SAND2019- 12072PE

Integrated Geomechanics and Geophysics in Induced
Seismicity: Experiments of Geo-architectured samples

and machine learning applications

Tierta e
AT o e P

Hongkyu Yoon
Geomechanics Department
Sandia National Laboratories, NM

—— ©@ceNErReY AYSA

Collaborators: g
Michelle Williams (Sandia), Daniel Lizama (Sandia)
Laura Pyrak-Nolte, Antonio Bobet, Liyang Jiang (Purdue Univ.) Neore el ety mitsmaron

under contract DE-NA0003525.



2 I Acknowledgments

- Laboratory Directed Research and Development program at Sandia National Laboratories

- US. DOE, Oftice of Fossil Energy, Fossil Energy Research and Development Program




Motivations
Mechanical testing of Geo-architected rocks

Machine learning applications at laboratory scale

Machine learning applications at field scale




4 | Background & Motivations
Induced (human-caused) seismicity

Changes in solid stress

‘ MOthB.thﬂS due to fluid extraction or injection
(poro-thermoelastic effects,
. 5 e 3 s 3 s 5 Di fluid changes in gravitational loading)
e Fluid injection or withdrawal causes changes in pore pressure, resulting in attectn or jectioh PAAy

(fluid pressure

induced seismicity during subsurface energy activities difusion) WU Pemesle
. . . s = . e s U U o

e Reduce risks of induced seismicity and improve subsurface energy activities

(unconventional resource recovery, geological carbon storage, geothermal

Cnergy reCOVery> : ™ | Increase in pore

pressure along

fault (requires Change in loading
Permeable high-permeability conditions on fault

reservoir/ pathway) (no direct hydrologic
aquifer connection required)

¢ Goals

USGS: http://earthquake.usgs.gov/Research/induced/modeling.php ‘

(1) Delineate fracture and failure mechanisms using well-controlled experiments
(2) Determine poro-elastic coupling mechanisms that lead to induced seismicity
during fluid injection into subsurface (Chang et al., 2018; Chang and Yoon (2018))
(3) Develop/apply machine-learning techniques for seismic wave data analysis and event detection

¢ Approaches

An ambitious integration of controlled mechanical failure experiments coupled with micro-
CT imaging, acoustic sensing, modeling of fracture initiation and propagation, and machine
learning for event detections and waveform characterization
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Linkage between geomechanical and geophysical processes in mechanical

discontinuities

Precursor(s) to the induced seismicity from existing
fault/fracture systems is key

Changes in the spectral contents of waveforms are likely due to
wave propagation + faulting processes - initiation, propagation
and coalescence of pre-existing discontinuities loaded in mixed
mode I-1I-1ll (Damage Mechanics Challenge, AGU 2019 session)
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7 | Integrated approach for geomechanical and geophysical measurements

3PB experiments and simulations
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8 | Powder Based 3D Printing Process

CaS0.-0.5H,0 + 1.5H,0 = CaSO, -2H,0
Powders Binder

Gypsum
(basanite) P
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Geo-architected Rock

A geo-architected rock is a rock analog that is fabricated and structured
using conventional or unconventional methods to develop controlled
features in specimens that promote repeatable experimental behavior.

*Material Properties
*Unconfined Compressive Strength Test
*Ultrasonic Compressional & Shear Wave Measurements

*Tensile Failure of Geo-Architected Rock
(three point bending test)
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Rock Variability: “Shale”

Clay minerals

® Radioactive waste storage
A CO2 storage

@ Hydrocarbon extraction

O Other

(Bourg et al., 2015)

Quartz




11 I Observations of Fracture Resistance in Layered Geological Media @
A. A thin section of Mancos shale B. Lateral strain based on digital  C. Phase field modeling results
after Indirect tensile testing image correlation measurements (crack initiation & propagation)
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12 | Material Properties: Unconfined Compressive Strength Tests
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13 | Material Properties: Unconfined Compressive Tests )
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Three Point Bending Experiments: Repeatability (@)

Cast Gypsum 140 i 3D PrintedRock
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15 | Load-Displacement Behavior ‘
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17 | Earthquake Forecasting On Lab Scale Induced Seismic Events @

* Kaggle: LANL Earthquake Prediction

Use seismic signals (acoustic emissions) to predict the
time remaining for the next earthquake to happen -,

acoustic_data

constant
velocity

constant
stress

=

. . . . . . o.1k
Experimental data: Double direct shear geometry subjected to bi-axial loading e
s . s s " . granular layers !
Aperiodic cycles of stick and slip (loading & failure)
Training data: Continuous data containing 16 earthquakes
Testing data: Random earthquake cycle segments of 150,000 data-points
Approach: Preprocess-> Feature Extraction-> Training->Predictions
n Continuous waveform Time to failure = e s Db
‘ \ \ -
| | *
00000 Training
sample data
_so0 . . . - . ; - © file plotted.
Time les
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8 ‘ Features & Prediction

* Characterize the signal through various measurements
* Features are easily comparable to other signal’s features (reduce overfitting)

/~ Mean STA/LTA
Standard Correlation
=5 deviation Kurtosis
F —_ Change rate Sl
Percentile Energy
Qpmies Mel-frequencies

\Trend regression  ppoceoo o

FET Maximum

8 Features (avg over foids)

Zero Crossing \

Number of peaks
Medians
Sum

Autocorrelation

_/

Difference

* Data analysis method in which computers learn and autonomously build models based on data patterns.

* Decision trees
Random Forest, Boosting trees (LightGBM)
* Support Vectors:
Support Vector Regressor (SVR)
Kernel Ridge Regression (KRR)
* Neural Networks
Artificial Neural Networks (ANN)
Short-Long Term Memmory (LSTM)
Convolutional Neural Network (CNN)

Submissions | CV mean | STD | Public Score | Private Score
LGB 2.0543 0.1198 1.62295 2.65173
XGB 2.0715 0.1196 1.55728 2.64105
KRR 2.0906 0.1078 1.56615 2.5252¢(
Blend KRR XGB E— _— 1.53121 2.56981

https://www.kaggle.com/c/LANL-Earthquake-Prediction/overview
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Experimental Setup

Cast Sample
C22, C33, & C23

Ay
N

* Six sensors (Channels)
¢ 200-400 kHz filter to
get rid of noise

H Sample
dCH1, dCH2, & dCH3
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Feature Extraction

We apply different machine learning features to find
patterns or precursors to predict failure.

* J.oad one set of data.
1 * Assign each sensor a different color.

* Apply and analyze basic features.
2 * Ave, Std, Skew, Kurtosis, & Energy.

* Apply and analyze complex features.

* mfcc_mean4, mfcc_meanl§,
A. percentile_roll50_std_20, & trend_error




2 Feature Analysis -- Kurtosis @
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There 1s an upward trend present in all samples meaning as we approach failure there is
an increase in peaks so more events are recorded. Again there are outliers present in C22
and C23. The behaviors between Kurtosis and Skew seem to be similar.
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Feature Analysis

We can conclude the following from our analysis of the common machine

learning features:
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Feature Analysis
mfcc meand
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Machine Learning Analysis @
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In this mfcc we are targeting higher frequencies and it appears to be less stable than the
lower frequency mfcc. This could be due to the large amount of noise present in the data
and acoustic propagations.
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Feature Analysis

We can conclude the following from our analysis of the complex machine

learning features:




27 I Waveform Analysis for Machine Learning Applications m

Waveform data is converted into a frequency domain (Spectrogram)
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» | Machine Learning for EQ detection

- Recent developments

» Massive seismic data driven by
- Big sensor networks and new data stream with new sensing methods
- Long duration continuous waveform data
= New ML algorithms and models (e.g., CNN, LSTM)
» Improvements in computational efficiency
- GPU Computing (e.g., NVIDIA)
- Open source ML tools (Tensorflow, Keras, PyTorch)
- Open source EQ detection and characterization models (e.g., Github)



o | Microseismic Data at lllinois Basin Decator Project

e Raw & processed data (eg Will Raw data from multichannel acquisition
et al., IJGGC 2016) B e o
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9 ‘ Microseismic Data at lllinois Basin Decator Project
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ML Approaches

Supervised ML: Convolutional neural network (CNN) for
event detection and location
— Open source ConvNetQuake (Perol et al., 2018)
e Processed data from ISGS will be used to train models
e Trained model will be used to validate again the remaining dataset to
develop real-time recognition of events and locations
Unsupervised ML: Waveform similarity-based event
detection methods
— Fingerprint and Similarity Thresholding (FAST, Stanford FAST group)

e FAST shows the increase in event detection of low magnitude
seismicity by > a factor of 10

e High efficiency in big data processing time
Characterization of Microseismic events

— Spectral clustering and regression-based machine learning analysis (e.g.
random forest)

e |dentify seismic phases from successive slip or fracturing stage events
and their constitutive wave patterns

e Extract the salient features present in the data set, such as individual
wave types, spectral content, p-s converted waves, and local energy
decay

e Link microseismic data to other measured/simulated quantities (e.g.,
injection, pressure and stress field)

()

% 0000000000000000000 00 .)00samples
gy 000000000000000000000 /3.

128 features

No  Cluster Cluster

ConvNefauéke CNN A:rchitecture
Perol et al. (2018, SciAdv 2018)

STAILTA

New approach: ‘

Computational efficiency

Earthquake detection methods from
C.E. Yoon et al. (SciAdv 2015)
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Summary =

P Through additive manufacturing (3D printing), we have produced bassanite-gypsum rock samples with repeatable
physical, geochemical and structural properties. With these “geo-architected” rock, we provide the first demonstration
of the role of mineral texture orientation on fracture surface roughness. This unique correspondence between the
g 9 P
fracture geometry and the relative orientation of layers and mineral texture in rock opens the door to accurate
g ¥ 4 P

prediction of fluid flow anisotropy.

P Integration of multiphysics (geomechanical and geophysical approaches) and multiple tools (controlled experiments,
simulations, machine learning) for sensing, analyzing, and broad geoscience topics

P Advances achieved in this study will impact a wide range of geoscience applications with important societal

impact, including the sustainability of geothermal systems, contaminant remediation, long-term subsurface storage of

anthropogenic waste (COZ2, radioactive waste) and subsurface recovery and storage of energy fluids (oil & gas).
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