


*Exceptional service in the national interest*



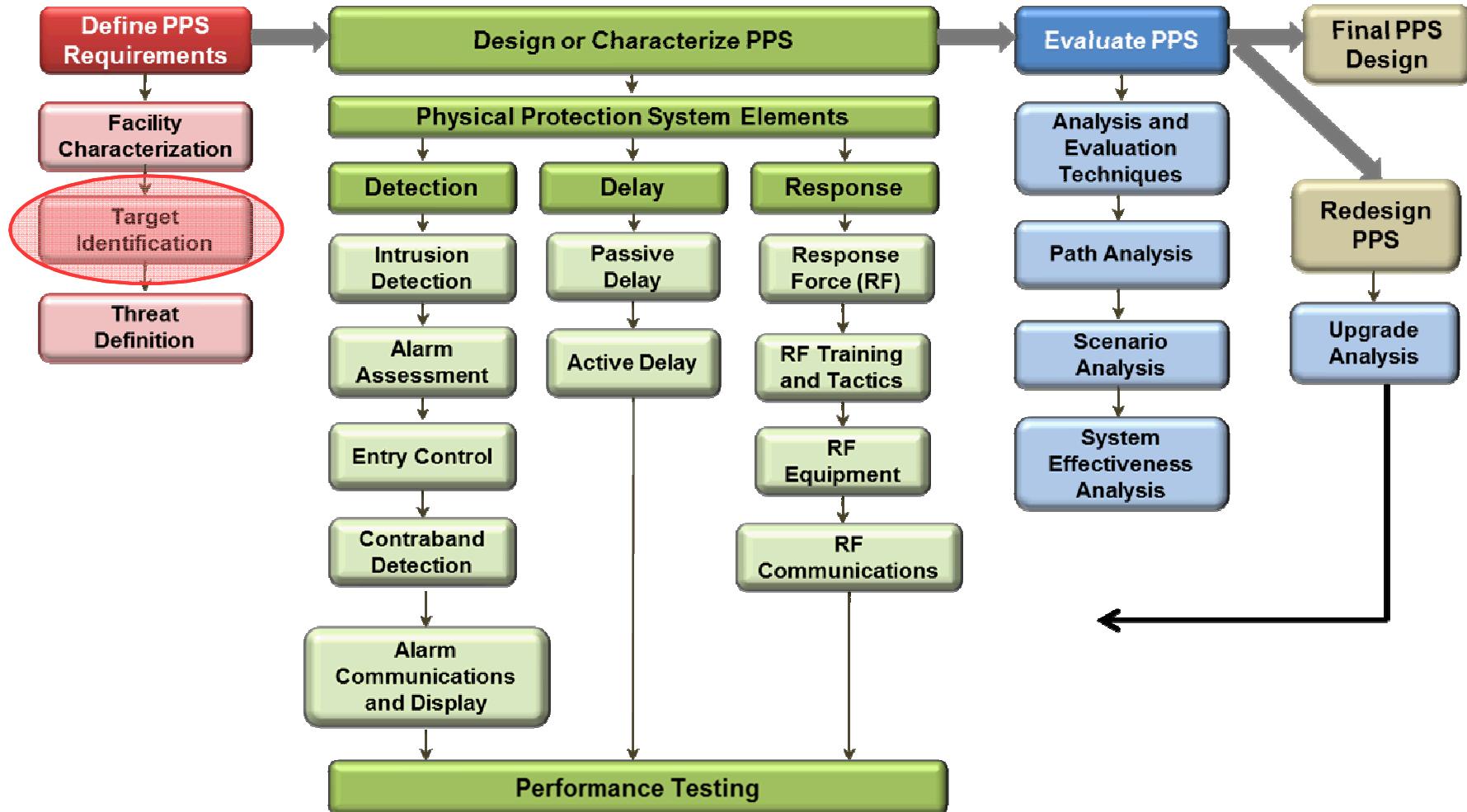
# Target Identification and Characterization

**Felicia A. Durán, Ph.D.**  
**Security Systems Analysis**

**Korea Hydro Nuclear Power/Central Research Institute Visit**  
**September 23 – October 4, 2013**



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 2013-XXXXP


ACKNOWLEDGEMENT: Includes content from SAND2009-1437P, SAND2011-XXXXP, and SAND2012-5719P

# Objectives

- After this presentation, you should be able to:
  - List major target identification process steps
  - Determine how to prioritize targets based on consequences



# Design and Evaluation Process



# Targets

- Target – Something that is subject to danger, risk or harm or loss
- Theft targets
  - Nuclear and radioactive materials
- Sabotage targets
  - Nuclear and radioactive materials
  - Process or support equipment needed to prevent unacceptable radiological consequences
- Other potential targets
  - Facility may have other assets it chooses to protect
  - Design and evaluation process applies to any type of target



# Targets – What Are They?

- Pure products
- High-grade and/or low-grade materials
- Radioisotope sources
- Power reactors
- Production processes
- Facilities / locations processing plutonium or highly enriched uranium (Pu or HEU)
- Radioactive waste storage areas
- Transport vehicles
- Facility safeguards and security systems



# Target Identification

- Basic target identification concepts
  - Protection needs
  - Operational impacts
  - Target worth
  - Target location
- Target identification application
  - Security policy
  - Target types
  - Consequence measures
  - Referential information



# Target Identification Process

1. Identify protection goals
  - What must be protected and from whom?
2. Identify types of materials and facilities
  - Target type
3. Target categorization and consequence
  - Conservative analysis
4. Develop target listing
  - Material inventories



# Material Categorization

- Nuclear material – Attractiveness level
  - Material form
    - Related to ease in which material could be used to make a nuclear explosive device
  - Categorization
    - Usually dependent on element, isotopic concentration, mass, and irradiation history
- Radiological material
  - Similar to that of nuclear material
    - Level of health risk
    - Material amount

| Material         | Form                    | Cat. A | Cat. B           | Cat. C         |
|------------------|-------------------------|--------|------------------|----------------|
| Pu               | Unirradiated            | > 2 kg | >500 g<br>< 2 kg | >15 g<br>500 g |
| U <sup>235</sup> | Unirradiated<br>>20 %   | > 5 kg | >1g < 5 kg       | >15 g<br>1 kg  |
| U <sup>235</sup> | Unirradiated<br>10-20 % | > 2 kg | < 2 kg > 500 g   | 1 kg to 10 kg  |
| Fuel             | Irradiated              | —      | < 10% fissile    | —              |

Example: Categorization of Nuclear Material

# Consequence

- Consequence is impact of target loss
  - Type and quantity
  - Effect on health and safety
  - Effect on national security
- Consequence values indicate relative importance
  - Consequence values may range from 0.0 to 1.0
- Values come from national / international consensus group to provide consistency across facilities

# Additional Consequence Considerations

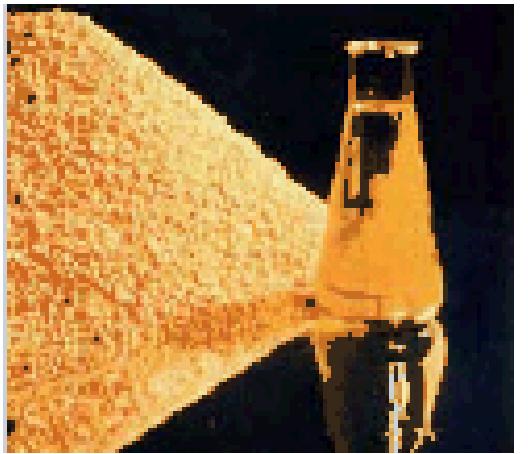
- Target factors
  - Location
  - Container characteristics
  - Restraints
  - Weight
  - Portability
  - Discrete or roll-up



# Material Consequence – Examples

Nuclear Material Consequence Table

| Material                 | Consequence Value |
|--------------------------|-------------------|
| Weapon or Test Device    | 1.0               |
| Cat A Pure Products      | 0.8               |
| Cat A Simple Compounds   | 0.7               |
| Cat A Low Grade Material | 0.6               |
| Cat B Quantity           | 0.4               |
| Cat C Quantity           | 0.2               |
| Cat D Quantity           | 0.1               |


Radiological Material Consequence Table

| Radiological Sabotage | Consequence Value |
|-----------------------|-------------------|
| > 2.5 Sv              | 1.0               |
| 1.0 - 2.5 Sv          | 0.5               |
| 0.5 - 1.0 Sv          | 0.2               |
| 0.25 - 0.5 Sv         | 0.1               |
| < 0.25 Sv             | 0.01              |

VS.

# Summary

- Target identification process steps
  1. Identify protection goals
  2. Identify types of materials and facilities
  3. Identify target categories
  4. Develop target list
- Consequence is impact of target loss

