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Explosives Detection Methods

I X-ray screenings only sensitive to
variations in density

I Techniques based on neutrons are
sensitive to nuclear structure

I Thermal Neutron Analysis looks at
gamma particles resulting from
thermal neutron capture (e.g. 2.2
MeV gamma from capture on
Hydrogen, 10.8 MeV from capture on
Nitrogen-14)

I Fast Neutron Analysis techniques use
neutron attenuation to do
tomographic imaging and look at
resonance absorptions
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The Time-Resolved Integrative Optical Neutron (TRION)
Detector

I Fast Neutron Analysis technique, looking at resonances in neutron
absorption and doing tomographic imaging

I Interrogates sample with 1-2 MHz pulse neutron beam
I Uses TOF to determine energies in 1-10 MeV range
I Scintillation light focused onto time gated optics: gate only allows

certain energies to pass
I Drawbacks are complexities of pulsed neutron beam and only discrete

energy measurements
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G. Chen and R. Lanza’s Method

I Similar to TRION detector, but does not use TOF to determine
neutron energy

I Accelerate deuterium/protons onto a deuterium/Lithium target →
neutrons with energies dependent on the angle between the beam and
detector

I Similar drawbacks to TRION
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Contraband Detection with MIRA

I Light elements such as O, C, N
have resonant features in the
neutron cross section

I The energy-dependent
attenuation of 1-10 MeV
neutrons leaves a “fingerprint”
of the material’s elemental
composition
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Why is MIRA Different

I Down scatter in first detector provides
range of energies in one scan

I Down scatter in first detector provides
time tag for TOF energy
measurement/windowing to reject
backgrounds

I Competitors often have schemes
involving one energy per scan

I Gated electronics coupled with pulsed
neutron accelerator for TOF
measurement

I Angular dependent neutron generator
(deuterium/protons on
deuterium/lithium target) with sample
and detector rotating with respect to
beam
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Two Methods of Energy Calculation - TOF Method
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I With 1 ns timing resolution and 1 cm depth resolution, we can expect
7% energy resolution at 3 MeV (1 ns requires a change in
scintillator/electronics)
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Previous Results - 2 Block Setup

Sample
H (M/cc) C (M/cc) N (M/cc) O (M/cc)
exp. mea. exp. mea. exp. mea. exp. mea.

HDPE 0.23 0.23 0.11 0.09 0.00 0.00 0.00 0.00

Water 0.22 0.22 0.00 0.04 0.00 0.02 0.11 0.10

AN 0.06 0.08 0.00 0.00 0.03 0.03 0.05 0.04
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Lessons Learned

I Resolution Matters! - both
timing and position

I Scan time matters - more blocks
allow for only one scan, and a
faster one

I With more blocks we have
bonus information on scattered
neutrons (more on that in a bit)
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Two Methods of Energy Calculation - Trajectory Method

I Ei = 14.1 MeV
1+tan2θ

where
I Ei is the energy before passing through the sample
I θ = tan−1( z

x ) is the deflection angle
I α is the angle defined by the angular extent of the (d-T) generator’s

emission region

I σEi
=

√(
∂Ei
∂θ

)2
σ2θ +

(
∂Ei
∂α

)2
σ2α

= 2
√

2Ei tanθ

√(
z

x2+z2

)2
σ2x +

(
−x

x2+z2

)2
σ2z + σ2α

I With 5 mm spatial resolution, we can expect 5% energy resolution at
3 MeV
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Current Detector - Six Block Setup
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Bonus Mode of Operation - Elastic Scattering

θ	



φ	



I Assuming m << M1 the
neutron energy lost in collision
with sample nuclei is
Q = 4mM

(M+m)2
sin2 φ2

I If we get the energy before and
after a collision, Q, along with
the trajectory information, the
mass of the nuclei, M, in the
sample is uniquely determined:

M = 2m
Q sin2 φ2

(
1±

√
1− Q

sin2 φ
2

)
−m

1For the special case of m=M (i.e. scattering on Hydrogen), the two particles scatter at

right angles to each other and the energy loss is Q = E0cos
2φ
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The Block Detectors

Scintillator block 

Photomultiplier tubes 

Holders 

Cover 

Waveguide 

LED board 

I Designed to be fast: EJ-200
plastic scintillator, ET model
9821KB PMTs

I Digitized by Struck SIS3320
eight-channel 250 MHz
digitizers

I LED board for calibration: intended to use 60Co calibration for center
tubes, then use equidistant LEDs to gain match

I Wave guide is there for better position reconstruction (failure at
recoils close to PMT faces)

I White paint on front of scintillator, black on sides for better position
reconstruction
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Position Reconstruction

I Maximum-likelihood with optical
transport model

I Model has some regions where
position is ambiguous, getting worse
at positions closer to PMT faces

I Outside this region, position is
reconstructed with ∼ 5 mm
resolution
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Trigger Scheme
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I Looking for 250 ns coincidence between front and back block groups

I Not set up to take advantage of elastic scattering
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Algorithm Development

I In order to reconstruct the material distribution and elemental
composition, we need the attenuation at every

I (x,y,z) position and every detector combination
I for every element (HCNO)
I and every target voxel
I for a range of energies

I Due to memory and CPU restrictions
I (x,y) position broken into ∼1 inch bins, z position 1 cm bins
I either assume material and reconstruct image or
I assume sample spatial extent and reconstruct material
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Algorithm Development - Polyethylene test object, 2 blocks

I Position, time, energy of each detector hit is smeared, assigned pixel
and detector ID

I Time-of-flight is calculated, required to be within 5 ns of the
expected for that pixel/detector ID

I Energy is calculated from trajectory method
I Maximum-likelihood expectation maximization (MLEM) algorithm is

used against Hydrogen and Carbon elemental attenuation lengths to
reconstruct image
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Status

I We have a couple of scans with nothing, a polyethylene block, water,
hydrogen peroxide, and polyethylene comb-like test object (imaging)

I The scans might not be enough stats
I Backgrounds are high (better timing resolution could solve this)

Melinda Sweany (SNL) Davis, CA - October 11, 2013 19



Status
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Path Forward - Detector Upgrades

I Modifications to detectors:
I PSD plastic or liquid scintillator - background discrimination and

improved timing resolution
I Improved calibration scheme
I Improved position reconstruction - thicker light guide or change in

PMT placement
I New enclosure or modifications to existing (thicker light guide will

require more room than is available)

I Alternative to hardware modifications:
I Attempt to reject events that reconstruct a small depths
I Re-bin the pixelization such that we have fine resolution toward the

center and coarse resolution on the outer layers (each depth could be
different guided by optical simulation)
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Path Forward - Simulations

I Geant4 simulations to explore effect on observation space (will
scattering be a problem?)

I Optics simulation (what is the optimum thickness? Does it improve
small depth ambiguities?)

I Better understanding of the optical model with LED scan along PMT
faces for each block

I Use MC simulated data to bypass difficulties in position
reconstruction and test ResponseBuilder model and unfolding

I Make predictions about minimum detectable quantities and time to
detection

I Scaling study to larger system
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Path Forward - Algorithm Development and Data Taking

I Algorithm Development
I How do we handle large detector response matrices? Borrow from

medical imaging?
I How do we speed up the analysis? GPUs?

I Data taking
I PMT angular and position dependence
I Lab tests at SNLL
I Field tests at SNLA with real explosives
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