions) to predict the

time remaining for the next earthquake to happen

• Experimental data: Double direct shear geometry subjected to bi-axial loading

Aperiodic cycles of stick and slip (loading & failure)

• Training data: Continuous data containing 16 earthquakes

• Testing data: Random earthquake cycle segments of 150,000 data-points

• Approach: Preprocess-> Feature Extraction-> Training->Predictions

Trends of acousticdata and tinie_to_failure

lee

0 1 m

Training
sample data
file plotted.

constant

stress

Rouet-Leduc et al.

granular layers (2017, GRL)



18 I Features & Prediction

• Characterize the signal through various measurements
• Features are easily comparable to other signal's features (reduce overfitting)

Standard
deviation

Change rate

Percentile
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Trend regression
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• Data analysis method in which computers learn and autonomously build models based on

• Decision trees

Random Forest, Boosting trees (LightGBM)

• Support Vectors:

Support Vector Regressor (SVR)

Kernel Ridge Regression (KRR)

• Neural Networks

Artificial Neural Networks (ANN)

Short-Long Term Memmory (LSTM)

Convolutional Neural Network (CNN)

data patterns.

Submissions CV mean STD Public Score Private Score

LGB 2.0543 0.1198 1.62295 2.65173
XGB 2.0715 0.1196 1.55728 2.64105
KRR 2.0906 0.1078 1.56615 2.52527
Blend KRR XGB 1.53121 2.56981

https: / /www. kaggle.com / c/ LANL-Earthquake- Prediction /overview
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Experimental Setup

H 1

• Six sensors (Channels)

• 200-400 kHz filter to

get rid of noise

Cast Sample
C22, C33, & C23

H Sample
dCH1, dCH2, & dCH3
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6 Samples
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21 Feature Extraction

We apply different machine learning features to find
patterns or precursors to predict failure.

• Load one set of data.
• Assign each sensor a different color.

 .;

• Apply and analyze basic features.
• Ave, Std, Skew, Kurtosis, & Energy.

• Apply and analyze complex features.
• mfcc mean4, mfcc mean18,

percentile_roll50_std_20, & trend_error
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There is an upward trend present in all samples meaning as we approach failure there is

an increase in peaks so more events are recorded. Again there are outliers present in C22

and C23. The behaviors between Kurtosis and Skew seem to be similar.



23 Feature Analysis

We can conclude the following from our analysis of the common machine

learning features:

,

Several significant outliers, need to filter.

r -)
Skew and kurtosis have a similar behaviors.
 )

1 Possible significant events:

C22 1300 s & 1600 s;

C33 1200 s & 1500 s ;C23 1200 s.

Best performing features: skew &
kurtosis.
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Feature Analysis
mfcc mean4
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Mfcc represents filterbanks for energies and frequencies. This is targeting low frequencies.

When a significant event occurs the data points either jump above or below the mean.
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Machine Learning Analysis

mfcc mean18
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In this mfcc we are targeting higher frequencies and it appears to be less stable than the

lower frequency mfcc. This could be due to the large amount of noise present in the data

and acoustic propagations.



26 1 Feature Analysis

We can conclude the following from our analysis of the complex machine

learning features:

[
c- \

Several significant outliers.
,

r
mfcc_mean4 has a more stable distribution
that mfccmean18.

. 
_ 

r Possible significant events:

C22 1300 s & 1600 s;

C33 1200 s & 1500 s; C23 1200 s.

,
Best performing features: mfcc_mean4 &
mfcc_mean18.



27 Waveform Analysis for Machine Learning Applications

Waveform data is converted into a frequency domain (Spectrogram)
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29 Machine Learning for EQ detection

- Recent developments
■ Massive seismic data driven by

- Big sensor networks and new data stream with new sensing methods

- Long duration continuous waveform data

■ New ML algorithms and models (e.g., CNN, LSTM)

■ Improvements in computational efficiency

- GPU Computing (e.g., NVIDIA)

- Open source ML tools (Tensorflow, Keras, PyTorch)

- Open source EQ detection and characterization models (e.g., Github)



30 I Microseismic Data at Illinois Basin Decator Project

• Raw & processed data (e.g. Will Raw data from multichannel acquisition

et al., IJGGC 2016)

— Data acquisition at Injection,
monitoring, and verification
wells

— Data analysis for event
detection and location

• Various filters, STL/LTA,
and spectral analysis
applied

— Velocity model and MS
clustering
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31 Microseismic Data at Illinois Basin Decator Project
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ML Approaches

• Supervised ML: Convolutional neural network (CNN) for
event detection and location

Open source ConvNetQuake (Perol et al., 2018)
• Processed data from ISGS will be used to train models
• Trained model will be used to validate again the remaining dataset to

develop real-time recognition of events and locations

• Unsupervised ML: Waveform similarity-based event
detection methods

Fingerprint and Similarity Thresholding (FAST, Stanford FAST group)
• FAST shows the increase in event detection of low magnitude

seismicity by > a factor of 10
• High efficiency in big data processing time

• Characterization of Microseismic events
Spectral clustering and regression-based machine learning analysis (e.g.
random forest)
• Identify seismic phases from successive slip or fracturing stage events

and their constitutive wave patterns
• Extract the salient features present in the data set, such as individual

wave types, spectral content, p-s converted waves, and local energy
decay

• Link microseismic data to other measured/simulated quantities (e.g.,
injection, pressure and stress field)
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33 Summary

► Through additive manufacturing (3D printing), we have produced bassanite-gypsum rock samples with repeatable
physical, geochemical and structural properties. With these "geo-architected" rock, we provide the first demonstration

of the role of mineral texture orientation on fracture surface roughness. This unique correspondence between the

fracture geometry and the relative orientation of layers and mineral texture in rock opens the door to accurate

prediction of fluid flow anisotropy.

► Integration of multiphysics (geomechanical and geophysical approaches) and multiple tools (controlled experiments,
simulations, machine learning) for sensing, analyzing, and broad geoscience topics

► Advances achieved in this study will impact a wide range of geoscience applications with important societal
impact, including the sustainability of geothermal systems, contaminant remediation, long-term subsurface storage of

anthropogenic waste (CO2, radioactive waste) and subsurface recovery and storage of energy fluids (oil & gas).

n


