
STK Transition Team

4.29.8

Sprint Review

SAND2013-8085P

Outline

• This sprint’s goal:
Correct issues uncovered with early adoption
of STK Mesh

• Sprint 4.29-8 backlog
– consistent connectivity API

– excessive memory use at scale

– optional upward connectivities

– user support

• Results

• Next sprint…

STK Mesh Connectivity API

Background:
STK mesh upgrade activity was recently completed,
however changes to API were recommended by SM
team (as part of their removal of backward
compatibility layer)

Story:

Document and socialize a proposal for a consistent
connectivity API.

Story:

Implement & refactor apps to use new API

STK Mesh Connectivity API
• API for connectivity access socialized and documented

• All methods to access “others” removed or made private to STK mesh classes

• On BulkData:
Entity const* begin_XXXs(Entity entity) const;

where XXX is [node, edge, face, element]

• On Bucket:
Entity const* begin_YYYs(size_type bucket_ordinal)

const;

where YYY is [node, edge, face, element]

• Other connectivity types (e.g. constraints) may be accessed through equivalent
begin(…, EntityRank rank) methods

• Feedback from teams indicates work to be done on constraint support,
additional methods for other relation types, and more examples

STK Mesh Connectivity API
Implementation

• STK Mesh connectivity API implemented in all applications

• Minimal changes required to remove “others” methods from public API

• Removing from BulkData required changes only to Agio_PeriodBC_Base.C

• Removing from Bucket required only a change from public to private
methods (internal macro-defined methods still call these)

• Runtime of performance tests assessed before and after changes (about 80
remained after culling short, failing, and inconsistent tests):

Performance Tests % Change

Average -1.72

Worst 0.92

Best -11.97

This is a result of fragile Redsky testing.

Excessive memory use at scale

Background:

FY13 ASC L2 Milestone Nalu scaling w/ Trilinos
uncovered issues with excessive memory use at large
scale.

Team surmised that distributed index should be
investigated.

Story:

Decisively instrument & collect data on excessive
memory use.

Identify root cause & propose solutions.

Nalu memory profiling –
weak/strong scaling

Instrument & collect data on excessive memory use on the Nalu
problem that identified scaling issue.

Strong scaling:
EdgeOpenJet Nalu test on cielo. 1.1 Billion Elements

– From: 8,192 processors – 137,000 elem/proc

– Up to: 104,000 processors – 10,780 elem/proc

• Use “Tracking Allocator” to gather detailed data

• Identified memory/communication issue if #proc = 2^N

– Edge ID numbering algorithm was overloading Distributed Index
containers on lower numbered processors (see next slide)

– Added workaround which significantly reduced memory use

– Need to “fix” underlying issue with Distributed Index.

Nalu memory profiling – strong scaling

0

100

200

300

400

500

600

Distributed Index
Memory

0

100

200

300

400

500

600
Execution Time

NOTE: All memory numbers are “max processor”
“Bad” uses unmodified edge id formula
“New” uses edge id formula with workaround

0

200

400

600

800

1000

1200 Bad - High Water

Bad - Current

New - High Water

New - Current

Memory

Simplified Illustration of Edge ID/DI issue

• Processor responsible for Entity Key (~ID):
– Each processor has several bins of size 256 to

store keys.
– Responsible Processor = (key/256) % #proc

• When creating edges, need unique key/id. Each
processor was using this formula:

– EdgeID = (rank+1) << 32 + 1..2..3..
– If #proc = 2^N, then first 256 ids/edges on each

processor assigned to processor 0

• New formula:
– EdgeID = (rank+1) << 32 + (256 * rank) + 1..2..3..
– Each processor more likely to be responsible for

local edges.
– More evenly distributes edges in worst case
– Only slightly less even distribution in “best” case
– Much less communication in most cases.
– CON: EdgeID formula knows about

internals of Distributed Index algorithm.

Distributed Index max min median
65536 - old 532.3 4.865 5.035 high water

265.2 1.084 1.149 current
65536 - new 8.058 5.708 7.243 high water

2.272 1.900 2.035 current

65552 - old 7.930 5.712 7.253 high water
2.213 1.895 2.036 current

65552 - new 8.019 5.756 7.264 high water
2.235 1.933 2.036 current

Nalu memory profiling – strong scaling
Ratio Peak/Current Ratio of peak to current processor.

total 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.03 1.03

distributed index 3.12 3.15 3.17 3.23 3.35 3.59 3.55 3.59 3.77 4.10 4.29

fields 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

entity comm 1.00 1.00 1.00 1.06 1.00 1.00 1.00 1.00 1.00 1.03 1.00

fixed connectivity 1.41 1.37 1.34 1.33 1.29 1.30 1.30 1.31 1.28 1.29 1.30

dynamic connectivity 2.00 1.97 1.99 2.02 2.10 2.08 2.10 2.10 2.14 2.18 2.18

%Total (Peak) Percentage of each allocation type to the total (peak)

distributed index 0.16 0.14 0.13 0.13 0.12 0.13 0.13 0.13 0.12 0.13 0.14

fields 0.33 0.33 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.30 0.31

entity comm 0.20 0.23 0.25 0.28 0.27 0.27 0.28 0.28 0.29 0.31 0.28

fixed connectivity 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07

dynamic connectivity 0.67 0.65 0.63 0.62 0.62 0.61 0.61 0.62 0.60 0.60 0.61

%Total (Current) Percentage of each allocation type to the total (current)

distributed index 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03

fields 0.34 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.32

entity comm 0.20 0.23 0.25 0.26 0.28 0.28 0.28 0.28 0.30 0.30 0.29

fixed connectivity 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

dynamic connectivity 0.34 0.33 0.32 0.31 0.30 0.30 0.30 0.30 0.29 0.28 0.29

8k 16k 24k 32k 48k 64k-16 64k 64k+16 80k 96k 101k

0

50

100

150

200

250

300

350
Peak Memory

0

50

100

150

200

250

300

350

total

distributed index

fields

entity comm

fixed connectivity

dynamic connectiviy

Current Memory

High/Medium
peak/current
ratio

High peak/total
ratio

Reasonable?

Good
peak/current

Bad?
Scaling

Nalu memory profiling –

weak scaling
Weak Scaling – 2 sets of runs

A: 3, 24, 192, 1536, 12288, 98304 (91,240 el/p)

B: 2, 16, 128, 1024, 8192, 65536 (136,860 el/p)
0.00

500.00

1000.00

1500.00

2000.00

1 2 3 4 5 6

Execution Time

HW Memory

Current Memory

HW Memory B

Current Memory B

Execution Time B

0.00

50.00

100.00

150.00

200.00

250.00

300.00

1 2 3 4 5 6

High Water Memory A
Total
Distributed Index

Fields
Entity Comm
Fixed Connectivity
Dynamic Connectivity

0.00

100.00

200.00

300.00

400.00

1 2 3 4 5 6

High Water Memory B

0.00

50.00

100.00

150.00

200.00

250.00

300.00

1 2 3 4 5 6

Current Memory A

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

1 2 3 4 5 6

Current Memory B

Known issue
In Muelu

• Identified and “fixed” issue with edge id/Distributed
Index interaction
– Can now run larger jobs more reliably

• Identified algorithms with large peak/current
memory use
– story added to investigate Dynamic Connectivity

• Identified algorithms with unexpected memory
usage and/or growth.
– Known issue in Muelu

• Tracking allocator very useful in identifying memory
usage patterns.

Excessive memory use at scale:
Nalu memory profiling – weak/strong scaling

Optional upward connectivities

Background:

Part of the recent STK mesh upgrade work proposed
(but didn’t implement) a memory saving option to
conditionally store upward connectivities.

Story:

Implement option to store upward connectivity &
determine impact on performance (run-time &
memory use).

Optional Upward Connectivity

• High level
– STK used to require that every “downward” (higher to

lower topology) connectivity be matched with an
“upward” connectivity

– Upward connectivity can cost significant memory to
maintain

– Some problems have no need for certain types of
upward connectivity

• E.g. edge-based nalu problems do not need Edge->Element
connectivity

– Node->Element connectivity is mandatory, allows any
type of upward connectivity to be computed if it is not
stored

Optional Upward Connectivity

• What we did
– Refactor STK products to break the assumption that

upward connectivity is always stored
• Encapsulate connectivity retrieval into a new function

“get_connectivity”; this func works regardless of whether
connectivity is stored or needs to be computed

– App code should not, in general, need to use this. If an app uses
certain connectivity types, it’s best to store it.

• Identify which algorithms required upward connectivity
– E.g. induced parts, aura maintenance

• Have these algorithms use get_connectivity

– Run certain tests to quantify memory savings when
some upward connectivity is not stored

– Run all tests to quantify overhead of get_connectivity
with default settings (all upward conn stored)

Optional Upward Connectivity

• The Test

– Nalu edgeOpenJet weak scaling

– 91,240 elements per proc

– Connectivity choices: [on: regular, irregular
off: invalid]

To

Node Edge Face Element

From Node - off off on
(irregular)

Edge on
(regular)

- off off

Face on
(regular)

on
(irregular)

- on
(irregular)

Element on
(regular)

on
(irregular)

on
(irregular)

-

Always
required

Required
for Nalu

Optional Upward Connectivity

0

0.2

0.4

0.6

0.8

1

1.2

3 24 192 1536 12228 98304

R
at

io
 C

o
m

p
ar

e
d

 t
o

 v
o

td

Num Procs

Time

High Water

Connectivity
HW

Optional Upward Connectivity

• Future work
– Try to quantify overhead of get_connectivty in default

case (all connectivity left on, traditional behavior)
• Redsky runs revealed average 1% slowdown, with 5+%

slowdown on a handful of aplication performance tests

• We could not duplicate this slowdown on our blades

• We did see a small ~3% slowdown for our internal stk
performance tests

• As a result, this work has not been pushed

– Disabling upward connectivity is not available to
Fmwk-based apps due to widespread assumptions in
Fmwk (and other) layers

• If there is demand for this feature, it will require additional
stories

Performance diagnostic tools
Background:
STKT team is committed to measuring impact of any
significant work on Apps performance (run-time &
memory use).

Also, we want to better inform FY14 performance
milestone improvements with data (hot spots, etc…)

Story:

Evaluate Valgrind Dynamic Heap Analysis Tool

Story:

Develop a tool to ‘automatically’ gather App teams’
Performance Test Suite (PTS) data.

Memory Profiling Tool: DHAT

• DHAT – Valgrind Dynamic Heap Analysis Tool
max-live: 4,834,680 in 1 blocks
tot-alloc: 11,347,360 in 4 blocks (avg size 2836840.00)
deaths: 4, at avg age 44 (0.00% of prog lifetime)
acc-ratios: 0.00 rd, 0.00 wr (0 b-read, 0 b-written)

at 0x4A054E8: malloc (vg_replace_malloc.c:270)
by 0xE55629: ML_matmat_mult (ml_matmat_mult.c:1156)

===
Bvals = NULL;
while (Bvals == NULL) {

lots_of_space++;
Bvals = (double *) ML_allocate(B_allocated * sizeof(double));
B_allocated /= 2;

}
ML_free(Bvals);

-------------------- 160 of 200 --------------------
max-live: 284,256 in 1 blocks
tot-alloc: 284,256 in 1 blocks (avg size 284256.00)
deaths: 1, at avg age 11,878,118,517 (75.02% of prog lifetime)
acc-ratios: 0.00 rd, 2.00 wr (0 b-read, 568,512 b-written)

at 0x4A0631F: operator new(unsigned long) (vg_replace_malloc.c:298)
by 0xAC1F73: std::vector<long,..) (vector.tcc:481)
by 0x173CE59: Ioss::Map::build_reorder_map(long, long) (stl_vector.h:1004)
by 0x145C081: Ioex::DatabaseIO::handle_node_ids(void*, long) const

Aggregated access counts by offset:
[0] 701396 701396 701396 701396 59916 59916 59916 59916
[8] 7834 7834 7834 7834 0 0 0 0
[16] 111998 111998 111998 111998 111998 111998 111998 111998
[24] 23498 23498 23498 23498 23498 23498 23498 23498
[32] 0 0 0 0 0 0 0 0

typedef struct ML_SuperNode_Struct
{

int length; // Size 4
int maxlength; // Size 4
int index; // Size 4 + 4 byte alignment hole
int *list; // Size 8
struct ML_SuperNode_Struct *next; // Size 8
Where are the last 8 bytes?

} ML_SuperNode;

#define ML_allocate(i) malloc((i + sizeof(double)))

Should “*list” be moved up since accessed frequently…Code rewritten to eliminate when not needed

Probably OK, but…

• Find alignment holes in classes.
• Find unused memory
• Find uninitialized memory
• Find quick new/delete loops
• Find unevenly accessed class data
• Cache use…

Performance Testing Script
• Performance testing on Redsky is difficult and labor intensive

• Typically the following steps are performed:

1) Build on sierra0XX for Intel 11 MPI 1.4.2
2) Create empty directory on Redsky
3) Copy bin directory and underlying structure to empty directory on Redsky
4) Assign performance tests to assigned tests file in Redsky directory
5) Run tests from Redsky directory multiple times

do for i in $(seq 5); do ./redsky_run.sh ; done
where redsky_run.sh contains the appropriate testrun command

• Repeat for every commit to be compared: ~10 hrs each

• compare_test_result_timings.py used to compare to multiple
sets of results

• A script to automate steps 1 – 5 above for two different commits has been
created and placed in the contrib scripts directory:

performanceDiff.py --mod XXXXXX --ref YYYYYY --run_directory
/path_to_directory_on_redsky/ --tests_directory

/path_to_tests_on_redsky/ --redsky_account FYZZZZZZ

User-Support Tickets

Defect Tickets:
• 24 tickets closed
• 28 touched and still open
• 9 new tickets opened
• 40 defect tickets total open (reduced from 56 previous

end of sprint)
• 10 pending verification
• 2 Navy, 4 Goodyear, 1 JPL, 2 KCP, 43 Sandia
• 6 application code related, 3 framework, 26 toolkit, 12

Seacas, 5 “other”

Enhancement Tickets:
• 11 enhancement/backlog tickets total open
• 1 new enhancement ticket (feature request)
• 3 tickets touched (none closed)

Support evaluation of
Basic STK Restart Capability

mesh_data.add_restart_field(fields[i], name); // Optional db
field name

mesh_data.create_restart_output(restart_filename);

mesh_data.define_restart_fields();

… in loop: mesh_data.process_restart_output(time); // Can also
specify

‘step’

mesh_data.process_restart_input(step); // Can also specify
‘time’

Stefan implemented in Nalu; after some debugging (stk_io
problem), we verified that it is working

Basic STK Restart Capability

However, additional capability is (potentially) needed:
– Verify that field state support is working correctly.

– Handle multii-state fields correctly.

– Non-field data. (Parameters, Resources)

– Investigate alternative ways to declare field for restart. (Persistent)

– What can change during a “restart”

– Better “auto restart” options for process_restart_input()

– Robustness:

• Consistency over all processors

• Was field found on restart database

• Others…

– Functionality:

• Examine framework restart capability and see what is needed

• Scheduling, Callbacks, Mangling, Overwrite, Concatenation, Topology
Change,

• Parsing / Interface to user

Next Sprint, 4.29-9
• prepare for 4.30 Release

– Clean dashboard

– User support as needed by Apps
(SM 2 tickets, TF 1 ticket)

– Documentation

• Kokkos tutorial

• Optional upward connectivity capability ??

• Begin SD/SM consolidation of preload followed by
modal transient capability for mid October
demonstration

• Create conchas2, prepare for early FY14 transition
to STK

