
U.S. Department of Energy

Brookhaven National Laboratory

June 2020

Submitted to the 2020 IEEE High Performance Extreme Computing Virtual Conference Conference
to be held at Virtual Conference

September 21 - 25, 2020

M. Langston, M. Lin

Approximate Inverse Chain Preconditioner: Iteration Count Case Study for
Spectral Support Solvers

BNL-219941-2020-PUCP

Computational Science Initiative

USDOE Office of Science (SC), Advanced Scientific Computing Research (SC-21)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Approximate Inverse Chain Preconditioner: Iteration
Count Case Study for Spectral Support Solvers

M. Harper Langston, Pierre-David Letourneau, Julia Wei,
Larry Weintraub, Mitchell Harris, Richard Lethin

Reservoir Labs, Inc., New York, NY 10012
Email: {langston,letourneau,wei,weintraub,harris,lethin}@reservoir.com

Eric Papenhausen
Akai Kaeru

New York, NY 10128
Email: epapenha@akaikaeru.com

Meifeng Lin
Brookhaven National Lab,

Upton, NY 11973
Email: mlin@bnl.gov

Abstract—As the growing availability of computational power
slows, there has been an increasing reliance on algorithmic
advances. However, faster algorithms alone will not necessarily
bridge the gap in allowing computational scientists to study
problems at the edge of scientific discovery in the next several
decades. Often, it is necessary to simplify or precondition solvers
to accelerate the study of large systems of linear equations
commonly seen in a number of scientific fields. Preconditioning a
problem to increase efficiency is often seen as the best approach;
yet, preconditioners which are fast, smart, and efficient do not
always exist.

Following the progress of [1], we present a new preconditioner
for symmetric diagonally dominant (SDD) systems of linear
equations. These systems are common in certain PDEs, network
science, and supervised learning among others. Based on spectral
support graph theory, this new preconditioner builds off of
the work of [2], computing and applying a V-cycle chain of
approximate inverse matrices. This preconditioner approach is
both algebraic in nature as well as hierarchically-constrained
depending on the condition number of the system to be solved.
Due to its generation of an Approximate Inverse Chain of
matrices, we refer to this as the AIC preconditioner.

We further accelerate the AIC preconditioner by utilizing
precomputations to simplify setup and multiplications in the con-
text of an iterative Krylov-subspace solver. While these iterative
solvers can greatly reduce solution time, the number of iterations
can grow large quickly in the absence of good preconditioners.
Initial results for the AIC preconditioner have shown a very
large reduction in iteration counts for SDD systems as compared
to standard preconditioners such as Incomplete Cholesky (ICC)
and Multigrid (MG). We further show significant reduction
in iteration counts against the more advanced Combinatorial
Multigrid (CMG) preconditioner.

We have further developed no-fill sparsification techniques
to ensure that the computational cost of applying the AIC
preconditioner does not grow prohibitively large as the depth of
the V-cycle grows for systems with larger condition numbers. Our
numerical results have shown that these sparsifiers maintain the
sparsity structure of our system while also displaying significant
reductions in iteration counts.1 2

Index Terms—spectral support solver, linear systems, fast
solvers, preconditioners, multigrid, graph laplacian, benchmark-
ing, iterative solvers, precomputations, approximate inverse
chain, sparsifiers, iterative solvers

1The research in this document was performed in connection with con-
tract/instrument DARPA HR0011-12-C- 0123 with the U.S. Air Force Research
Laboratory and DARPA. The views expressed are those of the author and
do not reflect the official policy or position of the Department of Defense
or the U.S. Government. Distribution Statement “A” (Approved for Public
Release, Distribution Unlimited). The information in this report is proprietary
information of Reservoir Labs, Inc.

2Further support from the Department of Energy under DOE STTR Phase
I/II Projects DE-FOA-00000760/DE-FOA-000101.

I. INTRODUCTION

For many numerical methods and problems, scientific
computing approaches have been reaching the limits at which
we can accelerate solvers and approaches for HPC [3]. The
20th and 21st centuries have seen a massive explosion in the
number of algorithms for accelerating the solutions of systems
of linear equations [4]. Following the exponential growth of
computing power through the 1960s to 1980s, these algorith-
mic advances slowed in favor of leveraging ever-increasing
computational power [5]–[8]. Despite the reliance on compute
power, a number of important algorithmic innovations such as
Multigrid methods (i.e., hierarchical representations) [9], [10],
the Fast Multipole Method [11]–[14] and the exploitation of
sparsity and patterns (e.g., FFTs [15], [16], sparse FFTs [17],
[18] and reduced-communication FFTs [14], [19], [20]) have
further advanced scientific discovery; however, we are rapidly
approaching the point at which additional compute power will
not yield significantly better results. It is becoming increasingly
important to develop new algorithmic advances as well as find
new ways of accelerating existing computational techniques.

Consider solving large systems of linear equations of the
form Ax = b, which have benefited greatly from computational
and algorithmic advances, consider. As introduced and dis-
cussed in [1], Krylov-subspace solvers, particularly Conjugate
Gradient (CG)- and Generalized Minimal Residuals (GMRES)-
based solvers [21]–[25], are commonly-employed approaches
to iteratively solving such systems. These approaches are often
extremely fast and efficient at each step of the solver, but the
number of steps can become quite large, and communication
or parallelization across iterations is often not feasible. In the
absence of new algorithms or more compute power, it is often
necessary to precondition a problem, or condition it to be
solved more quickly with existing techniques in fewer steps.

The development and advancement of new preconditioners
such as [1], where the system can be preconditioned in terms
of its underlying structure, allow for faster solvers with existing
techniques and computational resources. Preconditioners, which
can further exploit the hierarchical nature and structural
sparsity of systems of linear equations, lead to smarter solvers.
Preconditioners that are smart, adaptive, and can be constructed
on the fly in a problem-specific fashion will have a great
impact on the types of problems and sizes of problems that
computational scientists will need and want to tackle in the
next 50 years.

In this paper, we follow the discussion in [1] by looking at
a preconditioner based on spectral support-graph theory [26]–
[30]. In particular, we focus on the method of [2], in which
an approximate inverse chain of matrices is constructed and
then applied at each iteration of the linear solver. We begin by
outlining the theory and algorithms for this solver in sections II-
III; we then look at initial results in Section IV; sparsification
techniques, necessary for retaining structural sparsity for
efficiency, are introduced and discussed in Section V with
results in Section VI. Our focus here is mainly in studying
effective ways of reducing iteration counts, and we discuss
plans for incorporating the results here with [1] in Section VII.

II. BACKGROUND AND MOTIVATION FOR SYMMETRIC
DIAGONALLY DOMINANT ITERATIVE SOLVERS

As in [1], we remain interested in positive-definite, sym-
metric systems, for which solutions are required in a number
of areas, including in the solution of certain PDEs with finite
elements [12], [31], in semi-supervised learning problems [32]–
[34], SDP approaches for graph partitioning [35], and in study-
ing graph flow problems such as max-flow [36] and congestion
control [37]. For these systems the CG in Algorithm 1 can be
leveraged due to simplicity and reliance solely on vector-vector
additions and matrix-vector multiplications.

Algorithm 1 CG algorithm for solving Ax = b with a positive definite
matrix A.
1: if k := 0 then
2: x0 := 0
3: r0 := b− Ax0, p0 := r0
4: end if
5: while ||rk|| > ε do
6: αk :=

(rk,rk)

(pk,Apk)

7: xk+1 := xk + αkpk , rk+1 := rk − αkApk

8: βk :=
(rk+1,rk+1)

(rk,rk)

9: pk+1 := rk+1 + βkpk
10: k := k + 1
11: end while

As discussed in [1], [2], for systems with large condition
number, κ(A), the CG method’s rate of convergence can be
adversely affected [38]. The approach we discussed in [1] in-
volved using Combinatorial Multigrid (CMG) as preconditioner
to compare against Incomplete Cholesky (ICC) and Multigrid-
based preconditioning solvers. The Preconditioned Conjugate
Gradient (PCG) constructs a matrix P, which approximates A
in some desired ways and whose inverse is relatively easy to
compute in order to solve:

P−1Ax = P−1b. (1)

Here, P is constructed such that it both lowers the iteration
count (increases the rate of convergence of the iterative solver)
while not increasing the computational cost of each step [23].
For more information on the Combinatorial Multigrid and
Incomplete Cholesky approaches, we refer to [1].

As in our prior work, we are focused primarily on symmetric
diagonally-dominant (SDD) matrices, A where Aij = Aji and
Aii ≥

∑
j 6=i |Aij |; these systems are common in a variety of

fields as mentioned above.

For a symmetric real matrix, A = AT , and we use the
notation A < 0 to indicate that A is positive semi-definite (all
eigenvalues λj ≥ 0); similarly, A � 0 indicates A is positive
definite (λj > 0). For matrices A,B, A < B⇔ A−B < 0.
Using this notation, we can say that A ≈ε B⇔ exp (εA) <
B < exp (−εA).

Using these definitions and notation, [2] have developed a
new algorithm for solving systems of equations with SDDM
matrices, which we will focus on for the remainder of this
paper. An SDDM matrix M is a generalization of an SDD
matrix which can decomposed as M = D−A where D is a
diagonal matrix, A is symmetric, both are non-negative,and
D � A. Inverting A is potentially expensive, so [2] invoke
the following identity for SDDM matrices:

(D−A)−1 =
1

2

[
D−1 + (I+D−1A)(D−AD−1A)−1(I+AD−1)

]
(2)

Now, instead of inverting A, one needs to invert D, a trivial
task. The problem, however, is that this approach also involves
potentially expensive matrix-matrix multiplications. Further, we
would still have to invert (D−AD−1A), but if this process
could be simplified, or if the matrices could be sparsified,
the process outlined by [2] can be streamlined. Indeed, [2]
uses the above identity to create an approximate inverse chain
of matrices, which provides the basis for a preconditioning
approach, leading to an iteration count significantly lower than
those seen in other advanced preconditioners, including the
CMG approach shown in [1], [39]. It is further desirable that
this chain of matrices maintain a relative structural sparsity in
order to remain computationally efficient. We discuss this in
further detail in Section V.

III. THEORY AND ALGEBRAIC MOTIVATION FOR
APPROXIMATE INVERSE CHAIN PRECONDITIONER

Since D−A is SDDM, it can be shown that if it is sparse,
(D−AD−1A) is sparse as well (or maintains the same level of
general sparsity). Given the structure of D and A, we present
the following identity from [40]:

D− (AD−1A)(D−1(AD−1A)) = D−D(D−1A)4. (3)

In particular, applying the left-hand side of equation (3) to a
vector k > 1 times results in the right-hand side of the equation
becoming D − D(D−1A)2k. Since ||D−1A|| ≤ 1 (from
SDDM property), (D−1A)2k → 0 and D−D(D−1A)2k → D
as k →∞. This naturally leads to the following approach [2]:

For a system Mx = b, where M is SDDM, let M0 = M such that
M = D0−A0. Let M1 = (D0−A0D

−1
0 A0) := D1−A1. Iterate

in this way, i.e.,
{
Mi = (Di−1 −Ai−1D

−1
i−1Ai−1) := Di −Ai

}
until a maximum number of iterations is reached..

,

Combining this with (2), we can now approximate M−1i =
(Di −Ai)

−1 with,
1

2

[
D−1

i + (I+D−1
i Ai)(Di+1 −Ai+1)

−1(I+AiD
−1
i)
]
. (4)

From equations (3) and (4), as i grows large, (Di+1 −
Ai+1)→ Di+1. This suggests that for inverse chain parameter

Algorithm 2 Approx. Inverse Chain Solve M0x = (D0 −A0)x = b0

for depth d

for i = 1 : d do
Compute Mi = Di−1 −Ai−1D

−1
i−1Ai−1 = Di −Ai.

Compute bi = (I + AiD
−1
i)bi−1.

end for
Compute xd = D−1

d bd.
for i = d− 1 : 0 do

Compute xi = 1
2

(
D−1

i bi + (I + D−1
i Ai)xi+1

)
.

end for

depth d, we can solve M0x = b0 in Algorithm 2 [2] . Note
that if the condition number of M0 is κ, then the maximum
eigenvalue, i.e., λmax

(
D−1A

)
, is O(1 − 1

κ) (Proof see [2])
such that setting d = O(log(κ)), then λmax

(
D−1A

)2d ≈ 0.
As can be seen in the algorithm above, the structure of

the algorithm provides a V-cycle in the same spirit as many
Multigrid algorithms including the CMG [1], [39], with a few
matrix vector multiplications except for the construction of the
chain of matrices. The V-cycle is shown in Figure 1. Precalcu-
lations can reduce the amount of per-iteration calculations in
the algorithm.

b0

b1

bd

x1

x0

xd

Fig. 1: Example of the V-cycle in calculation the chain of right-hand side
approximations, bi, allowing for the construction of the chain of approximate
solution vectors, xi. b0 is the initial right-hand side at each iteration of the
preconditioner, and we calculate up to a maximum depth of d (prespecified
manually or calculated based on the system’s condition number). x0 is the
final approximation to the solution vector at each step of the iteration.

This Approximate Inverse Chain (AIC) preconditioner [2]
is framed as a solver, but really is more of a preconditioner
used in the context of a CG Krylov subspace solver. Similar
to [41] and [42], the approaches of [2] can be employed as
a preconditioning step of an iterative solver to decrease the
overall iteration count. It can further be seen from the algorithm
above that it is best to precompute many of the matrix-matrix
multiplications and diagonal matrix inversions such that the
overall cost of each preconditioning step is O(3dN) where
O(N) is the cost of each matrix-vector multiply. We separate
the above algorithm into a precomputation step and a dynamic
computation step in Algorithm 3. It can be seen how Algorithm

Algorithm 3 Precomputation with Input: M0, depth d and output{
Ci,Ei, D̃i

}
for i = 1 : d do

Let Mi = Di−1 −Ai−1D
−1
i−1Ai−1 = Di −Ai.

Compute D̃i = D−1
i .

Compute Ci = (I + AiD̃i).
Compute Ei = (I + D̃iAi).

end for

2 reduces to a O(3d) matrix-vector multiplications in the solver
with the precomputation input from Algorithm 2 (shown in
Algorithm 3). In fact, these Mi matrices can be pre-computed,

Algorithm 4 Approx. Inverse Chain Solve M0x = b0 for depth d with
input

{
Ci,Ei, D̃i

}
as precomputed in Algorithm 3

for i = 1 : d do
Compute bi = Cibi−1.

end for
Compute xd = D̃dbd.
for i = d− 1 : 0 do

Compute xi = 1
2

(
D̃ibi + Eixi+1

)
.

end for

so that step in the initial descent can be pulled out of the loop.
As mentioned in Section I, if care is not taken in Algorithms
2 and 3, the inverse chain can become prohibitively dense. We
introduce an approach for tackling this potential bottleneck in
Section V. First, in the next section, we discuss initial prototype
results for the Approximate Inverse Chain preconditioner as
compared to other preconditioners.

IV. INITIAL RESULTS FOR A NON-SPARSIFIED SOLVER

The Approximate Inverse Chain approach in [2] utilizes a
Richardson iteration approach with the original Algorithm 1
solver in the preconditioning step while [40] uses a Chebyshev
iterative method for optimal theoretical asymptotics; however,
in practice neither of these solvers are particularly good for
general problems as compared to more stable and mature
iterative solvers. As discussed in [1], for sparse SDD (or
SDDM) systems the Conjugate Gradient (CG) algorithm, is a
better, more stable candidate [21]–[23]. As previously discussed
in further detail in [1], for large condition numbers, the
number of iterations required for convergence can become
unacceptably high but these iteration counts can be reduced
with preconditioners. To review, we seek to construct a
preconditioner P from (1) that reduces the number of steps
for an iterative method while not introducing significant cost
to setup and apply at each iteration. For the purposes of a
symmetric positive definite A, P is also required to have
the same symmetry properties as A; the convergence rate of
the iterative solver would therefore be based on the structure
and condition number of P−1A. In [1], we showed results
for simple preconditioners such as the Modified Incomplete
Cholesky (MIC) as well for the more complex Combinatorial
Multigrid (CMG) preconditioner.

For testing the effectiveness of the AIC preconditioner, we
first implemented and tested a MATLAB prototype. We utilized
the same sample test as in [1] seen in Figure 2, in which we
construct a simple matrix A using a 5-point discrete Laplacian
stencil on top of a regular two-dimensional grid. The result
is a very sparse system. We then solve Ax = 1T for x using
a PCG solver with a residual tolerance set to εres = 1e − 8
and several preconditioners. In Figure 3, we investigate the
number of iterations needed to reach the desired residual for no
preconditioner, an IC, MIC, CMG, and the new Approximate
Inverse Chain (AIC) preconditioner as we increase the size of
the grid used to construct A, thereby increasing the number of
nonzeros and the resulting condition number κ(A). We observe
that from a pure iteration count perspective, for larger problems
the AIC preconditioner performs even better than our CMG

r = zeros(1,m);
r(1:2) = [2, -1];
T = toeplitz(r);
E = speye(m);
A = kron(T,E) +
kron(E,T);
p = symamd(A);
A = A(p,p);

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7

8

9

10

x 10
4

nz = 510720

Sample Matrix M with m = 320 (n=102400, cond(M) = 6.07e4)

Student Version of MATLAB

Fig. 2: Sample input to the CMG preconditioner/solver. Left: Sample
MATLAB code to generate the systems of various sizes; Right: System with
n = 102400, 510720 non-zeros, and condition number, κ ≈ 6e4. This code
can generate systems of various sizes.

implementation, which in itself performs better than standard
approaches.

10
2

10
3

10
4

10
1

10
2

10
3

log(k(M)) vs log(iteration count)

log(condition number M)

lo
g

(i
te

ra
ti
o

n
s
 (

m
a

x
 1

0
0

0
))

No Pre.

IC

MIC

CMG

AIC

Fig. 3: For experiments from [1], we plot the condition number against the
number of iterations. For small κ(A), various Incomplete Cholesky (IC/MIC)
approaches are successful, but CMG outperforms all other approaches as κ(A)
grows. However, our implementation of the AIC method from [2] greatly
outperforms CMG in terms of iteration count for larger problems.

We note that in Figure 3, we set the depth of the AIC
solver to be no greater than d = 10; however, as noted, the
chain of matrices can become increasingly dense, resulting
in an effectively-dense solver in terms of matrix-vector multi-
plications. In the next section, we discuss a simple approach
to producing a set of sparsified matrices in the approximate
inverse chain to guarantee that structural sparsity is maintained.

V. SPARSIFICATION APPROACHES FOR SIMPLIFIED CHAINS

When A0 with condition number κ is passed as input to
Algorithms 2 and 3, the matrix product Ai−1D

−1
i−1Ai−1 can

become dense for some i ≤ d. It is desirable to maintain
a level of sparsity in the chain of matrices that is on the
same relative order of A0 in order to avoid computational

bottlenecks. [2] note that these bottlenecks can be partially
overcome through parallelization approaches but more impor-
tantly through sparsification techniques as outlined in [29] and
[43]. Sparsifying the matrix construction on-the-fly at each step
in the chain construction i results in an approximate calculation
Mi ≈ε Ai−1D

−1
i−1Ai−1. Sparsification methods are often

based on a low-stretch spanning tree (LSST) construction;
however, we have implemented an LSST algorithm and found
this approach in practice to be computationally prohibitive.

Instead of an LSST-based sparsification approach, we have
developed an approach for sparsifying the inverse chain of
matrices by measuring the sparsity of the original system and
then maintaining a relative level of sparsity in the subsequent
chain of matrices based on the ideas of Incomplete Cholesky
(ICC) preconditioner methods. ICC methods are popular as
preconditioners in solving systems of linear equations with
sparse matrices [23]. The basic idea is to use no fill or zero
fill in constructing the preconditioner K̂ when corresponding
locations in A = KKT are zero during Cholesky factorization.
That is, ICC methods set Kij = 0 when Aij = 0 during the
Cholesky factorization. For sparse matrices A, this guarantees
that K is as sparse as A’s lower-triangular half. In the context of
developing a sparsifier for the AIC preconditioner, we use a no-
fill strategy by leveraging the ideas from ICC preconditioners.

We sparsify the approximate inverse chain of matrices in
our preconditioner implementation by performing a no-fill
approach to Di−AiD

−1
i Ai, based on a specified threshold of

heuristics obtained from A0. In general, the main requirement
in sparsification routines is that the number of new edges in
the product of matrices remain bounded [2]. That is, if Ai is
of size n × n with m non-zeros (in the context of support-
graph theory, this is analogous to a graph with n vertices and
O(m) edges), then successfully sparsifying Di −AiD

−1
i Ai

should result in O(n+mlog(n/ε2)) non-zero entries, and then
further reduced to O(nlogc(n/ε2)), where ε is a nonnegative
value chosen to be less than 1/2 and c is constant. We can
achieve the same resulting sparsity by effectively not creating
new entries in the chain of matrices in the AIC solver once a
new matrix Ai in the chain has achieved a constant multiplier
level of sparsity from the original matrix. That is, if A0 has m
non-zero entries, we can specify maximum density in the chain
of matrices to be C · m for some small constant C << m
such that at some depth d in the chain {Ai}, the number of
nonzeros in all matrices Aj , where j ≥ d, will be ≈ C ·m.

In Figure 4, we show examples for performing the matrix-
matrix multiplications in developing the chain of matrices for
the AIC preconditioner, displaying the resulting density from
(1) not sparsifying the matrix product as well as from (2)
applying the no-fill sparsifier. In Figure 4, a system of size
n = 1600 (small for illustrative purposes) is built to a chain
of depth d = 6, initiating the no-fill strategy at i = 4. It can
be seen how the general structure of the matrices remains
consistent while maintaining a desired level of sparsity. We
further note that while it is possible to simply zero entries
not desired after computing the matrix product, in practice we
do not perform a full level of computations, instead ignoring

0 1000

0

500

1000

1500

nz = 7840
0 1000

0

500

1000

1500

nz = 13764

Sample no−fill strategy for problem of depth 6, no−fill at level 4, plot for level 1

0 1000

0

500

1000

1500

nz = 13764

Student Version of MATLAB

(a)

0 1000

0

500

1000

1500

nz = 13764
0 1000

0

500

1000

1500

nz = 36844

Sample no−fill strategy for problem of depth 6, no−fill at level 4, plot for level 2

0 1000

0

500

1000

1500

nz = 36844

Student Version of MATLAB

(b)

0 1000

0

500

1000

1500

nz = 36844
0 1000

0

500

1000

1500

nz = 110920

Sample no−fill strategy for problem of depth 6, no−fill at level 4, plot for level 3

0 1000

0

500

1000

1500

nz = 110920

Student Version of MATLAB

(c)

0 1000

0

500

1000

1500

nz = 110920
0 1000

0

500

1000

1500

nz = 338704

Sample no−fill strategy for problem of depth 6, no−fill at level 4, plot for level 4

0 1000

0

500

1000

1500

nz = 110920

Student Version of MATLAB

(d)

0 1000

0

500

1000

1500

nz = 110920
0 1000

0

500

1000

1500

nz = 338704

Sample no−fill strategy for problem of depth 6, no−fill at level 4, plot for level 5

0 1000

0

500

1000

1500

nz = 110920

Student Version of MATLAB

(e)

0 1000

0

500

1000

1500

nz = 110920
0 1000

0

500

1000

1500

nz = 338704

Sample no−fill strategy for problem of depth 6, no−fill at level 4, plot for level 6

0 1000

0

500

1000

1500

nz = 110920

Student Version of MATLAB

(f)

Fig. 4: Example no-fill sparsification strategy for input of size n = 1600. Here, we arrest the fill of nonzero locations in computing Mi+1 = (Di−AiD
−1
i Ai)

at level i = 4 for maximum depth d = 6. For each of the size figures, there are three subfigures. For example, for figure (a) on the left, we see the original A
matrix at the prior step (in this case A0); in the middle is the computed (Di−1 −Ai−1D

−1
i−1Ai−1) with full fill; the right figure is what the results looks

like if no fill is performed (this case only occurs here for i ≥ 4. In the figure, (a), (b), (c) and depths 1,2, and 3 (the original M0 is at depth 0), the fill is
computed and stays. For (d), (e), and (f) and depths 4, 5, and 6, no fill is performed, and the results of the nonzeroes remaining the same can be seen after
zeroing out the unnecessarily filled entries.

undesired entries in the matrix multiplication phases. In the
next section, we present results from an implementation of the
AIC preconditioner with our no-fill sparsification techniques.

VI. NUMERICAL RESULTS FOR NO-FILL APPROACHES

As in [1] where we developed a CMG preconditioner, we
have implemented a version of the AIC preconditioner in
C/Petsc [44], [45]. We again use the sample input from
Figure 2; this input provides a good test because, while it is very
sparse, the last row and column are relatively dense. Therefore,
as we compute the chain of approximate inverse matrices, the
resulting Mi matrices grow dense quickly if sparsification is
ignored. The systems are generated in MATLAB and converted
to a Petsc-friendly format using scripts. For the right-hand
side, we use a standard input of b = [10]T . From this input,
we construct the Mi from Algorithms 2 to 4, stopping the fill
of the (Di−AiD−1i Ai) at a pre-determined level to enact our
no-fill strategy.

The preconditioner shows good results in reduced iteration
counts against Incomplete Cholesky and Petsc’s Multigrid
preconditioner for our test systems.

In Figure 5, we compare the AIC preconditioner against
a standard Incomplete Cholesky (ICC) preconditioner (no-
fill Cholesky) and an off-the-shelf Multigrid preconditioned
Conjugate Gradient solver (PCG). We consider 12 digits of
relative accuracy for the PCG solver and a maximum number
of 10, 000 iterations, looking at various levels of problem size,

condition number, depth of approximate inverse chain and
no-fill level. As an example of executing our solver in Petsc
on a system for a maximum of d = 7 levels in the chain of
matrices and no-fill beginning at i = 4 and 12 digits of relative
numerical accuracy (when PCG stops), we execute:
./Solver -f mat_vec_sampl.in -pc_type AIC
-pc_ps_numlevels 7 -pc_ps_nofill_it 4 -ksp_rtol 1e-12

The fill strategy can also be based on an ε-type parameter,
determining the percentage of fill based on a relative number
of edges and vertices.

For our tests in Figure 5(a), we observe that for moderate
levels of no-fill, the AIC preconditioner performs significantly
better in terms of pure iteration count than ICC. Continuing this
trend in Figure 5(b)-(f), we observe that the AIC preconditioner
performs significantly fewer iterations even at the no-fill level
of NF = 3, as compared to both the ICC and Multigrid
preconditioners.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an implementation of a new precondi-
tioner based on support-graph theory as introduced in [2].
Following our work on implementing the Combinatorial
Multigrid (CMG) preconditioner in [1], we have shown how
certain classes of SDD systems of linear equations can be
solved with iterative Krylov solvers and reduced iteration
counts. This new preconditioner builds an approximate inverse
chain (AIC) of matrices and applies them using a V-cycle

(a) (b)

2 4 6 8 10 12

20

40

60

80

100

Nested Chain Length

Lo
g

of
 T

ot
al

 It
er

at
io

n
C

ou
nt

Tot. It. Cnt. for PS−precon for various fill levels vs ICC/MG and n=100

ICC
MG
NF=1
NF=2
NF=3
NF=4
NF=5
NF=6

1 2 3 4 5 6 7

1000

2000

5000

10000

No Fill Level
Lo

g
of

 to
ta

l n
on

ze
ro

s

Nonzero Count for fill levels and n=100 (cond = 7e1)

Student Version of MATLAB

2 4 6 8 10 12

20

40

60

80

100

Nested Chain Length

Lo
g

of
 T

ot
al

 It
er

at
io

n
C

ou
nt

Tot. It. Cnt. for PS−precon for various fill levels vs ICC/MG and n=400

ICC
MG
NF=1
NF=2
NF=3
NF=4
NF=5
NF=6

1 2 3 4 5 6 7

5000

10000

20000

40000

80000

160000

No Fill Level

Lo
g

of
 to

ta
l n

on
ze

ro
s

Nonzero Count for fill levels and n=400 (cond = 2.6e2)

Student Version of MATLAB

(c) (d)

2 4 6 8 10 12

20

40

60

80

120

160

200

Nested Chain Length

Lo
g

of
 T

ot
al

 It
er

at
io

n
C

ou
nt

Tot. It. Cnt. for PS−precon for various fill levels vs ICC/MG and n=1600

ICC
MG
NF=1
NF=2
NF=3
NF=4
NF=5
NF=6
NF=7

1 2 3 4 5 6 7 8

20000

40000

100000

400000

2000000

No Fill Level

Lo
g

of
 to

ta
l n

on
ze

ro
s

Nonzero Count for fill levels and n=1600 (cond = 9.9e2)

Student Version of MATLAB

2 4 6 8 10 12

20

40

60

80
100

200

400

1000

Nested Chain Length
Lo

g
of

 T
ot

al
 It

er
at

io
n

C
ou

nt

Tot. It. Cnt. for PS−precon for various fill levels vs ICC/MG and n=6400

ICC
MG
NF=1
NF=2
NF=3
NF=4
NF=5
NF=6
NF=7
NF=8

1 2 3 4 5 6 7 8

100000

250000

1000000

4000000

40000000

No Fill Level

Lo
g

of
 to

ta
l n

on
ze

ro
s

Nonzero Count for fill levels and n=6400 (cond = 3.9e3)

Student Version of MATLAB

(e) (f)

2 4 6 8 10 12

40

60

100

200

400

1000

2000

4000

Nested Chain Length

Lo
g

of
 T

ot
al

 It
er

at
io

n
C

ou
nt

Tot. It. Cnt. for PS−precon for various fill levels vs ICC/MG and n=25600

ICC
MG
NF=1
NF=2
NF=3
NF=4
NF=5
NF=6
NF=7

1 2 3 4 5 6 7 8

500000

1000000

2000000

4000000

60000000

600000000

No Fill Level

Lo
g

of
 to

ta
l n

on
ze

ro
s

Nonzero Count for fill levels and n=25600 (cond = 1.53e4)

Student Version of MATLAB

2 4 6 8 10
200

400

1000

2000

4000

10000

Nested Chain Length

Lo
g

of
 T

ot
al

 It
er

at
io

n
C

ou
nt

Tot. It. Cnt. for PS−precon for various fill levels vs ICC/MG and n=102400

ICC
MG
NF=1
NF=2
NF=3
NF=4
NF=5

1 2 3 4 5 6

10
7

10
8

10
9

10
10

No Fill Level

Lo
g

of
 to

ta
l n

on
ze

ro
s

Nonzero Count for fill levels and n=102400 (cond = 6.07e4)

Student Version of MATLAB

Fig. 5: We compare the total iteration count against the maximum depth d of the AIC preconditioner. We also show various no-fill levels and compare
these results against the ICC(0) and MG preconditioners. As described above, the no-fill level is the level in the inverse chain of matrices at which we stop
adding new entries to the subsequent matrices in the chain in the interest of maintaining sparsity. For various problem sizes and condition numbers, we further
investigate the total number of maximum nonzeroes in the deepest matrix in the chain; the number of nonzeroes is based on the no-fill level. (a): Problem size
of n = 100 and κ = 7.0e1; (b): problem size of n = 400 and κ = 2.6e2; (c): problem size of n = 1600 and κ = 9.9e2; (d): problem size of n = 6400
and κ = 3.9e3; (e): problem size of n = 25600 and κ = 1.5e4; (f): problem size of n = 102400 and κ = 6.1e4. For each graph, ICC refers to Incomplete
Cholesky, MG refers to Multigrid, and NF followed by the value indicates the level at which no further matrices deeper in the the AIC solver’s inverse chain
add entries to existing locations with zero values.

as shown in the Algorithms in Sections II- III. We further
showed how precomputations can simplify the algorithmic
implementation. Prototype results showed the efficacy of the
AIC preconditioner in Section IV; we discussed the need for
sparsification approaches to maintain the structural sparsity of
the system and introduced our no-fill sparsifier in Section V;
results for the full AIC preconditioner in C/Petsc were
presented in Section VI, where we showed that the AIC
preconditioner possesses significantly-reduced iteration counts
as compared to commonly-employed Incomplete Cholesky and
Multigrid preconditioners.

We are currently working to combine the strengths of the
new AIC and no-fill sparsification approaches with the CMG

preconditioner. Additionally, we are working on parallelization
techniques for computing the no-fill sparsifiers in the setup
of the inverse chain of matrices; indeed, these matrices
mostly require sparse matrix-matrix multiplications, which
lend themselves well to parallelization.

Finally, one can further reduce the size of the V-cycle in
Figure 1 by reducing the value of d; this would increase the
iteration count, but there could be circumstances in which
this is more computationally efficient for more dense initial
systems. Such an option has not been explored, but it would
be useful to ascertain if such a trade-off could be computed
in an a priori manner, especially as we move to combine the
AIC, CMG and sparsification approaches.

REFERENCES

[1] M. H. Langston, M. T. Harris, P.-D. Letourneau, R. Lethin, and J. Ezick,
“Combinatorial multigrid: Advanced preconditionersfor ill-conditioned
linear systems,” in IEEE Conference on High Performance Extreme
Computing (HPEC), Waltham, MA, USA. IEEE, Sep. 2019.

[2] R. Peng and D. A. Spielman, “An efficient parallel solver for SDD linear
systems,” CoRR, vol. abs/1311.3286, 2013.

[3] R. Giles, “Report from the advanced scientific computing advisory
committee (ASCAC) visiting committee on exascale transition draft
report for comment,” U.S. Department of Energy, Office of Science,
Tech. Rep., 2020.

[4] B. A. Cipra, “The best of the 20th century: Editors name top 10
algorithms,” SIAM News, vol. 33, no. 4, p. 2, 2000.

[5] National Research Council; Committee on the Mathematical Sciences in
2025; Board on Mathematical Sciences And Their Applications; Division
on Engineering and Physical Sciences, Fueling Innovation and Discovery:
The Mathematical Sciences in the 21st Century. The National Academies
Press, 2012.

[6] S. Ashby, P. Beckman, J. Chen, P. COlella, B. Collins, D. Vrawford,
J. Dongarra, D. Kothe, R. Lusk, P. Messina, T. Mezzacappa, P. Moin,
M. Norman, R. Rosner, V. Sarkar, A. Siegel, A. White, and M. Wright,
“The opportunities and challenges of exascale computing: Summary of
the ascac subcommittee,” DOE, Tech. Rep., 2010.

[7] D. Brown, J. Bell, D. Estep, W. Gropp, B. Hendrickson, S. Keller-
McNulty, D. Keyes, J. T. Oden, L. Petzold, and M. Wright, “Applied
mathematics at the u.s. department of energy: Past, present and a view
to the future,” DOE, Tech. Rep., 2008.

[8] J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington, G. Chiu,
R. C. W. Dally, J. Dongarra, A. Geist, G. Grider, R. Haring, J. Hittinger,
A. Hoisie, D. Klein, P. Kogge, R. Lethin, V. Sarkar, R. Schreiber,
J. Shalf, and R. Stevens, “Top ten exascale research challenges: Doe
ascac subcommittee report,” DOE, Tech. Rep., 2014.

[9] W. Hackbusch and U. Trottenberg, Multigrid Methods, Lecture Notes in
Mathematics Volume 960, 1st ed. Springer-Verlag, 1982.

[10] W. Hackbusch, Multigrid Methods and Applications, 1st ed. Springer,
1985.

[11] L. Greengard and V. Rokhlin, “The rapid evaluation of potential fields in
three dimensions,” in Vortex Methods, ser. Lecture Notes in Mathematics,
C. Anderson and C. Greengard, Eds. N.Y.: Springer Verlag, 1988.

[12] M. H. Langston, L. Greengard, and D. Zorin, “A free-space adaptive
FMM-based PDE solver in three dimensions,” Communications in Applied
Mathematics and Computational Science, vol. 6, no. 1, pp. 79–122, 2011.

[13] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. S.
Sampath, A. Shringarpure, R. W. Vuduc, L. Ying, D. Zorin, and G. Biros,
“A massively parallel adaptive fast multipole method on heterogeneous
architectures,” Commun. ACM, vol. 55, no. 5, pp. 101–109, 2012.

[14] M. H. Langston, M. M. Baskaran, B. Meister, N. Vasilache, and R. Lethin,
“Re-introduction of communication-avoiding FMM-accelerated FFTs with
GPU acceleration,” in IEEE Conference on High Performance Extreme
Computing (HPEC), Waltham, MA, USA. IEEE, Sep. 2013.

[15] J. Cooley and J.W.Tukey, “An algorithm for the machine computation
of the complex Fourier series,” Mathematics of Computation, vol. 19,
pp. 297–301, Apr. 1998.

[16] M. Frigo and S. G. Johnson, “FoFTW: An adaptive software architecture
for the FFT,” in Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal
Processing, vol. 3, Seattle, WA, May 1998, pp. 1381–1384. [Online].
Available: citeseer.ist.psu.edu/frigo98fftw.html

[17] P.-D. Letourneau, M. H. Langston, B. Meister, and R. Lethin,
“A sparse multidimensional FFT for real positive vectors,” ArXiv
e-prints: arXiv:1604.06682 [cs.DS, Apr. 2016. [Online]. Available:
http://arxiv.org/pdf/1604.06682v3.pdf

[18] P.-D. Letournau, M. H. Langston, and R. Lethin, “A sparse multi-
dimensional fast fourier transform with stability to noise in the context
of image processing and change detection,” in IEEE High Performance
Extreme Computing Conference (HPEC), Sep. 2016.

[19] P. T. P. Tang, J. Park, D. Kim, and V. Petrov, “A framework for low-
communication 1-d FFT,” in SC, J. K. Hollingsworth, Ed. IEEE/ACM,
2012, p. 42.

[20] C. Cecka, “Low communication FMM-accelerated FFT on GPUs,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2017.

[21] O. Axelsson, Iterative Solution Methods. Cambridge University Press,
1994.

[22] W. Hackbusch, Iterative solution of large sparse systems of equations,
ser. Applied mathematical sciences. New York, NY: Springer, 1994,
vol. 95.

[23] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2003.

[24] O. Axelsson, “Milestones in the development of iterative solution
methods,” J. Electrical and Computer Engineering, vol. 2010, 2010.

[25] J. Shewchuk, “An introduction to the conjugate gra-
dient method without the agonizing pain,” 1994,
http://www.cs.cmu.edu/ quake-papers/painless-conjugate-gradient.pdf.
[Online]. Available: http://www.cs.cmu.edu/ quake-papers/painless-
conjugate-gradient.pdf

[26] E. G. Boman and B. Hendrickson, “Support theory for preconditioning,”
SIAM J. Matrix Anal. Appl., vol. 25, no. 3, pp. 694–717, Mar. 2003.
[Online]. Available: http://dx.doi.org/10.1137/S0895479801390637

[27] D. A. Spielman and S.-H. Teng, “Solving sparse, symmetric, diagonally-
dominant linear systems in time 0(m1.31),” in IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society,
2003, pp. 416–427.

[28] ——, “Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems,” in STOC, L. Babai, Ed. ACM,
2004, pp. 81–90.

[29] ——, “Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems,” CoRR, vol. cs.DS/0310051,
2003.

[30] ——, “Nearly-linear time algorithms for preconditioning and solving sym-
metric, diagonally dominant linear systems,” CoRR, vol. abs/cs/0607105,
2006.

[31] E. G. Boman, B. Hendrickson, and S. Vavasis, “Solving elliptic finite
element systems in near-linear time with support preconditioners,” SIAM
Journal on Numerical Analysis, vol. 46, no. 6, pp. 3264–3284, 2008.
[Online]. Available: https://doi.org/10.1137/040611781

[32] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,
“Learning with local and global consistency,” in Proceedings of the 16th
International Conference on Neural Information Processing Systems, ser.
NIPS’03. Cambridge, MA, USA: MIT Press, 2003, p. 321–328.

[33] D. Zhou and B. Schölkopf, “A regularization framework for learning
from graph data,” in ICML 2004, 2004.

[34] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using Gaussian fields and harmonic functions,” in ICML, T. Fawcett and
N. Mishra, Eds. AAAI Press, 2003, pp. 912–919.

[35] L. Orecchia and N. K. Vishnoi, “Towards an sdp-based approach to
spectral methods: A nearly-linear-time algorithm for graph partitioning
and decomposition,” in Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, ser. SODA ’11. USA: Society
for Industrial and Applied Mathematics, 2011, p. 532–545.

[36] Y. P. Liu and A. Sidford, “Faster energy maximization for faster
maximum flow,” in Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, ser. STOC 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 803–814.
[Online]. Available: https://doi.org/10.1145/3357713.3384247

[37] J. Ros-Giralt, A. Bohara, S. Yellamraju, M. H. Langston, R. Lethin,
Y. Jiang, L. Tassiulas, J. Li, Y. Tan, and M. Veeraraghavan, “On the
bottleneck structure of congestion-controlled networks,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 3, no. 3, Dec. 2019. [Online]. Available:
https://doi.org/10.1145/3366707

[38] G. Golub and C. Van Loan, Matrix Computations. USA: The Johns
Hopkins University Press, 1996.

[39] I. Koutis, G. L. Miller, and R. Peng, “A nearly-m log n time solver for
SDD linear systems,” in FOCS, R. Ostrovsky, Ed. IEEE, 2011, pp.
590–598.

[40] R. Peng, “Algorithm design using spectral graph theory,” Ph.D. disserta-
tion, Carnegie Mellon University, Pittsburgh, August 2013.

[41] I. Koutis, G. L. Miller, and D. Tolliver, “Combinatorial preconditioners
and multilevel solvers for problems in computer vision and image
processing,” Computer Vision and Image Understanding, vol. 115, no. 12,
pp. 1638–1646, 2011.

[42] D. Saunders and Z. Wan, “Smith normal form of dense
integer matrices fast algorithms into practice,” in Proceedings
of the 2004 international symposium on Symbolic and algebraic
computation. ACM Press, 2004, pp. 274–281. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1005285.1005325

[43] D. A. Spielman and S.-H. Teng, “Spectral sparsification of graphs,” CoRR,
vol. abs/0808.4134, 2008.

[44] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Web page,”
2013, http://www.mcs.anl.gov/petsc.

[45] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang, “PETSc
users manual,” Argonne National Laboratory, Tech. Rep. ANL-95/11 -
Revision 3.5, 2014. [Online]. Available: http://www.mcs.anl.gov/petsc

