STK Transition Team

4.29.8
Sprint Review

SAND2013- 8085P

Outline

This sprint’s goal:
Correct issues uncovered with early adoption
of STK Mesh

Sprint 4.29-8 backlog

— consistent connectivity API

— excessive memory use at scale
— optional upward connectivities
— user support

Results
Next sprint...

STK Mesh Connectivity API

Background:

STK mesh upgrade activity was recently completed,
however changes to APl were recommended by SM
team (as part of their removal of backward
compatibility layer)

Story:

Document and socialize a proposal for a consistent
connectivity API.

Story:

Implement & refactor apps to use new API

STK Mesh Connectivity API

API for connectivity access socialized and documented

All methods to access “others” removed or made private to STK mesh classes

On BulkData:
Entity const* begin XXXs (Entity entity) const;

where XXX is [node, edge, face, element]

On Bucket:
Entity const* begin YYY¥s(size type bucket ordinal)
const;

where YYY is [node, edge, face, element]

Other connectivity types (e.g. constraints) may be accessed through equivalent
begin (.., EntityRank rank) methods

Feedback from teams indicates work to be done on constraint support,
additional methods for other relation types, and more examples

STK Mesh Connectivity API
Implementation

STK Mesh connectivity APl implemented in all applications
Minimal changes required to remove “others” methods from public API
Removing from BulkData required changes only to Agio_PeriodBC_Base.C

Removing from Bucket required only a change from public to private
methods (internal macro-defined methods still call these)

Runtime of performance tests assessed before and after changes (about 80
remained after culling short, failing, and inconsistent tests):

Average -1.72
Worst 0.92
Best -11.97

This is a result of fragile Redsky testing.

Excessive memory use at scale

Background:

FY13 ASC L2 Milestone Nalu scaling w/ Trilinos
uncovered issues with excessive memory use at large
scale.

Team surmised that distributed index should be
investigated.

Story:

Decisively instrument & collect data on excessive
memory use.

ldentify root cause & propose solutions.

Nalu memory profiling —
weak/strong scaling

Instrument & collect data on excessive memory use on the Nalu
problem that identified scaling issue.

Strong scaling:

EdgeOpenlet Nalu test on cielo. 1.1 Billion Elements
— From: 8,192 processors — 137,000 elem/proc
— Up to: 104,000 processors — 10,780 elem/proc

* Use “Tracking Allocator” to gather detailed data

* |dentified memory/communication issue if #proc = 2N

— Edge ID numbering algorithm was overloading Distributed Index
containers on lower numbered processors (see next slide)

— Added workaround which significantly reduced memory use
— Need to “fix” underlying issue with Distributed Index.

Nalu memory profiling — strong scaling

NOTE: All memory numbers are “max processor”

“Bad” uses unmodified edge id formula Simplified Illustration of Edge ID/DI issue

“New” uses edge id formula with workaround

1200 —— cmmmBad - Hi . . N
) =g e Memory * Processor responsible for Entity Key (~ID):
1000 - e===Bad - Current Bt h | bi & cilm D5E
New - High Water A — Each processor has several bins of size to
800 - Voot Ty e / store keys.
600 — Responsible Processor = (key/256) % #proc
400 When creating edges, need unique key/id. Each
00 processor was using this formula:
0 — EdgelD = (rank+1) << 32 +1..2..3..
600 S — If #proc = 27N, then first 256 ids/edges on each
500 1 Execution Time processor assigned to processor 0
400 * New formula:
300 —\m/\n’/\ — EdgelD = (rank+1) << 32 + (256 * rank) + 1..2..3..
200 \ — Each processor more likely to be responsible for
100 - - local edges.
0 — More evenly distributes edges in worst case
— Only slightly less even distribution in “best” case
600 — Much less communication in most cases.
500 Distributed Index — CON: EdgelD formula knows about
Memory internals of Distributed Index algorithm.
400
300 Distributed Index max min median
65536 - old 532.3 4.865 5.035 high water
A A 265.2 1.084 1.149 current
200 65536 - new 8.058 5.708 7.243 high water
2.272 1.900 2.035 current
100 65552 -old 7.930 5.712 7.253 high water
- 2.213 1.895 2.036 current
0 - , , , , ' : , 65552 - new 8.019 5.756 7.264 high water

2.235 1.933 2.036 current
SO APA SR < BN L R AT S N

o O u‘? q:\\ O o;? c,‘? c;? '\,?’ q,?’ v°
N v) ™ © © © C°) >) \9

Ratio of

processor.

Nalu memory profiling — strong scaling

Ratio Peak/Current

total 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.03 1.03
distributed index 3.12 3.15 3.17 3.23 3.35 3.59 3.55 3.59 3.77 4.10 4.29
fields 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
entity comm 1.00 1.00 1.00 1.06 1.00 1.00 1.00 1.00 1.00 1.03 1.00
fixed connectivity 1.41 137 1.34 1.33 1.29 1.30 1.30 1.31 1.28 1.29 1.30
dynamic connectivity 2.00 1.97 1.99 2.02 2.10 2.08 2.10 2.10 2.14 2.18 2.18
%Total (Peak) Percentage of each allocation type to the total (peak)
distributed index 0.16 0.14 0.13 0.13 0.12 0.13 0.13 0.13 0.12 0.13 0.14
fields 0.33 0.33 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.30 0.31
entity comm 0.20 0.23 0.25 0.28 0.27 0.27 0.28 0.28 0.29 0.31 0.28
fixed connectivity 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07
dynamic connectivity 0.67 0.65 0.63 0.62 0.62 0.61 0.61 0.62 0.60 0.60
%Total (Current) Percentage of each allocation type to the total (current)
distributed index 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03
fields 0.34 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.31 0.31
entity comm 0.20 0.23 0.25 0.26 0.28 0.28 0.28 0.28 0.30 0.30
fixed connectivity 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
dynamic connectivity 0.34 0.33 0.32 0.31 0.30 0.30 0.30 0.30 0.29 0.28
8k 16k 24k 32k 48k 64k-16 64k 64k+16 80k 96k 101k
350 350
300 [\ Peak Memory 300 '\ Current Memory am—total
\ \ e distributed index
250 250 .
\ \ emfie|ds
200 '4\ 200 emm—entity comm
150 150 e=mmfixed connectivity
100 - 100 - e dynamic connectiviy
50 - 50 -
0 . : . 0 _m_\
v © D 47 Q © Vv Q] O v ™ © b 47 Q © v Q & \\}
Cb‘q '&‘cb mv‘?« ’);{‘\b @?f; é;‘;» ‘é;?’b é;?‘o %\,?;» q%?p \9&\0 %‘q '»“’?’% qyf‘;\ %%,‘\b @,‘\j') é;;» é;?’b G;?‘o %&w q%?’o \9&\0

2000.00 — e Execution Time

Nalu memory profiling = | ===

e Current Memory
1500.00 +

e H\W Memory B

weak scaling ———

1000.00 +

Weak Scaling — 2 sets of runs
A: 3, 24,192, 1536, 12288, 98304 (91,240 el/p) >00.00
B:2,16,128,1024, 8192, 65536 (136,860 el/p)

0-00 T T T T T
1 2 3 4 5 6
High Water Memory A High Water Memory B
300.00 — ETD?:tarlishutedlndex 400.00
2000 7 = 300.00
200.00
150.00 200.00 -
100.00
100.00 ’__L
50.00 E
0.00 0.00 T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Current Memory A Current Memory B
300.00 400.00
350.00
250.00 300.00
200.00 250.00
150.00 200.00
150.00
100.00 100.00 -f
0.00 : . : : , . 000 - : . . :
1 2 3 4 5 6

Excessive memory use at scale:
Nalu memory profiling — weak/strong scaling

 |dentified and “fixed” issue with edge id/Distributed
Index interaction

— Can now run larger jobs more reliably

* |dentified algorithms with large peak/current
memory use
— story added to investigate Dynamic Connectivity

e |dentified algorithms with unexpected memory
usage and/or growth.
— Known issue in Muelu

* Tracking allocator very useful in identifying memory
usage patterns.

Optional upward connectivities

Background:

Part of the recent STK mesh upgrade work proposed
(but didn’t implement) a memory saving option to
conditionally store upward connectivities.

Story:

Implement option to store upward connectivity &
determine impact on performance (run-time &
memory use).

Optional Upward Connectivity

High level

— STK used to require that every “downward” (higher to
lower topology) connectivity be matched with an
“upward” connectivity

— Upward connectivity can cost significant memory to
maintain

— Some problems have no need for certain types of
upward connectivity
* E.g. edge-based nalu problems do not need Edge->Element
connectivity
— Node->Element connectivity is mandatory, allows any
type of upward connectivity to be computed if it is not
stored

Optional Upward Connectivity

 What we did

— Refactor STK products to break the assumption that
upward connectivity is always stored

* Encapsulate connectivity retrieval into a new function
“get_connectivity”; this func works regardless of whether
connectivity is stored or needs to be computed

— App code should not, in general, need to use this. If an app uses
certain connectivity types, it’s best to store it.

* |dentify which algorithms required upward connectivity
— E.g. induced parts, aura maintenance

* Have these algorithms use get_connectivity

— Run certain tests to quantify memory savings when
some upward connectivity is not stored

— Run all tests to quantify overhead of get_connectivity
with default settings (all upward conn stored)

Optional Upward Connectivity

e The Test

— Nalu edgeOpenlet weak scaling
— 91,240 elements per proc
— Connectivity choices: [on: regular, irregular

off: invalid]
To
From Node - off off on A
required
(irregular)
Edge on - off off
(regular)
Required
Face on on - on € forNalu
(regular) (irregular) (irregular)
Element on on on -

(regular) (irregular) (irregular)

o
00

o
o

o

Ratio Compared to votd
~

o
RO

Optional Upward Connectivity

B Time

m High Water

m Connectivity
HW

3 24 192 1536 12228 98304
Num Procs

Optional Upward Connectivity

e Future work

— Try to quantify overhead of get_connectivty in default
case (all connectivity left on, traditional behavior)

» Redsky runs revealed average 1% slowdown, with 5+%
slowdown on a handful of aplication performance tests

* We could not duplicate this slowdown on our blades

e We did see a small ~“3% slowdown for our internal stk
performance tests

* As a result, this work has not been pushed
— Disabling upward connectivity is not available to
Fmwk-based apps due to widespread assumptions in

Fmwk (and other) layers
* If there is demand for this feature, it will require additional
stories

Performance diagnostic tools

Background:

STKT team is committed to measuring impact of any
significant work on Apps performance (run-time &
memory use).

Also, we want to better inform FY14 performance
milestone improvements with data (hot spots, etc...)

Story:
Evaluate Valgrind Dynamic Heap Analysis Tool

Story:

Develop a tool to ‘automatically’ gather App teams’
Performance Test Suite (PTS) data.

Memory Profiling Tool: DHAT
 DHAT — Valgrind Dynamic Heap Analysis Tool

max-live: 4,834,680 in 1 blocks
tot-alloc: 11,347,360 in 4 blocks (avg size 2836840.00)
deaths: 4, at avg age 44 (0.00% of prog lifetime)
acc-ratios: 0.00 rd, 0.00 wr (0 b-read, O b-written)

at 0x4A054E8: malloc (vg_replace_malloc.c:270)

by 0XE55629: ML_matmat_mult (ml_matmat_mult.c:1156)

Bvals = NULL;
while (Bvals == NULL) {
lots_of space++;
Bvals = (double *) ML _allocate(B_allocated * sizeof(double));
B_allocated /= 2;
}
ML_free(Bvals);

Probably OK, but...

-------------------- 160 of 200 --------------------
max-live: 284,256 in 1 blocks
tot-alloc: 284,256 in 1 blocks (avg size 284256.00)
deaths: 1, atavgage 11,878,118,517 (75.02% of prog lifetime)
acc-ratios: 0.00 rd, 2.00 wr (0 b-read, 568,512 b-written)
at 0x4A0631F: operator new(unsigned long) (vg_replace_malloc.c:298)
by OXAC1F73: std::vector<long,..) (vector.tcc:481)
by 0x173CE59: loss::Map::build_reorder_map(long, long) (stl_vector.h:1004)
by 0x145C081: loex::DatabaselO::handle_node_ids(void*, long) const

Code rewritten to eliminate when not needed

* Find alignment holes in classes.

* Find unused memory

* Find uninitialized memory

* Find quick new/delete loops

* Find unevenly accessed class data

* Cache use...

Aggregated access counts by offset:

[0] 701396 701396 701396 701396

[8 7834 7834 7834 7834

[16] 1121998 111998 111998 111998 111998 111998 111998 111998

[24] 23498 23498 23498 23498 23498 23498 23498 23498
[321 00000000

typedef struct ML_SuperNode_Struct
{

int length; // Size 4
int g // Size 4
int index; //Sized +
int *list; // Size 8

struct ML_SuperNode_Struct *next; //Size 8
Where are the last 8 bytes?
}ML_SuperNode;

#define ML_allocate(i) malloc((i+ sizeof(double)))
Should “*list” be moved up since accessed frequently...

Performance Testing Script

Performance testing on Redsky is difficult and labor intensive

Typically the following steps are performed:

1) Build on sierraOXX for Intel 11 MPI 1.4.2
2) Create empty directory on Redsky
3) Copy bin directory and underlying structure to empty directory on Redsky
4) Assign performance tests to assigned tests file in Redsky directory
5) Run tests from Redsky directory multiple times
do for i1 in S$(seq 5); do ./redsky run.sh ; done

where redsky run.sh contains the appropriate testrun command
Repeat for every commit to be compared: ~10 hrs each

compare test result timings.py usedtocompare to multiple
sets of results

A script to automate steps 1 — 5 above for two different commits has been
created and placed in the contrib scripts directory:
performanceDiff.py —--mod XXXXXX --ref YYYYYY --run directory

/path to directory on redsky/ —--tests directory
/path to tests on redsky/ —--redsky account FYZZZZZZ

User-Support Tickets

Defect Tickets:

24 tickets closed

28 touched and still open

9 new tickets opened

40 defect tickets total open (reduced from 56 previous
end of sprint)

10 pending verification

2 Navy, 4 Goodyear, 1 JPL, 2 KCP, 43 Sandia

6 application code related, 3 framework, 26 toolkit, 12
Seacas, 5 “other”

Enhancement Tickets:

- 11 enhancement/backlog tickets total open
* 1 new enhancement ticket (feature request)
e 3tickets touched (none closed)

Support evaluation of
Basic STK Restart Capability

mesh data.add restart field(fields[i], name); // Optional db
field name

mesh data.create restart output(restart filename);

mesh data.define restart fields();

. in loop: mesh data.process restart output(time); // Can also
specify
‘step’
mesh data.process restart input(step); // Can also specify
‘time’

Stefan implemented in Nalu; after some debugging (stk_io
problem), we verified that it is working

Basic STK Restart Capability

However, additional capability is (potentially) needed:
— Verify that field state support is working correctly.
— Handle multii-state fields correctly.
— Non-field data. (Parameters, Resources)
— Investigate alternative ways to declare field for restart. (Persistent)
— What can change during a “restart”
— Better “auto restart” options for process_restart_input()
— Robustness:
* Consistency over all processors
* Was field found on restart database
e Others...
— Functionality:
* Examine framework restart capability and see what is needed

* Scheduling, Callbacks, Mangling, Overwrite, Concatenation, Topology
Change,

* Parsing / Interface to user

Next Sprint, 4.29-9

prepare for 4.30 Release

— Clean dashboard

— User support as needed by Apps
(SM 2 tickets, TF 1 ticket)

— Documentation

Kokkos tutorial

Optional upward connectivity capability ??

Begin SD/SM consolidation of preload followed by

modal transient capability for mid October
demonstration

Create conchas2, prepare for early FY14 transition
to STK

