

Contraband Detection using Materials Identification by Resonance Attenuation (MIRA)

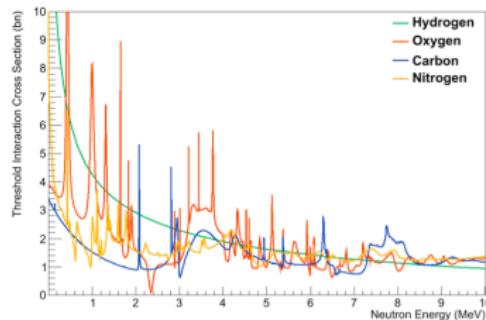
Melinda Sweany

Sandia National Laboratories

October 11, 2013

This work was supported by Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. SAND Number #####.

Acknowledgements


Many have contributed to this work at SNL, including:
Jim Brennan, Nathalie Le Galloudec, Peter Marleau,
Stan Mrowka, Aaron Nowack, and Dan Throckmorton

Outline

- ▶ Explosives Detection with Fast Neutrons - Summary
- ▶ Material Identification through Resonant Attenuation - Overview and Methods
- ▶ Prototype results with two block setup
- ▶ Detector development for six block setup
- ▶ Simulation and algorithm development
- ▶ Path forward

Explosives Detection Methods

- ▶ X-ray screenings only sensitive to variations in density
- ▶ Techniques based on neutrons are sensitive to nuclear structure
 - ▶ Thermal Neutron Analysis looks at gamma particles resulting from thermal neutron capture (e.g. 2.2 MeV gamma from capture on Hydrogen, 10.8 MeV from capture on Nitrogen-14)
 - ▶ Fast Neutron Analysis techniques use neutron attenuation to do tomographic imaging and look at resonance absorptions

The Time-Resolved Integrative Optical Neutron (TRION) Detector

- ▶ Fast Neutron Analysis technique, looking at resonances in neutron absorption and doing tomographic imaging
- ▶ Interrogates sample with 1-2 MHz pulse neutron beam
- ▶ Uses TOF to determine energies in 1-10 MeV range
- ▶ Scintillation light focused onto time gated optics: gate only allows certain energies to pass
- ▶ Drawbacks are complexities of pulsed neutron beam and only discrete energy measurements

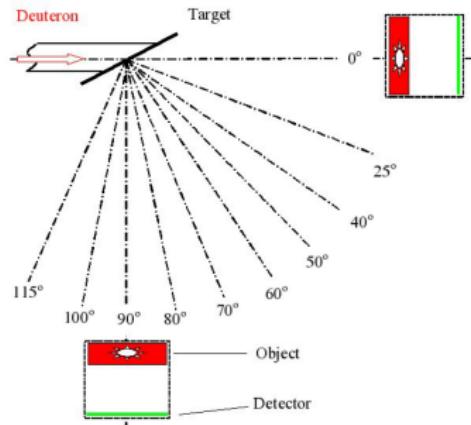
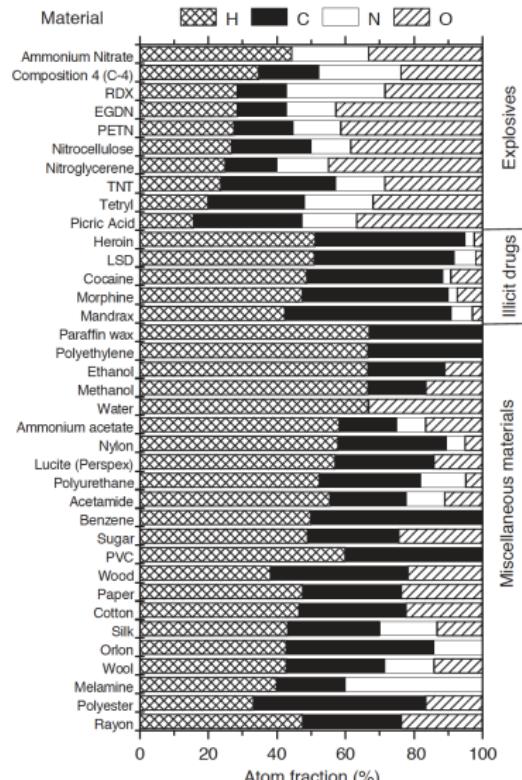
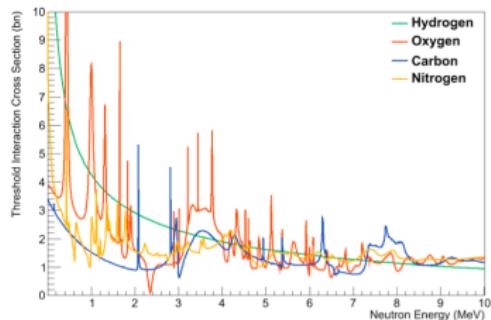
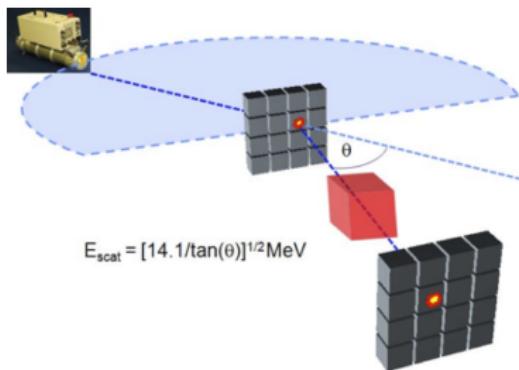

Fig. 28c Camera 2, $E_n = 7.3$ MeV

Fig. 28d Camera 3, $E_n = 3.1$ MeV



G. Chen and R. Lanza's Method

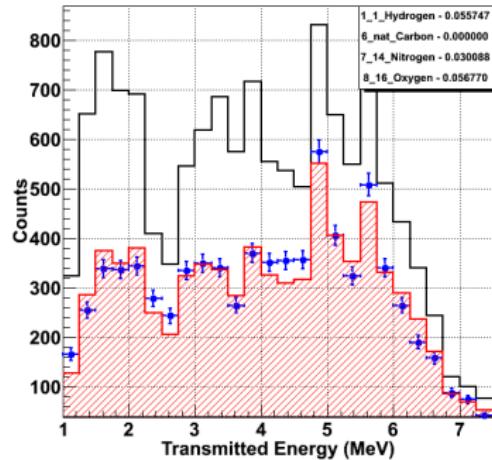
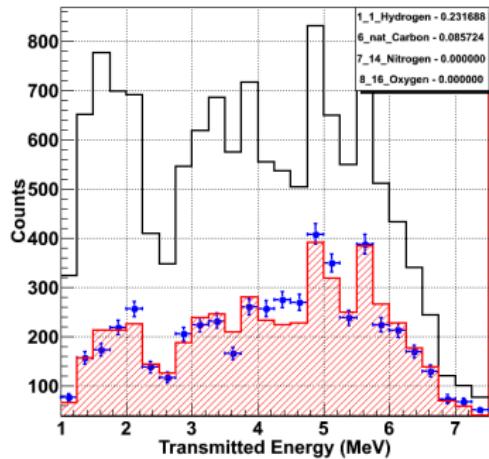
- ▶ Similar to TRION detector, but does not use TOF to determine neutron energy
- ▶ Accelerate deuterium/protons onto a deuterium/Lithium target → neutrons with energies dependent on the angle between the beam and detector
- ▶ Similar drawbacks to TRION



Contraband Detection with MIRA

- ▶ Light elements such as O, C, N have resonant features in the neutron cross section
- ▶ The energy-dependent attenuation of 1-10 MeV neutrons leaves a “fingerprint” of the material’s elemental composition

Why is MIRA Different

- ▶ Down scatter in first detector provides range of energies in one scan
- ▶ Down scatter in first detector provides time tag for TOF energy measurement/windowing to reject backgrounds
- ▶ Competitors often have schemes involving one energy per scan
 - ▶ Gated electronics coupled with pulsed neutron accelerator for TOF measurement
 - ▶ Angular dependent neutron generator (deuterium/protons on deuterium/lithium target) with sample and detector rotating with respect to beam

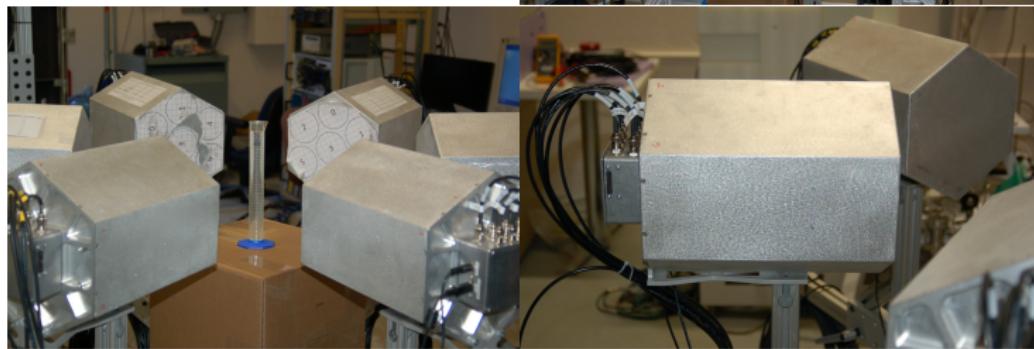
Two Methods of Energy Calculation - TOF Method

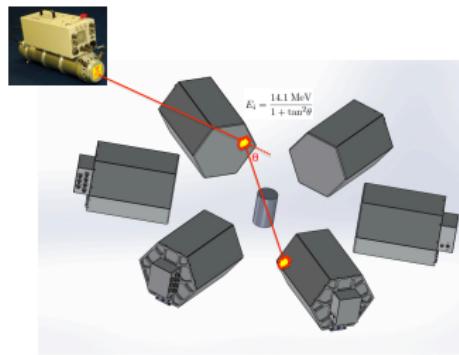
- ▶ $E_i = \frac{m}{2} \left(\frac{d}{t}\right)^2$ where
 - ▶ E_i is the energy before passing through the sample
 - ▶ d is the distance between two detectors on either side of the object to be interrogated,
 - ▶ t is the time-of-flight
 - ▶ m is the mass of the neutron
- ▶ $\sigma_{E_i} = \sqrt{\left(\frac{\partial E_i}{\partial d}\right)^2 \sigma_d^2 + \left(\frac{\partial E_i}{\partial t}\right)^2 \sigma_t^2} = 2E_i \sqrt{\frac{\sigma_d^2}{d^2} + \frac{\sigma_t^2}{t^2}}$
- ▶ With 1 ns timing resolution and 1 cm depth resolution, we can expect 7% energy resolution at 3 MeV (1 ns requires a change in scintillator/electronics)

Previous Results - 2 Block Setup

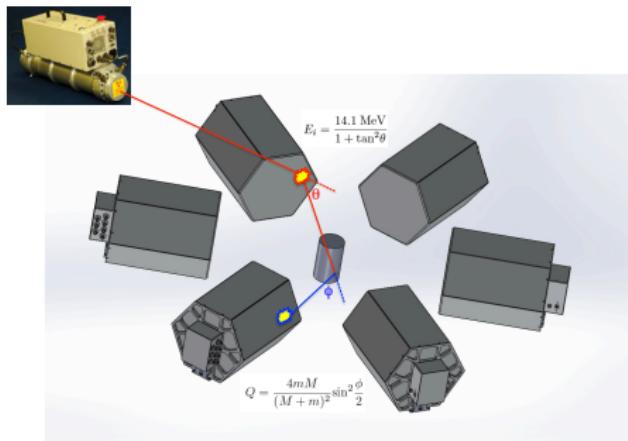
Sample	H (M/cc)		C (M/cc)		N (M/cc)		O (M/cc)	
	exp.	mea.	exp.	mea.	exp.	mea.	exp.	mea.
HDPE	0.23	0.23	0.11	0.09	0.00	0.00	0.00	0.00
Water	0.22	0.22	0.00	0.04	0.00	0.02	0.11	0.10
AN	0.06	0.08	0.00	0.00	0.03	0.03	0.05	0.04

Lessons Learned





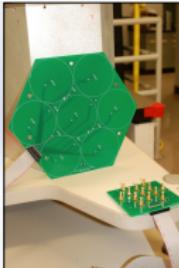
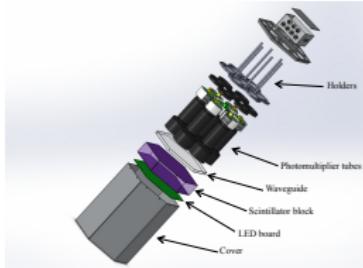
- ▶ Resolution Matters! - both timing and position
- ▶ Scan time matters - more blocks allow for only one scan, and a faster one
- ▶ With more blocks we have bonus information on scattered neutrons (more on that in a bit)


Two Methods of Energy Calculation - Trajectory Method

- ▶ $E_i = \frac{14.1 \text{ MeV}}{1+\tan^2\theta}$ where
 - ▶ E_i is the energy before passing through the sample
 - ▶ $\theta = \tan^{-1}(\frac{z}{x})$ is the deflection angle
 - ▶ α is the angle defined by the angular extent of the (d-T) generator's emission region
- ▶ $\sigma_{E_i} = \sqrt{\left(\frac{\partial E_i}{\partial \theta}\right)^2 \sigma_\theta^2 + \left(\frac{\partial E_i}{\partial \alpha}\right)^2 \sigma_\alpha^2}$
 $= 2\sqrt{2}E_i \tan\theta \sqrt{\left(\frac{z}{x^2+z^2}\right)^2 \sigma_x^2 + \left(\frac{-x}{x^2+z^2}\right)^2 \sigma_z^2 + \sigma_\alpha^2}$
- ▶ With 5 mm spatial resolution, we can expect 5% energy resolution at 3 MeV

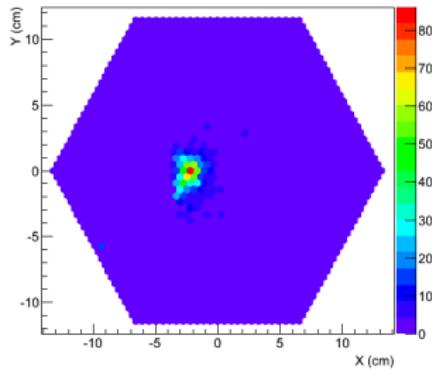
Current Detector - Six Block Setup

Bonus Mode of Operation - Elastic Scattering

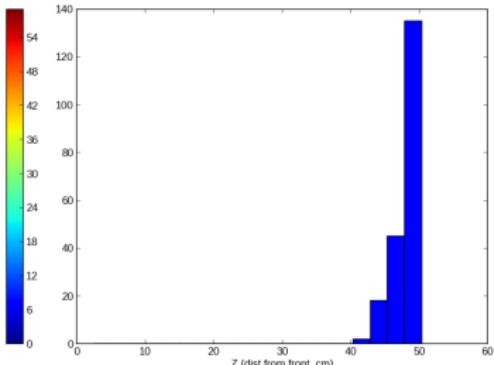
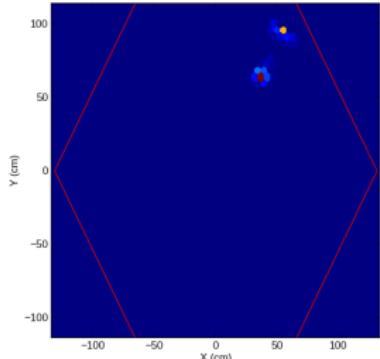



- ▶ Assuming $m \ll M^1$ the neutron energy lost in collision with sample nuclei is
$$Q = \frac{4mM}{(M+m)^2} \sin^2 \frac{\phi}{2}$$
- ▶ If we get the energy before and after a collision, Q , along with the trajectory information, the mass of the nuclei, M , in the sample is uniquely determined:

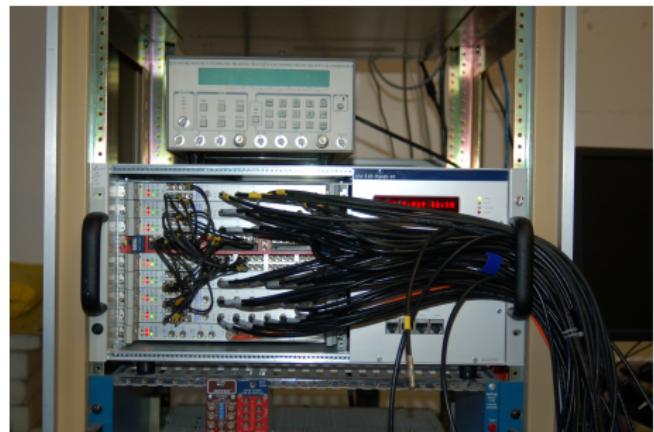
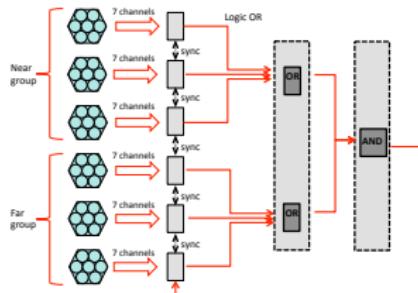
$$M = \frac{2m}{Q} \sin^2 \frac{\phi}{2} \left(1 \pm \sqrt{1 - \frac{Q}{\sin^2 \frac{\phi}{2}}} \right) - m$$


¹For the special case of $m=M$ (i.e. scattering on Hydrogen), the two particles scatter at right angles to each other and the energy loss is $Q = E_0 \cos^2 \phi$

The Block Detectors

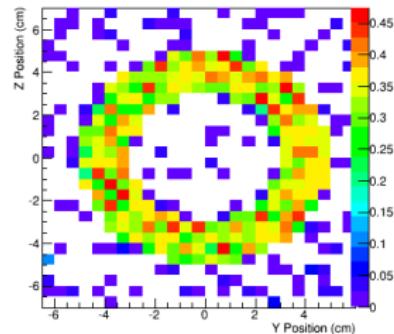
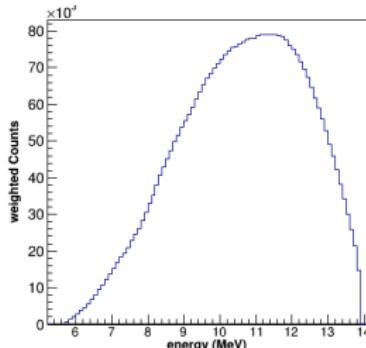
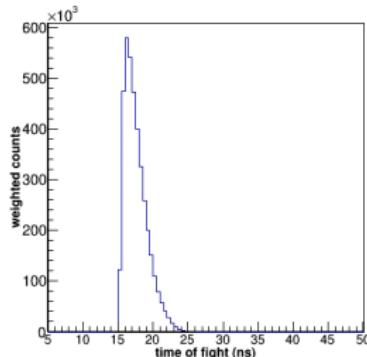



- ▶ Designed to be fast: EJ-200 plastic scintillator, ET model 9821KB PMTs
- ▶ Digitized by Struck SIS3320 eight-channel 250 MHz digitizers
- ▶ LED board for calibration: intended to use ^{60}Co calibration for center tubes, then use equidistant LEDs to gain match
- ▶ Wave guide is there for better position reconstruction (failure at recoils close to PMT faces)
- ▶ White paint on front of scintillator, black on sides for better position reconstruction



Position Reconstruction

- ▶ Maximum-likelihood with optical transport model
- ▶ Model has some regions where position is ambiguous, getting worse at positions closer to PMT faces
- ▶ Outside this region, position is reconstructed with ~ 5 mm resolution

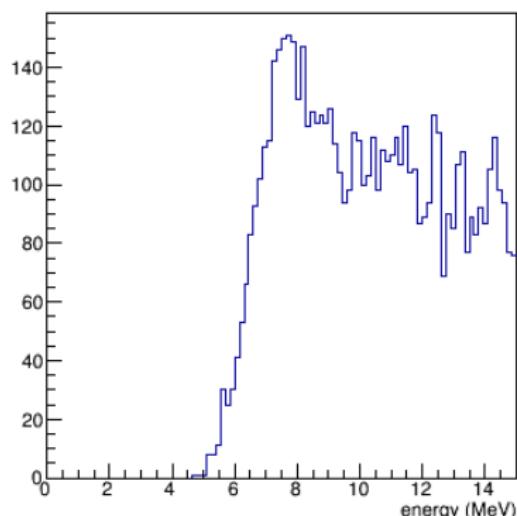
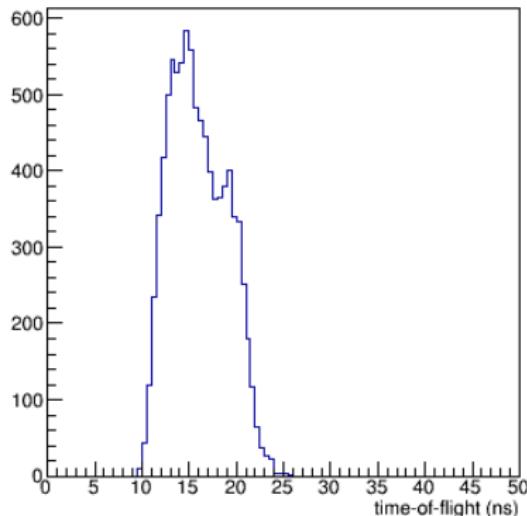
Trigger Scheme

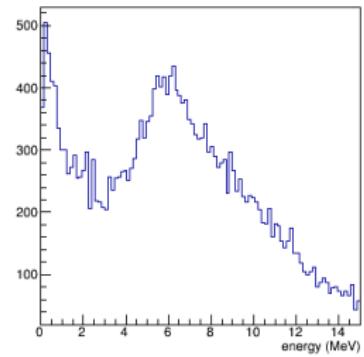
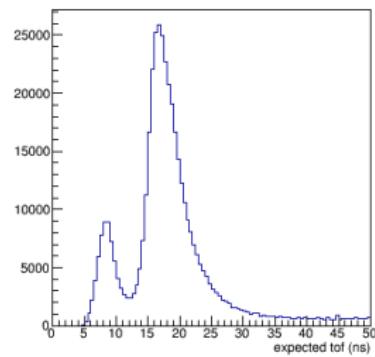
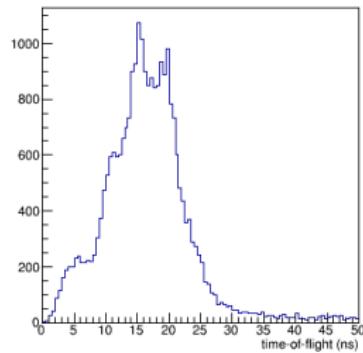




- ▶ Looking for 250 ns coincidence between front and back block groups
- ▶ Not set up to take advantage of elastic scattering

Algorithm Development

- ▶ In order to reconstruct the material distribution and elemental composition, we need the attenuation at every
 - ▶ (x,y,z) position and every detector combination
 - ▶ for every element (HCNO)
 - ▶ and every target voxel
 - ▶ for a range of energies
- ▶ Due to memory and CPU restrictions
 - ▶ (x,y) position broken into \sim 1 inch bins, z position 1 cm bins
 - ▶ either assume material and reconstruct image or
 - ▶ assume sample spatial extent and reconstruct material



Algorithm Development - Polyethylene test object, 2 blocks




- ▶ Position, time, energy of each detector hit is smeared, assigned pixel and detector ID
- ▶ Time-of-flight is calculated, required to be within 5 ns of the expected for that pixel/detector ID
- ▶ Energy is calculated from trajectory method
- ▶ Maximum-likelihood expectation maximization (MLEM) algorithm is used against Hydrogen and Carbon elemental attenuation lengths to reconstruct image

Status

- ▶ We have a couple of scans with nothing, a polyethylene block, water, hydrogen peroxide, and polyethylene comb-like test object (imaging)
- ▶ The scans might not be enough stats
- ▶ Backgrounds are high (better timing resolution could solve this)

Status

Path Forward - Detector Upgrades

- ▶ Modifications to detectors:
 - ▶ PSD plastic or liquid scintillator - background discrimination and improved timing resolution
 - ▶ Improved calibration scheme
 - ▶ Improved position reconstruction - thicker light guide or change in PMT placement
 - ▶ New enclosure or modifications to existing (thicker light guide will require more room than is available)
- ▶ Alternative to hardware modifications:
 - ▶ Attempt to reject events that reconstruct a small depths
 - ▶ Re-bin the pixelization such that we have fine resolution toward the center and coarse resolution on the outer layers (each depth could be different guided by optical simulation)

Path Forward - Simulations

- ▶ Geant4 simulations to explore effect on observation space (will scattering be a problem?)
- ▶ Optics simulation (what is the optimum thickness? Does it improve small depth ambiguities?)
 - ▶ Better understanding of the optical model with LED scan along PMT faces for each block
- ▶ Use MC simulated data to bypass difficulties in position reconstruction and test ResponseBuilder model and unfolding
- ▶ Make predictions about minimum detectable quantities and time to detection
- ▶ Scaling study to larger system

Path Forward - Algorithm Development and Data Taking

- ▶ Algorithm Development
 - ▶ How do we handle large detector response matrices? Borrow from medical imaging?
 - ▶ How do we speed up the analysis? GPUs?
- ▶ Data taking
 - ▶ PMT angular and position dependence
 - ▶ Lab tests at SNLL
 - ▶ Field tests at SNLA with real explosives