
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

System Software Research for System Software Research for
ExtremeExtreme--Scale ComputingScale Computing

LCF Seminar

March 22, 2010

Ron Oldfield
Sandia National Laboratories

Sandia National Laboratories
Projects supported by ASC and LDRD programs

Ron Brightwell
Kurt Ferreira
Rolf Riesen
Jim Laros
Sue Kelly
Todd Kordenbrock

Team Members

SAND2010-1702P

Our Traditional View of Capability Our Traditional View of Capability
SystemsSystems

• Current MPP systems

– Cray XT3 (Red Storm): 38,400 cores

– IBM BlueGene/P: 163,840 cores

– IBM RoadRunner: 12,900 Cell, 12,960 cores

– Cray XT5 (JaguarPF): 224,256 cores

• Next-generation systems larger and more complex

– 100K+ compute nodes (millions of cores)

– Hybrid multicore, GPUs, NVRAM

• Application Characteristics

– Use large fractions of systems (40% or more)

– Long running

– Often resource (i.e., memory) constrained

“MPP systems are the particle accelerators
of the computing world” [Bill Camp]

“MPP systems are the particle accelerators
of the computing world” [Bill Camp]

Segment of Particle Accellerator from DESY
(Courtesy of Wikipedia)

Red Storm Cabinets at Sandia
(© Sandia Corporation)

Supercomputers should be thought of as highly
specialized instruments for scientific discovery

Paragon
 Tens of users

 First periods

processing MPP

 World record

performance

 Routine 3D

simulations

 SUNMOS lightweight

kernel

ASCI Red
 Production MPP

 Hundreds of users

 Red & Black

partitions

 Improved

interconnect

 High-fidelity coupled

3-D physics

 Puma/Cougar

lightweight kernel

Cplant
 Commodity-based

supercomputer

 Hundreds of users

 Enhanced simulation

capacity

 Linux-based OS

licensed for

commercialization

Red Storm
 41 Tflops

 Custom interconnect

 Purpose built RAS

 Highly balanced and

scalable

 Catamount

lightweight kernel

nCUBE2
 Sandia’s first large

MPP

 Achieved Gflops

performance on

applications

1990

1993

1997

1999

2004

Sandia Has a Long History in MPP Sandia Has a Long History in MPP
Architectures and System SoftwareArchitectures and System Software

Outline of Our Plans for the Outline of Our Plans for the
INCITE AllocationINCITE Allocation

INCITE provides platforms necessary to continue
research in system software

• Research Activities
– Lightweight Kernel OS and Virtualization

– Resilience

– Scalable I/O

– Power Efficiency and Utilization

– Debugging

• System Requirements

• Our first set of experiments

Drivers for LWK Compute Node OSDrivers for LWK Compute Node OS

• Practical advantages

– Low OS noise

– Performance – tuned for scalability

– Determinism – inverted resource management

– Reliability

• Research advantages

– Small and simple

– Freedom to innovate (see “Berkeley View”)

• Multi-core

• Virtualization

– Focused on capability systems

– Much simpler to create LWK than mainstream OS

P0
P1
P2
P3

See “The Case of the Missing Supercomputer Performance”, Petrini, et al.

We Know OS Noise MattersWe Know OS Noise Matters

• Impact of noise increases with scale (basic probability)

• Multi-core increases load on OS

• Idle noise measurements distort reality
– Not asking OS to do anything

– Micro-benchmark != real application

Impact of OS Noise on ApplicationsImpact of OS Noise on Applications

• Built a kernel-level noise injection framework in
Catamount for synthetic noise injection

• Parameters for noise injection
– Frequency and duation of noise

– Set of participating nodes

– Randomization method for noise patterns

• Results
– Importance of how is noise injected (frequency vs

duration)

– Distribution of “noisy” nodes

– Application characteristics likely amplify or absorb noise

• Continuing Work with INCITE
– More applications at scale

– Other noise sources: network and memory
management

Project KittenProject Kitten
Our Vehicle for OS ResearchOur Vehicle for OS Research

• Creating modern open-source LWK platform

– Multi-core becoming MPP on a chip, requires innovation

– Leverage hardware virtualization for flexibility

• Retain scalability and determinism of Catamount

• Better match user and vendor expectations

• Available from http://software.sandia.gov/trac/kitten

Kitten Supports SMARTMAPKitten Supports SMARTMAP
Simple Mapping of Address Region Tables for MultiSimple Mapping of Address Region Tables for Multi--

core Aware Programmingcore Aware Programming

• Direct access to shared memory

– Access to “remote” data by flipping bits in
the virtual address

• Each process still has a separate virtual
address space

– Everything is “private” and everything is
“shared”

– Processes can be threads

• Allows MPI to eliminate all extraneous
memory-to-memory copies

– Single-copy MPI messages

– No extra copying for non-contiguous datatypes

– In-place and threaded collective operations

• Not just for MPI

– Emulate POSIX shared memory regions

– One-sided PGAS operations

– Can be used by applications directly

– Leverages lightweight kernel page table layout

Top-level page table slots
are used to create a fixed-
offset virtual address space

Kitten and Palacios for VirtualizationKitten and Palacios for Virtualization

Kitten homepage: https://software.sandia.gov/trac/kitten
Palacios homepage: http://www.v3vee.org/palacios/

• Palacios is a VMM from Northwestern

• For end-user flexibility

– Provide full functionality OS functionality

– Run commodity Oses

– Dynamic selection of compute-node OS

– Convenient packaging

• For research

– X-Stack development and large-scale test

– Add capabilities to guest OS without
modifying it

– VM migration/resilience

– Instrumentation and debugging

http://www.v3vee.org/palacios/
http://www.v3vee.org/palacios/
http://www.v3vee.org/palacios/
http://www.v3vee.org/palacios/
https://software.sandia.gov/trac/kitten
https://software.sandia.gov/trac/kitten

LargeLarge--scale Virtualizationscale Virtualization
Experiments on Red StormExperiments on Red Storm

CTH (shaped charge) Sage (timing_c)

< 5% virtualization overhead
for all cases tested

Resilience!?... Its an I/O ProblemResilience!?... Its an I/O Problem

Most of our I/O is for resilience
– Application-directed checkpoints are the

primary protection against faults

– Frequency of checkpoint is based on
probability of failure

– Probability of failure is based on
application size.

Our resilience efforts reduce I/O
– System-influence on how/when to chkpt

– Viability of incremental checkpoints,

– Diskless checkpoints,

– Partial-redundant computation

Oldfield et al. Modeling the impact of checkpoints
on next-generations systems. In Proceedings of
the 24th IEEE MSST, Sept. 2007

The Case For/Against The Case For/Against
Incremental CheckpointingIncremental Checkpointing

• Lightweight lib to identify modified memory

– Page-table trickery identifies modified pages

– Crypto-hash (MD5) identifies modified blocks

– No app changes required; user/system
specifies interval to collect memory statistic

– User & kernel-space version for Catamount.
CNL user-space version in testing.

• Results

– Runtime overhead < 10%

– CTH: modified memory within 8% of app

– LAMMPS: modified memory 4x larger than
checkpoint

Exploring Redundant ComputationExploring Redundant Computation

• Motivation

– Overhead of checkpoint unacceptable

– Increase MTTI

– Reduce defensive I/O

– Hypothesis: at large scale, overhead of
redundant computation is less than
checkpoint/restart

• rMPI library

– Between application and MPI

– Replicates ranks 0..n

– Checkpoint still required (just not as often)

– rMPI almost a full MPI implementation

• MPI_Wtime, MPI_Probe, … need to return
same answer for both nodes

• Message order and other MPI semantics
must be preserved

Scalable I/O ServicesScalable I/O Services
Even our I/O research is about reducing I/OEven our I/O research is about reducing I/O

Purpose
– Leverage available compute/service node

resources for I/O caching and data processing

Application-Level I/O Services
– Lightweight File System (authr, authn, storage)

– PnetCDF caching service

– SQL Proxy (for NGC)

– Sparse-matrix visualization (for NGC) CTH
Particle tracking

INCITE Plans
– PnetCDF caching

– Investigate placement issues

– ADIOS I/O services for fusion, climate,
combustion apps on Jaguar

Client Application
(compute nodes) I/O Service

(compute/service nodes)

Raw
Data

Processed
Data

Lustre File
System

Cache/aggregate
/process

Visualization
Client

Scalable I/O ServicesScalable I/O Services
CTH Fragment DetectionCTH Fragment Detection

Motivation
– Fragment detection requires data from every

time step (I/O intensive)

– Detection process takes 30% of time-step
calculation (scaling issues)

– Integrating detection software with CTH is
intrusive on developer

CTH fragment detection service
– Extra compute nodes provide in-line processing

(overlap fragment detection with time step
calculation)

– Only output fragments to storage (reduce I/O)

– Non-intrusive

• Looks like normal I/O (spymaster interface)

• Can be configured out-of-band

Status
– Developing client/server stubs for spymaster

– Developing Paraview proxy service

CTH
(compute nodes)

Fragment-Detection
Service

(compute nodes)

Raw
Data

Fragment
Data Lustre File

System

Detect
Fragments

Visualization
Client

spymaster

Fragment detection service provides
on-the-fly data analysis with no
modifications to CTH.

Scalable I/O ServicesScalable I/O Services
NetCDF I/O Cache NetCDF I/O Cache

NetCDF Caching Service
– Service aggregates/caches data

and pushes data to storage

– Async I/O allows overlap of I/O
and computation

Client Application
(compute nodes) NetCDF Service

(compute nodes)

NetCDF
requests

Processed
Data

Lustre File
SystemCache/aggregate

Motivation
– Synchronous I/O libraries require app to wait

until data is on storage device

– Not enough cache on compute nodes to handle
“I/O bursts”

– NetCDF is basis of important I/O libs at Sandia
(Exodus)

Placement Issues for I/O ServicesPlacement Issues for I/O Services

Application Power and Application Power and
Frequency AnalysisFrequency Analysis

Motivation

– Power is one of or the most important considerations in fielding current and
next generation HPC systems.

– HPC application power use and factors impacting this use are not well
studied.

– Power saving techniques used in commodity operating systems will greatly
impact HPC application performance.

Modifications to RAS and Catamount to support power savings

– RAS

• Added instrumentation and collection capabilities to RAS

– Catamount

• Power savings during OS idle, per core

• OS-level frequency scaling capability

• User space library interface to frequency scaling

• MPI profiling layer instrumentation

Power Frequency and AnalysisPower Frequency and Analysis
Phase Phase 11

Based on previous power analysis studies
– Laros et.al. “Topics on Measuring Real Power Usage on High

Performance Computing Platforms”

Analyze performance vs. power efficiency (at scale)
– STATIC frequency modification during application run-time.

– Procedure

• Execute application suite using a range of Pstates defining
both frequency and input voltage of CPU.

• Collect power usage during runs and analyze total energy
use vs. application run-time

Power Frequency Analysis: LAAMPsPower Frequency Analysis: LAAMPs
Small scale results of multiple LAAMPs runsSmall scale results of multiple LAAMPs runs

Power Frequency and AnalysisPower Frequency and Analysis

Phase 2Phase 2

• Analyze performance vs. power efficiency (at scale)
– DYNAMIC frequency modification during application run-time

– DYNAMIC frequency modification defined as deterministic
frequency change driven by application characteristics. Pstate
change during MPI barrier for example

• Phase 3 testing, if necessary, will be based on Phase 1
and 2 analysis

• Additionally, power data will be collected during a range
of other systems software testing accomplished as part
of this overall project

Debugging: Fast_whereDebugging: Fast_where

• A simple utility

– Command line interface

– 375 SLOC written in /bin/sh; runs at user level

– No system software changes; no special daemons

• A “fast” implementation of the “where” function
found in traditional debuggers

– Implicitly verifies health of all nodes in job

• Originally written to address specific operational
needs on Red Storm

• Summarizes the results by active function
– which processes (e.g. ranks) are in each function

– how many processes are in each function

• Can also request the full stack trace for individual
(or range of) processes

• Syntax:
– fast_where [-b batch_id] program_exe

– other optional arguments are system-specific and are
needed if more than one parallel application is running within
one batch job

Total Time to Execute and Coalesce "where" for all Processes in a

Job

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 5000 10000 15000 20000 25000

Number of Processes

S
e

c
o

n
d

s

Redstorm-s

Related Research

• Stack Trace Analysis Tool (STAT)

– LLNL and U-Wisc collaboration

• Multicast Reduction Network (MRNet)

– middleware and network protocol
for scalable tools

– used by STAT

• Totalview, gdb and other debuggers

Debugging: Research QuestionsDebugging: Research Questions

• What advantages can LWKs offer debugging tools?

• At 20K cores (5000 nodes), fast_where response of 40
seconds is acceptable to the interactive user.
What/where is the breaking point for this simple
algorithm?

• What additional features or scalability algorithms can be
added without compromising the tool’s simple
architecture?

Summary and RequestsSummary and Requests

INCITE provides necessary platforms for scalable system software research

Some of our codes require dedicated access

– OS research (Kitten, Catamount, Noise)

– Power efficiency (need access to RAS)

We need applications from open science community

– For memory characterization, resilience, OS research, I/O research

– Some of our apps are export controlled

– Have GTC, XGC, POP, AMG, LAMMPS,

– Would like to see and Open Science Benchmark Suite

Thanks

– Ron Brightwell, Kevin Pedretti, Rolf Riesen, Jim Laros, Kurt Ferreira, Todd
Kordenbrock, Sue Kelly

– Don Maxwell (for helping set up our dedicated testing)

Our First DayOur First Day

