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Photonic Photonic 
NanostructuresNanostructures

Nanophotonics Activity

Ultrasubwavelength light control, 
Detection, Sensing , Nanocircuitry

Integrated Photonics, Nanoscale lasing, Strong coupling, Full 3D emission control, 
Thermal control, Solid State lighting, Energy conversion
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Objective : Understand Spontaneous Emission 
Control to Benefit  SSL 

• Sandia has strong capabilities in 3DPC and Nitrides

• Merge  InGaN LED research with 3D photonic 

crystal research.

3D photonic crystals

InGaN LEDs

InGaN LED array incorporated into a 3DPC

InGaN 
post LEDs

Logpile
3DPC

Improving InGaN LED efficiency enhancements will benefit SSL – e.g. Green 
emission.
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Reference: “Photonic crystals: Molding the flow of light”, J.D. Joannopoulos,  R.D. Meade, J. Winn, 
Princeton Univ.Press, NJ(1995)

Periodic Sub-wavelength Structures for EM 
Control:  Photonic Crystals (PC) 

Periodic in 2 dimensions

n2

n1

Periodic in 1 dimension

n1
n2

Periodic in 3 dimensions

n2n1

HfO2/SiO2 DBR cavity Array of TiO2 rods TiO2 logpile PC
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Control of light propagation 

• Guiding, bending and splitting
• Negative refraction
• Self-collimation
• Localization
• Slow light
• Cloaking

Photonic Crystals: A Great Platform for Light Manipulation

S.A. Rinne et. al., Nat. 
Phot. 2, 52(2008)

G. Subramania et. al, Nano 
Lett. 11, 4591 (2011).

T. Ergin et. al.,Science
328, 337 (2010)

Bends

Guide

Cloak

A. Tandaechanurat et. al., Nat 
Photon 5, 91 (2011).

Lasing

K. Ishizaki et.al. , Nat. Phot.,7, 133 
(2013)).

Emission enhancement
S. Kawashima et. al.., Opt. 
Exp. 18, 386 (2010)

E. C. Nelson, et al., Nat Mater 
10, 676 (2011)

Electrical Injection

Control of light emission 

• Full 3D confinement effect

• Photon – Atom Bound states,  

Non- Morkovian emission process

•Photonic Density of States effect
• Spontaneous emission enhancement



8

Spontaneous Emission Control using PC

Radiative rate of an emitting dipole in an EM field 
(Fermi’s Golden Rule)
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Suppression

PC Photonic Density of States

Enhancement

PDOS in free space

Local Photonic Density of States (LDOS)

Also Important :
 Where the emitters are 

located in the unit cell
 The  orientation of the emitter 

dipole w.r.t to the eigenfield

K. Busch and S. John, Phys. Rev. E,58, 3896(1998) 
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• TiO2 inverse opal photonic crystal

• TiO2 logpile photonic crystal

• GaN logpile photonic crystal

• GaN nanowire photonic crystal lasers
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TiO2 Inverse Opal 3D Photonic Crystal 

Periodicity achieved using close packed 
nanospheres -> FCC lattice

High index material: Titania ( TiO2)

1. G. Subramania et. al.  Applied Physics Letters 74, 3933-3935(1999,).
2. G. Subramania et. al. , Synthetic Metals, 116, 445-448 (2001).
3. G. Subramania et.al. , Physical Review B, 63, 235111-235117(2001).
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Multilevel E-beam Fabrication  Process

PC fabricated one layer at a time.

2. Fill and planarize

1.Fabricate first level

3. Make next level

4. Repeat process to make 
additional levels

Alignment 
• Lattice constants < 400nm
• Alignment precision to within 10% of 

lattice constant needed
• High quality Au registration marks

Excellent alignment was obtained 
with both  JEOL- JBX5E and 9300FS 

Device

Alignment Mark
Electron beam

Electron gun

G. Subramania,  Nanotechnology 
18 , 035303 (2007).

Alignment
Planarization
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TiO2 Logpile Photonic Crystal Fabrication Process
1.Deposit SiO2

SiO2

PMMA

2. E-beam Write

3. Reactive-ion Etch

4.E-beam evaporation  
of TiO2

5. Post lift-off

TiO2

E-beam

Substrate

G. Subramania et. al., Adv. Mat. 22, 487-491 (2010)
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G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, Advanced Materials 22, 487-491 (2010)

Visible- Near UV 9 Layer TiO2 Logpile

Polarizer

Substrate

Objective      
( ~ 0.4 NA)

Beamsplitter

Light source

Device

Optical fiber

Spectrometer

Imaging lens tube

Spot size    ~ 
20-30m

Iris

<110>

<110>
<001>

c

a

Logpile

0-5o

Normal direction  stop gap
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Qiming Li et. al., Appl. Phys. Lett. 94, 231105(2009). 

Epitaxial GaN grown though nanostructured template reduces 
dislocation density

Bottom Epi-layer

Top GaN layer

300nm

All GaN Logpile Photonic Crystal

(George T. Wang, Qiming Li)
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1. Si/SiO2 logpile PC

Sapphire

GaN

Si

SiO2

2. After Si is removed 
with KOH.

3. MOCVD GaN growth 
through SiO2 template

4. After complete GaN infiltration 
into SiO2 logpile template

5. GaN logpile PC after SiO2

logpile template removal

GaN growth through logpile template
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a = 300nm

a = 300nm

135nm

100nm

A nine layer all GaN logpile PC

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, Nano Lett. 
11, 4591 (2011).
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Bottom-up epitaxial growth of crystalline GaN

G. Subramania et. al. , Nano Lett. 11, 4591 (2011).
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Optical Response

a = 260nm_Ref
a = 280nm_Ref
a = 300nm_Ref
a = 260nm_Tra
a = 280nm_Tra
a = 300nm_Tra

Experiment FDTD Simulation
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G. Subramania et. al. , Nano Lett. 11, 4591 (2011).

Stop Gap
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Photonic Crystal III-N nanowire laser array

4μm GaN Bufferlayer

Bottom GaN Layer

120nm InGaN Underlayer

Sapphire Substrate

5X MQW Stack
20nm GaN cap layer

Ping Lu, 
Sandia

Lattice Constant

10 – 100 µm squares

Growth of III-N active material

Inductively coupled plasma dry etch

Wet etch using KOH process

TEM images

Patterning of 2DPC  using e-beam lithography
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A low lasing threshold is achieved with  < 
500kW/cm2 for all PC lasers fabricated.

Pump spot is tunable in size and power density.

Array Element Dimensions:  
d=145 nm and a=320 nm.

Optical response – low threshold lasing
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Gain from multiple gain sections

InGaN MQWs

InGaN Underlayer
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Multicolor Laser Array

• Wavelength  tunability (lattice 
constant and nanowire diameter  ).

• Multiple color  laser emission on a 
single epitaxial wafer  covering a 
spectral range from 380-440nm.

• Multiple gain regions can 
simultaneously lase

• Pathway for enhancing the 
available lasing spectral 
range

Results
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 Photonic Crystals are very effective in 
controlling light matter interaction

 Enhances photonic density of states 

 Low threshold lasing

 Demonstration of  PCs in the visible with 
different material systems

 TiO2, GaN, Si

Summary and Outlook

GaN

GaN

TiO2

TiO2
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Thank you for your attention!
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Backup slides
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Nanowire Photonic Crystal Lasers
(Jeremy B. Wright, Sheng Liu, Alexander Benz, George T. Wang, Qiming Li, Daniel D. 
Koleske, Ping Lu, Huiwen Xu, Luke Lester, Ting S. Luk, Igal Brener)

0 1000 2000 3000 4000 5000 6000

0.0
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IQ
E

Current Density (A/cm2)

LED
Low Threshold Laser
High Threshold Laser

The LED “efficiency droop” problem: The LED “efficiency droop” problem: 
• InGaN LEDs exhibit a decrease in efficiency at 

high drive currents
• limits the operating current density
• increases the cost per lumen

 4 color lasers suitably combined 
can achieve high color rendering

 Lasers can potentially mitigate the 
efficiency droop problem !

Why Lasers in Solid State Lighting? 

A. Neumann et al., "Four-color laser white illuminant demonstrating high color-rendering quality," Opt.
Express, vol. 19, pp. A982-A990, 2011.

M. Coltrin, Sandia



• Reduced strain

– Greater range of alloy 
compositions

• Easily integrated into two-
dimensional arrays 

GaN

InGaN

M. Krames, Philips Lumileds

Why Nanowires for Lasing?
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Vertically emitting photonic crystal lasers - Theory

 Low lasing threshold 

 Increase interaction of light with the 
gain region 

 Enabled by ‘Low group velocity 
modes’  in photonic crystal

 Vertical Emission 

 At higher bands there are low group 
velocity modes  near the Gamma 
point 

 Near the Gamma point the in-plane 
wave vectors are small resulting in 
near-normal emission

 Wavelength Tunability

 Achieved  through lattice constant 
and nanowire diameter variation
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Requirements:

• High enough index  with low loss in the visible : 

•n ~ 2.3-2.4 in the visible /w  k< 0.015

• Easy to deposit :  

•Sputtering, evaporation, solgel,  Atomic Layer Deposition

Visible Frequency Logpile Photonic Crystal

Material Choice : TiO2

Method of fabrication: 

• Nanofabrication based on electron 
beam lithography
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Emission Modification in TiO2 Logpile

(www.nn-labs.com)

CdSe red emitting quantum dots

0

500

1000

1500

2000

2500

3000

550 600 650 700

Larger lattice constants a= 350,400 with 4 
Layers 

~ 620nm

G. Subramania, Y. J. Lee, A. J. Fischer, T. S. Luk, C. J. Brinker, D. Dunphy, Appl. Phys. Lett. , 95, 151101(2009)
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Effect of LDOS- Emitter Placement Inside the PC

0.4462

0.4300

Ez field distribution at Xpt

a

Ey field distribution at Xpt

a

X

Y

Field Distribution for the ‘air band’ using  PWE method

‘Air’ band

• Thus far emission control studies typically done 
for emitters in high index region – probing 
dielectric band

• Effect of ‘air band’ modes have not been probed
• Advantages

 Post introduction of light source 
 Choice of light source (QDs or dyes or gas)
 Potentially higher density of states 

enhancement
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Physical access to the ‘air’ region with ability to attach QDs

 Low refractive index: minimal disturbance to photonic bandgap

Requirements for Accessing the ‘Air’ Void Region of the PC

Age and 
cap gel

Disperse by 
sonication Spin coat

Logpile PC Logpile PC

dry  at RT

aerogel

Room temperature Spin Room temperature Spin CoatableCoatable AerogelAerogel

Key Challenge: Locating  the QDs in the void region without affecting the photonic 
bandgap

Brinker group (S. S. Prakash et al., 
Nature 374, 439 (1995) )

Introduce QDs through chemical attachment (3-
mercaptopropyltrimethoxysilane chemistry ) 

Developed by 
Alex Lee

G. Subramania, Y. J. Lee, A. J. Fischer, T. S. Luk, C. J. Brinker, D. Dunphy, Appl. 
Phys. Lett. , 95, 151101(2009)
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Effect of Aerogel and CdSe QD infiltration 

Aerogel and CdSe QD infiltration has negligible effect 
on the bandgap!

Aerogel  Ref. index  
~1.05-1.1
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Substrate

Objective

PC

X-Y Stage

Laser
 Microphotoluminsecence with 532nm (5mW CW pump)

 Equivalent volume of unpattened CdSe infiltrated aerogel 
as reference

G. Subramania, Y. J. Lee, A. J. Fischer, T. S. Luk, C. J. Brinker, D. Dunphy, Appl. Phys. 
Lett. , 95, 151101(2009)

Light emission suppression inside the bandgap and 
enhancement at the band edge
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N = 6

Super- defect cavity d’ = 195nm

N = 6

Super- defect cavity d’ = 195nm
Q~ 1600

~ 
1517nm

Q~ 1600

~ 
1517nm

N = 6

Super- defect cavity d’ = 195nm

N = 6

Super- defect cavity d’ = 195nm
Q~ 1600

~ 
1517nm

Q~ 1600

~ 
1517nm

High Q GaAs 2D PC Cavity Surface plasmon Auston Switch 
(w/E. Shaner)

2D array of TiO2 rods
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Nanhole EOT based sensors 
( w/I. Brener, S. Dirk)

Slow group velocity mode lasing

LL--M Interaction in 2DPCM Interaction in 2DPC

High Purcell factor 
2DPC SOI cavity (w/ 
T.S. Luk)
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Top 4 layers

Bottom 4 layers

Defect layer (5)

Missing Rods

Logpile PC Cavity
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G. Subramania et. al. , Nano Lett. 11, 4591 (2011).
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1. Coat TiO2 wp with neat 3-mercaptopropyltrimethoxysilane (70 °C, 3 
min)

2. Rinse with chloroform
3. Bake wp on hot plate to form linkage (120 °C, 30 min)
4. Place TiO2 wp in TOPO-capped CdSe in toluene (RT, 1 hr)

Coat with MPS

Development of Controlled Coating of Cdse Self-
assembled Monolayer On TiO2 Rods

Rinse off MPS

Bake to form self-
assembled 

monolayer(SAM)
Submerge in CdSe 

suspension to 
exchange ligands Rinse off unattached 

CdSe

Si

O

O

O

Ti

[O]

[Si,Ti][Si,Ti]

S

Cd

[Se]CdSe           

TiO2

MPS            

P. Guyot-Sionnest and C. Wang, J. Phys. Chem. B, 107, 7355 (2003)
J. Pacifico, D. Gomez, and P. Mulvaney, Adv. Mater. 17, 415 (2005)
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G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, Advanced Materials 22, 487-491 (2010)

Visible- Near UV 9 Layer TiO2 Logpile
Parallel

Perpendicular

Polarizer

Substrate

Objective      
( ~ 0.4 NA)

Beamsplitter

Light source

Device

Optical fiber

Spectrometer

Imaging lens tube

Spot size    ~ 
20-30m

Iris

<110>

<110>
<001>

c

a

Logpile

0-5o
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In a periodic potential 
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Apply Bloch’s Theorem

Band Structure Calculation

t-iet)E(r, 
t-iet)H(r, 

Solve Electromagnetic  wave  equation for Plane wave
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Plane Wave Expansion Method
Reciprocal (K) space
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Eigen value equation
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Eigen value equation becomes a 
matrix equation for which you can 
write a code and solve for band 
structure within the first Brillouin zone.

 n ~ 2.3

 4% bandgap

 ~ 20nm @ 500nm

0.4462

0.4300

U
W

Photonic Band Structure for TiO2 logpile

1st BZ


