

Perspectives on preservation of physical properties through optimization

SAND2013-8197P

Pavel Bochev

Denis Ridzal

Kara Peterson

Sandia National Laboratories

in collaboration with

Mikhail Shashkov (LANL)

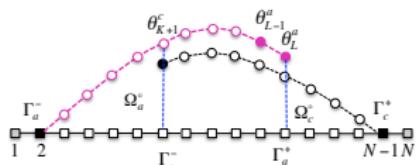
High-Resolution Mathematical and Numerical Analysis of Involution-Constrained PDEs
Oberwolfach, September 15-20, 2013

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

The larger picture

Atomistic-to-continuum coupling

ATOMISTIC MODEL FINITE ELEMENTS

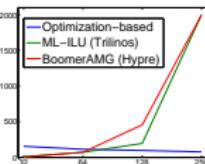
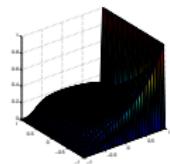
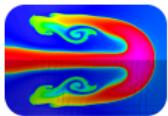


Operator splitting and solver synthesis

Study	Fixed diffusion: 10^{-6}			Fixed grid size: 128		
	64	128	256	10^{-2}	10^{-4}	10^{-6}
OBM-ML ^{SGS}	114	97	77	62	97	97
ML ^{ILU}	71	196	—	9	96	196
BAMG	72	457	—	7	33	457

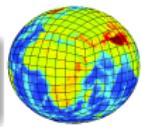
Optimization-based modeling (DOE/ASCR)

$$\begin{aligned} & \min_u \|u - u^T\| \\ & \text{s.t. } L^h(u) \geq 0 \end{aligned}$$



ALE

Feature-preserving solution transfer

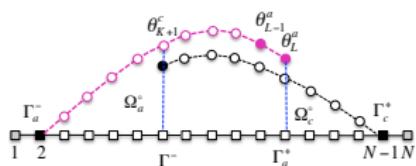


SEMI-LAGRANGIAN

The larger picture

Atomistic-to-continuum coupling

ATOMISTIC MODEL FINITE ELEMENTS

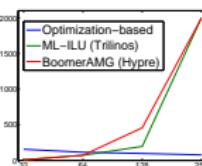
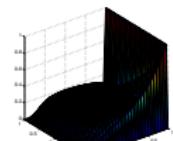
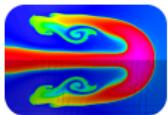


Operator splitting and solver synthesis

Study	Fixed diffusion: 10^{-6}			Fixed grid size: 128		
	64	128	256	10^{-2}	10^{-4}	10^{-6}
OBM-ML ^{SGS}	114	97	77	62	97	97
ML ^{ILU}	71	196	—	9	96	196
BAMG	72	457	—	7	33	457

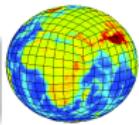
Optimization-based modeling (DOE/ASCR)

$$\begin{aligned} & \min_u \|u - u^T\| \\ & \text{s.t. } L^h(u) \geq 0 \end{aligned}$$



ALE

Feature-preserving solution transfer



SEMI-LAGRANGIAN

Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap

Mathematical formulation

Theoretical properties and benefits

Algorithm and computational cost

Mass form of optimization-based remap

Mathematical formulation

Algorithm and computational cost

New directions and technology transfer

Adaptable targets and smoothness indicators

High-order remap: BLAST, HOMME

Tensor remap: ALEGRA

Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap

Mathematical formulation

Theoretical properties and benefits

Algorithm and computational cost

Mass form of optimization-based remap

Mathematical formulation

Algorithm and computational cost

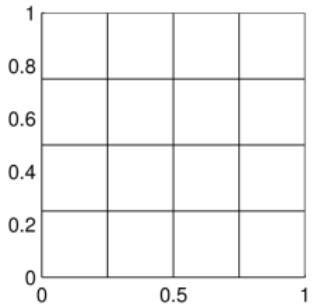
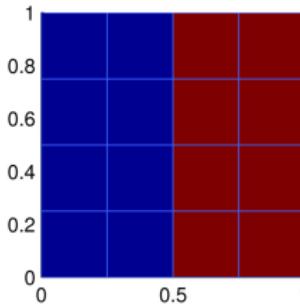
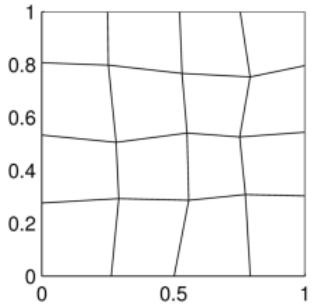
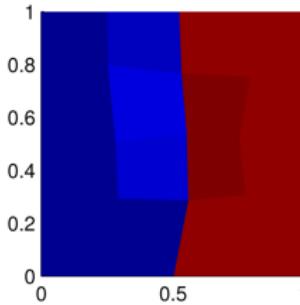
New directions and technology transfer

Adaptable targets and smoothness indicators

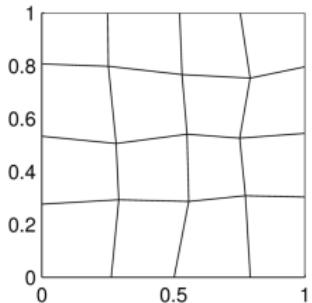
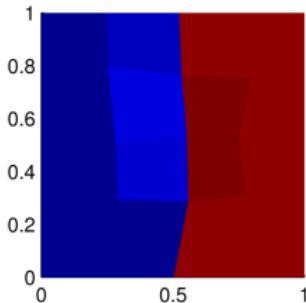
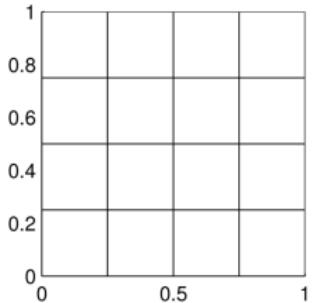
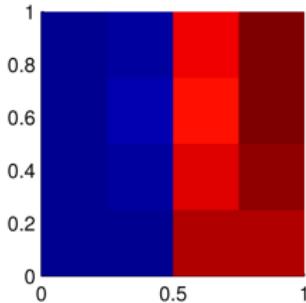
High-order remap: BLAST, HOMME

Tensor remap: ALEGRA

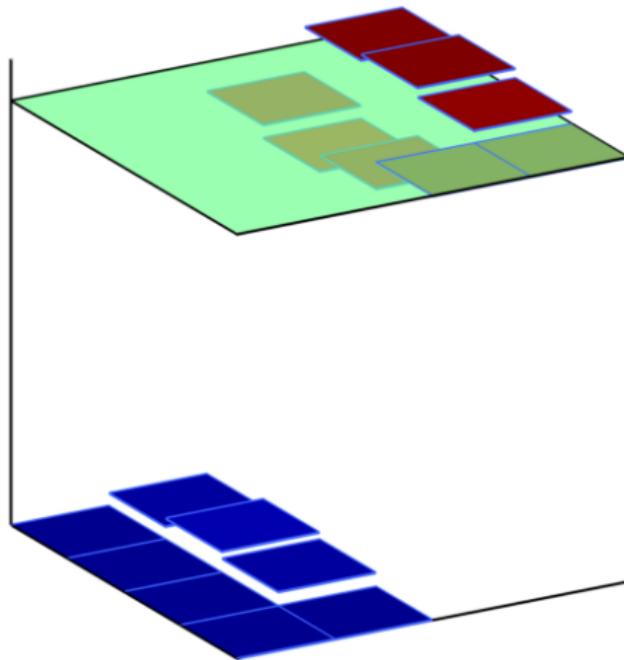
Solution transfer



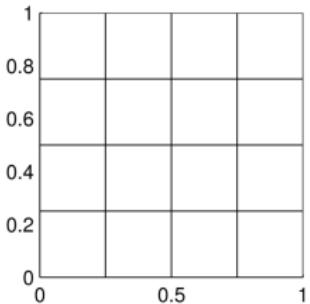
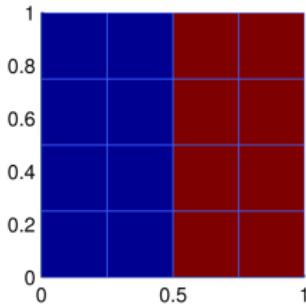
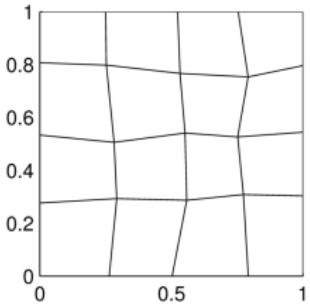
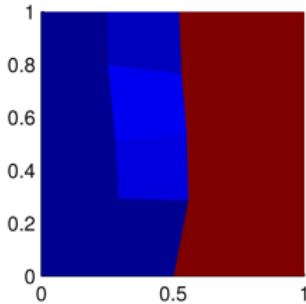
Solution transfer



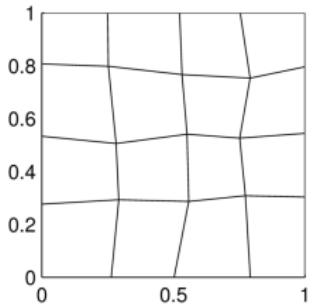
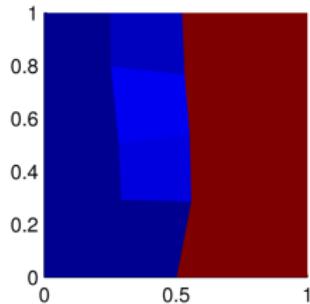
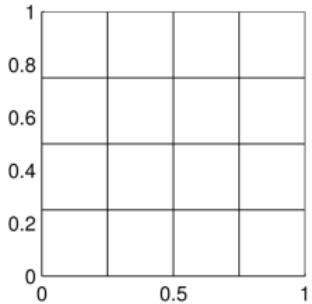
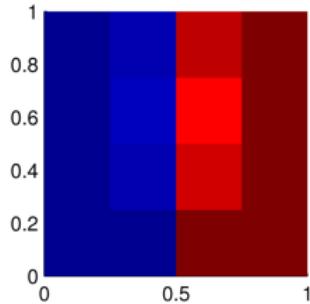
Solution transfer



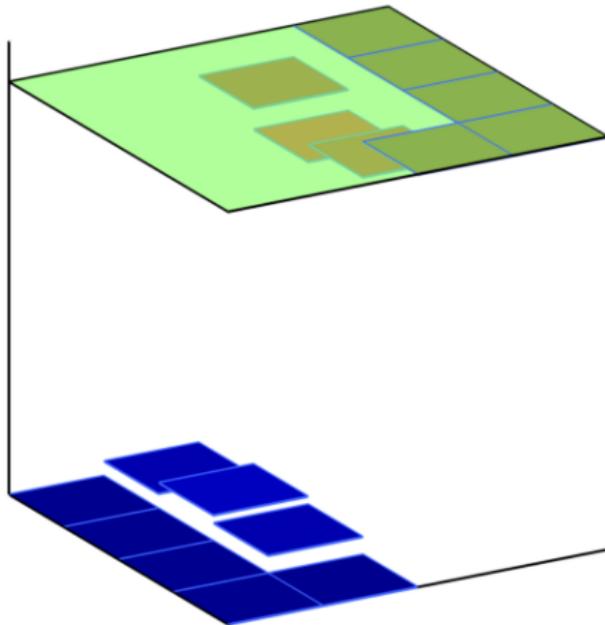
Solution transfer



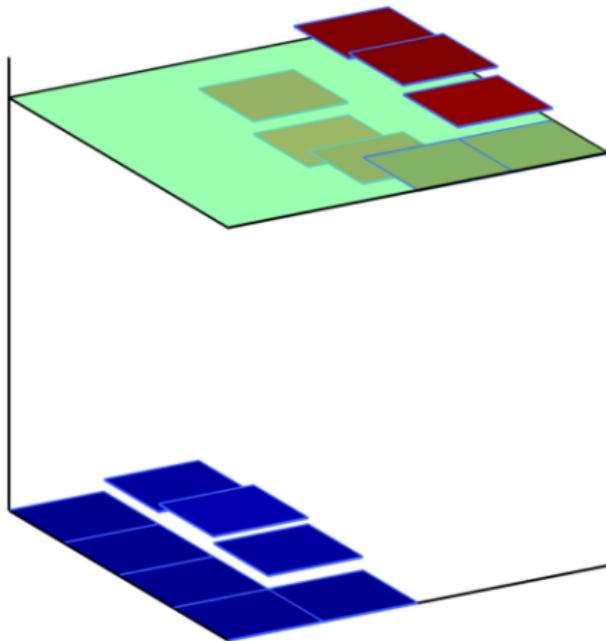
Solution transfer



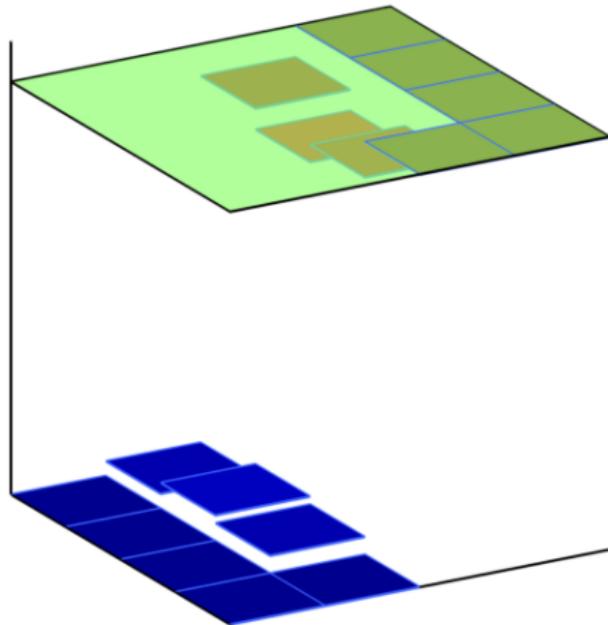
Solution transfer



Solution transfer



Solution transfer



Solution transfer

Given: Discrete representation \mathbf{f}_A of function \mathbf{f} on mesh **A**.

Find: Accurate discrete representation \mathbf{f}_B of \mathbf{f} on mesh **B**, subject to physical constraints:

- conservation of mass, energy, etc.
- preservation of monotonicity
- physically meaningful ranges for variables:
density ≥ 0 , concentration $\in [0, 1]$

Critical task in computational science:

- shock-hydrodynamics: ALEGRA, BLAST, etc.
- tracer transport: sea ice – CICE, atmosphere – HOMME, etc.
- mesh repair, rezone, untangling, reconnection, conservative regridding in, e.g., big ocean data
- transfer of simulation data between heterogeneous numerical models
- data visualization on arbitrary polygonal grids
- solution recovery for resilient computing

Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap

Mathematical formulation

Theoretical properties and benefits

Algorithm and computational cost

Mass form of optimization-based remap

Mathematical formulation

Algorithm and computational cost

New directions and technology transfer

Adaptable targets and smoothness indicators

High-order remap: BLAST, HOMME

Tensor remap: ALEGRA

Mass-density remap

Given: *Old* mesh $C(\Omega)$ and mean density values ρ_i on old mesh cells c_i .

Find: Approximations \tilde{m}_i of masses on a *new* mesh $\tilde{C}(\Omega)$ with cells \tilde{c}_i ,

$$\tilde{m}_i \approx \tilde{m}_i^{\text{exact}} = \int_{\tilde{c}_i} \rho(\mathbf{x}) dV, \quad i = 1, \dots, C; \quad \text{subject to}$$

C1. Mass conservation: $\sum_{i=1}^C \tilde{m}_i = \sum_{i=1}^C m_i = M$.

C2. Second-order accuracy: If $\rho(\mathbf{x})$ is a global linear function on Ω , then the mass approximations are exact,

$$\tilde{m}_i = \tilde{m}_i^{\text{exact}} = \int_{\tilde{c}_i} \rho(\mathbf{x}) dV, \quad i = 1, \dots, C.$$

C3. Local bounds: The approximations of the mean density on the new cells, $\tilde{\rho}_i = \tilde{m}_i / V(\tilde{c}_i)$, are bounded by the *old* neighborhood extrema

$$\rho_i^{\min} \leq \tilde{\rho}_i \leq \rho_i^{\max}, \quad i = 1, \dots, C, \quad \text{or equivalently,}$$

$$\tilde{m}_i^{\min} := \rho_i^{\min} V(\tilde{c}_i) \leq \tilde{m}_i \leq \rho_i^{\max} V(\tilde{c}_i) =: \tilde{m}_i^{\max}, \quad i = 1, \dots, C.$$

Some history

19xx–2010:

- Scalar remap is a long-studied problem.
- The constraints (C1)–(C3) are typically handled *by construction*:
 - a careful choice of variables in the remap scheme;
 - a special reconstruction procedure; and
 - a particular choice of ‘limiter’ (WIKIPEDIA: 15 slope limiters).
- Challenges: accuracy loss, mesh/cell dependence, robustness.
- **Game changer:**

Flux-corrected remap (FCR), Shashkov et al., J. Comp. Phys., 2010.

2010–2012:

- We use globally constrained optimization to reconcile (C1)–(C3).
- A mathematically rigorous way to handle constraints.
- Elegant theory, and connections to methods like FCR.
- Improved accuracy; improved robustness; general applicability.

2012–2013:

- Optimization-based remap at the cost of conventional remap.

Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap

Mathematical formulation

Theoretical properties and benefits

Algorithm and computational cost

Mass form of optimization-based remap

Mathematical formulation

Algorithm and computational cost

New directions and technology transfer

Adaptable targets and smoothness indicators

High-order remap: BLAST, HOMME

Tensor remap: ALEGRA

Flux form of OBR

- Given the side-to-cell incidence matrix \mathbf{D} , or *discrete divergence*, define **mass update**

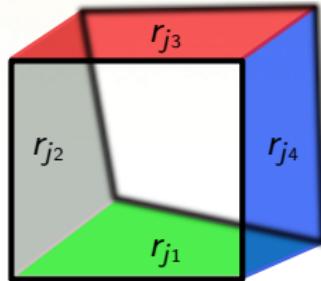
$$\tilde{m} = m + \mathbf{D}F,$$

where F approximates the exact **fluxes** over the swept regions r_j ,

$$F_j \approx F_j^{\text{exact}} = \int_{r_j} \rho(\mathbf{x}) dV; \quad j = 1, \dots, S.$$

- Compute **target** $F_j^T := \int_{r_j} \rho^h(\mathbf{x}) dV$, $j = 1, \dots, S$, for some density reconstruction $\rho^h(\mathbf{x})$ that is **exact for linear functions**. Solve:

$$\begin{cases} \underset{F}{\text{minimize}} \quad \frac{1}{2} \|F - F^T\|_{\ell_2}^2 & \text{subject to} \\ \tilde{m}^{\min} \leq m + \mathbf{D}F \leq \tilde{m}^{\max} \end{cases}$$



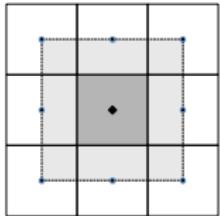
$$\begin{aligned} \tilde{m}_i &= m_i + (\mathbf{D}F)_i = \\ m_i + \sum_{k \in \{j_1, \dots, j_4\}} \sigma_k F_k \end{aligned}$$

Immediate properties

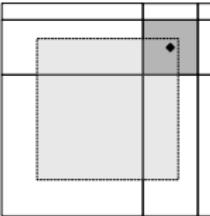
- Local bounds are enforced directly: $\tilde{m}^{\min} \leq m + \mathbf{D}F \leq \tilde{m}^{\max}$.
- Mass conservation is implicit: follows from the divergence form

$$\sum_{i=1}^C \tilde{m}_i = \sum_{i=1}^C m_i + \underbrace{\sum_{i=1}^C (\mathbf{D}F)_i}_{=0, \text{ divergence form}} = \sum_{i=1}^C m_i.$$

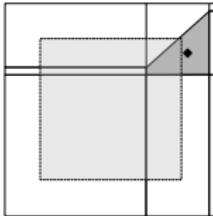
- **Theorem: Second-order accuracy.** A sufficient condition for OBR to recover linear densities **exactly** is that the centroid of any new cell remain in the **convex hull** of the centroids of its old neighbors.



(a) original



(b) admissible



(c) inadmissible

Less restrictive!

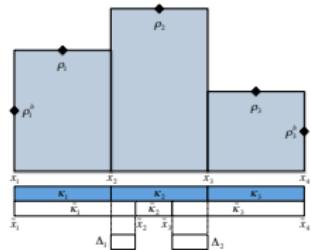
- Independent of dimension and cell topology.
- Separation of concerns: Optimally accurate and monotone!

Relation to Flux-Corrected Remap (FCR)

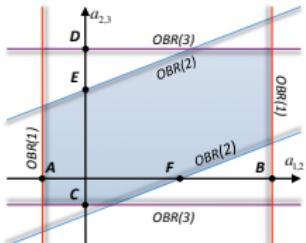
Theorem. FCR can be formulated as a **global optimization problem**.

- (1) The FCR cost function is equivalent to the OBR cost function.
- (2) The FCR feasible set is **always a subset** of the OBR feasible set.

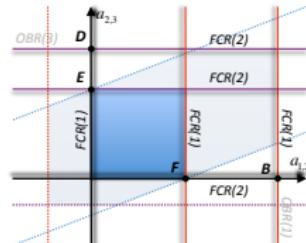
Compressive Mesh Motion



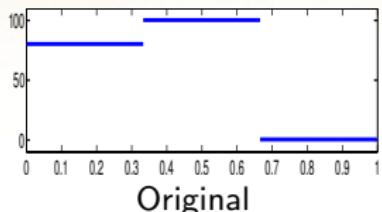
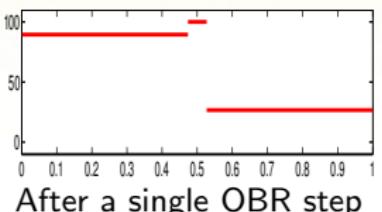
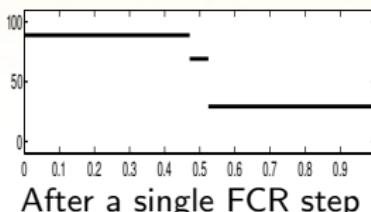
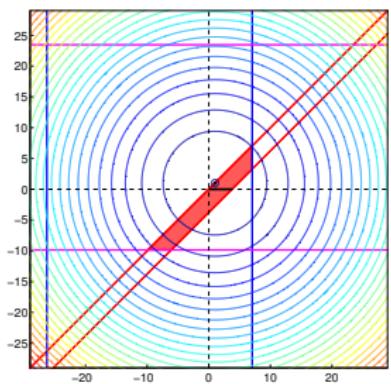
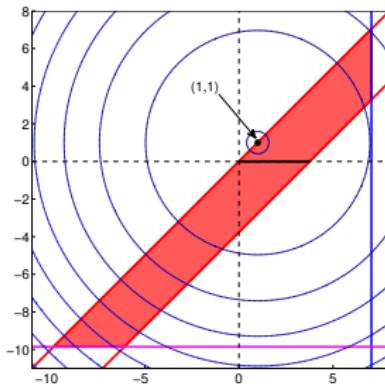
OBR Feasible Set



FCR Feasible Set



1. OBR preserves shape when FCR may not



Level sets of the cost function and the feasible sets:

Red region = OBR feasible set; contains flux target $F^T = (1,1)$.

Solid horizontal segment (black) = FCR feasible set.

2. OBR preserves monotonicity when FCR may not

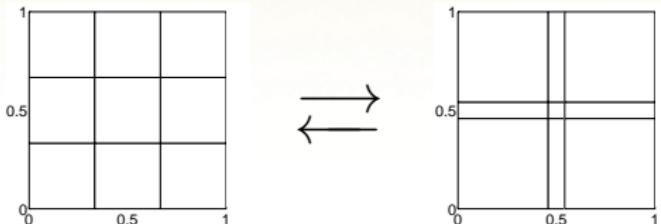
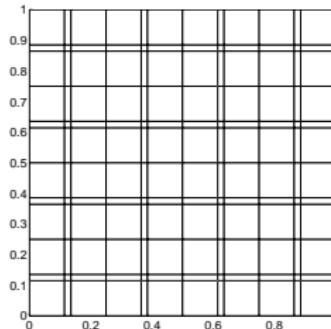
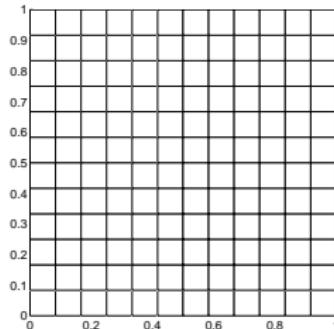


Figure: A 3×3 uniform initial grid (left pane) and the compressed “torture” grid (right pane) with a 4×4 -fold compression of the middle cell.



Figure: Linear density $\rho(x, y) = x$ remapped from the uniform 3×3 grid to the compressed “torture” grid with $\ell = 16$. Left to right: the donor-cell method, FCR, OBR. It is clear that OBR gives the best density approximation.

3. OBR is more accurate than FCR



Remap of smooth (sine) density using OBR

#cells	#remaps	L_1 err	L_2 err	L_∞ err	L_1 rate	L_2 rate	L_∞ rate
128×128	640	2.69e-04	3.65e-04	2.03e-03	—	—	—
256×256	1280	6.71e-05	9.08e-05	5.07e-04	2.00	2.01	2.00
512×512	2560	1.68e-05	2.27e-05	1.20e-04	2.00	2.00	2.04
1024×1024	5120	4.19e-06	5.66e-06	2.69e-05	2.00	2.00	2.08

Remap of smooth (sine) density using FCR

#cells	#remaps	L_1 err	L_2 err	L_∞ err	L_1 rate	L_2 rate	L_∞ rate
128×128	640	2.81e-04	3.47e-04	1.23e-03	—	—	—
256×256	1280	9.23e-05	1.19e-04	5.14e-04	1.61	1.54	1.26
512×512	2560	3.65e-05	5.05e-05	2.50e-04	1.47	1.39	1.15
1024×1024	5120	1.69e-05	2.39e-05	1.24e-04	1.35	1.28	1.10

Flux-form OBR algorithm

How about speed?

Rather than solve

$$\left\{ \begin{array}{ll} \text{minimize}_F & \frac{1}{2} \|F - F^T\|_{\ell_2}^2 \\ & \text{subject to} \\ \widetilde{m}^{\min} - m \leq \mathbf{D}F \leq \widetilde{m}^{\max} - m \end{array} \right.$$

directly, we solve its equivalent **dual reformulation**

$$\left\{ \begin{array}{ll} \text{minimize}_{\lambda, \mu} & \frac{1}{2} \|\mathbf{D}^T \lambda - \mathbf{D}^T \mu\|_2^2 - \langle \lambda, \widetilde{m}^{\min} - m - \mathbf{D}F^T \rangle \\ & - \langle \mu, -\widetilde{m}^{\max} + m + \mathbf{D}F^T \rangle \\ \text{subject to} & \lambda \geq 0, \mu \geq 0. \end{array} \right.$$

Thus, we trade the complexity in the globally coupled inequality constraint for a more complex objective function.

Flux-form OBR algorithm

Some notation

- Define system matrix $\mathbf{H} \in \mathbb{R}^{2C \times 2C}$ and vector $b \in \mathbb{R}^{2C}$

$$\mathbf{H} = \begin{bmatrix} \mathbf{D}\mathbf{D}^T & -\mathbf{D}\mathbf{D}^T \\ -\mathbf{D}\mathbf{D}^T & \mathbf{D}\mathbf{D}^T \end{bmatrix} \quad b = \begin{bmatrix} \mathbf{D}\mathbf{F}^T - \tilde{m}^{\min} + m \\ -\mathbf{D}\mathbf{F}^T + \tilde{m}^{\max} - m \end{bmatrix}$$

- Define the diagonal operator, $\text{Diag} : \mathbb{R}^{2C} \rightarrow \mathbb{R}^{2C \times 2C}$, as

$$[\text{Diag}(x)]_{ij} = \begin{cases} x_i & \text{when } i = j \\ 0 & " \quad i \neq j \end{cases}.$$

- Define the operator $v : \mathbb{R}^{2C} \rightarrow \mathbb{R}^{2C}$ as

$$[v(x)]_i = \begin{cases} x_i & \text{when } [\mathbf{H}x + b]_i \geq 0 \\ 1 & " \quad [\mathbf{H}x + b]_i < 0 \end{cases}.$$

- Define the operator $K : \mathbb{R}^{2C} \rightarrow \mathbb{R}^{2C \times 2C}$ as

$$[K]_{ii} = \begin{cases} 1 & \text{when } [\mathbf{H}x + b]_i \geq 0 \\ 0 & " \quad [\mathbf{H}x + b]_i < 0 \end{cases}.$$

Flux-form OBR algorithm

Semismooth Newton

- It can be shown that under mild assumptions the solution of the bound-constrained problem is equivalent to the solution of the **piecewise differentiable system of equations**

$$\text{Diag}(v(x))(\mathbf{H}x + b) = 0.$$

- Apply Newton's method to the nonlinear system by solving

$$(K(x)\text{Diag}(\mathbf{H}x + b) + \text{Diag}(v(x))\mathbf{H})p = -\text{Diag}(v(x))(\mathbf{H}x + b)$$

for the update p at a given iterate x , followed by $x \leftarrow x + p$.

- Each iteration entails the solution of a large linear system.**
- Linear complexity, $\mathcal{O}(C)$, where C is the number of mesh cells.**
- Conjecture: Parallelizes as well as multigrid $\rightarrow \mathbf{D}\mathbf{D}^T$ operator.**

Flux-form OBR speed in transport applications

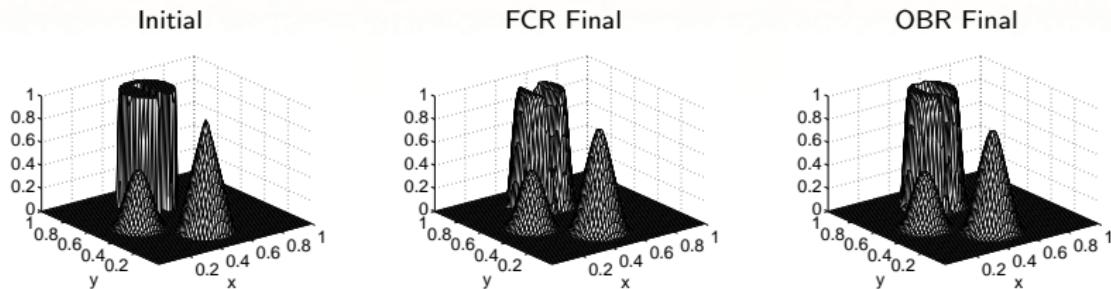


Figure: After one full revolution (810 time steps) on a 128×128 mesh.

mesh	steps	FCR time(sec)	Flux-OBR time(sec)	ratio
64×64	408	3.3	63.7	19.3
128×128	810	26.4	496.4	18.8
256×256	1614	229.1	3464.2	15.1

Table: Computational cost. **Flux-form OBR is not competitive!**

Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap

Mathematical formulation

Theoretical properties and benefits

Algorithm and computational cost

Mass form of optimization-based remap

Mathematical formulation

Algorithm and computational cost

New directions and technology transfer

Adaptable targets and smoothness indicators

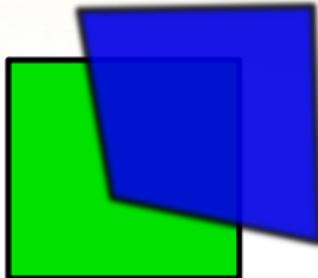
High-order remap: BLAST, HOMME

Tensor remap: ALEGRA

Mass form of OBR

1. Define mass update

$$\tilde{m} = m + \delta m,$$



where δm approximates the exact **mass increments** between new and old cells:

$$\delta m_i \approx \delta m_i^{\text{exact}} = \int_{\tilde{c}_i} \rho(\mathbf{x}) dV - \int_{c_i} \rho(\mathbf{x}) dV;$$

$$\tilde{m}_i = m_i + \delta m_i$$

Note: $\delta m_i = (\mathbf{D}F)_i$

where $i = 1, \dots, C$.

2. Compute **target** $\delta m_i^T := \int_{\tilde{c}_i} \rho^h(\mathbf{x}) dV - \int_{c_i} \rho^h(\mathbf{x}) dV$, $i = 1, \dots, C$, for density $\rho^h(\mathbf{x})$ that is **exact for linear functions**. Solve:

$$\left\{ \begin{array}{l} \underset{\delta m}{\text{minimize}} \quad \frac{1}{2} \|\delta m - \delta m^T\|_{\ell_2}^2 \quad \text{subject to} \\ \sum_{i=1}^C \delta m_i = 0 \quad \text{and} \quad \tilde{m}^{\min} \leq m + \delta m \leq \tilde{m}^{\max}. \end{array} \right.$$

Mass-form OBR algorithm

We solve

$$\left\{ \begin{array}{ll} \underset{\delta m}{\text{minimize}} & \frac{1}{2} \|\delta m - \delta m^T\|_{\ell_2}^2 \\ & \text{subject to} \\ & \sum_{i=1}^C \delta m_i = 0 \quad \text{and} \quad \tilde{m}^{\min} \leq m + \delta m \leq \tilde{m}^{\max}. \end{array} \right.$$

Known as the **singly linearly constrained QP with simple bounds**, see Dai, Fletcher (2006, Math. Program.).

Key observation: The related optimization problem without the mass conservation constraint, $\sum_{i=1}^C \delta m_i = 0$, is **fully separable**!

The related problem can be solved by independently (and concurrently) solving C **one-dimensional** quadratic programs with simple bounds.

Goal: Satisfy the second constraint, $\sum_{i=1}^C \delta m_i = 0$, “in a few iterations”.

Mass-form OBR algorithm

We solve

$$\left\{ \begin{array}{ll} \underset{\delta m}{\text{minimize}} & \frac{1}{2} \|\delta m - \delta m^T\|_{\ell_2}^2 \quad \text{subject to} \\ & \sum_{i=1}^C \delta m_i = 0 \quad \text{and} \quad \tilde{m}^{\min} \leq m + \delta m \leq \tilde{m}^{\max}. \end{array} \right.$$

Known as the **singly linearly constrained QP with simple bounds**, see Dai, Fletcher (2006, Math. Program.).

Key observation: The related optimization problem without the mass conservation constraint, $\sum_{i=1}^C \delta m_i = 0$, is **fully separable**!

The related problem can be solved by independently (and concurrently) solving C **one-dimensional** quadratic programs with simple bounds.

Goal: Satisfy the second constraint, $\sum_{i=1}^C \delta m_i = 0$, “in a few iterations”.

Mass-form OBR algorithm

We solve

$$\left\{ \begin{array}{ll} \underset{\delta m}{\text{minimize}} & \frac{1}{2} \|\delta m - \delta m^T\|_{\ell_2}^2 \\ & \text{subject to} \\ & \sum_{i=1}^C \delta m_i = 0 \quad \text{and} \quad \tilde{m}^{\min} \leq m + \delta m \leq \tilde{m}^{\max}. \end{array} \right.$$

Known as the **singly linearly constrained QP with simple bounds**, see Dai, Fletcher (2006, Math. Program.).

Key observation: The related optimization problem without the mass conservation constraint, $\sum_{i=1}^C \delta m_i = 0$, is **fully separable**!

The related problem can be solved by independently (and concurrently) solving C **one-dimensional** quadratic programs with simple bounds.

Goal: Satisfy the second constraint, $\sum_{i=1}^C \delta m_i = 0$, “in a few iterations”.

Mass-form OBR algorithm

Define Lagrangian functional $\mathcal{L} : \mathbb{R}^C \times \mathbb{R} \times \mathbb{R}^C \times \mathbb{R}^C \rightarrow \mathbb{R}$,

$$\begin{aligned} \mathcal{L}(\delta m, \lambda, \mu_1, \mu_2) = & \frac{1}{2} \sum_{i=1}^C (\delta m_i - \delta m_i^T)^2 - \lambda \sum_{i=1}^C \delta m_i - \\ & \sum_{i=1}^C \mu_{1,i} (\delta m_i - \tilde{m}_i^{\min} + m_i) - \sum_{i=1}^C \mu_{2,i} (\tilde{m}_i^{\max} - m_i - \delta m_i), \end{aligned}$$

where $\delta m \in \mathbb{R}^C$ are the primal optimization variables, and $\lambda \in \mathbb{R}$, $\mu_1 \in \mathbb{R}^C$, and $\mu_2 \in \mathbb{R}^C$ are the dual optimization variables.

KKT conditions:

$$\delta m_i = \delta m_i^T + \lambda + \mu_{1,i} - \mu_{2,i}; \quad i = 1, \dots, C$$

$$\tilde{m}_i^{\min} - m_i \leq \delta m_i \leq \tilde{m}_i^{\max} - m_i; \quad i = 1, \dots, C$$

$$\mu_{1,i} \geq 0, \quad \mu_{2,i} \geq 0; \quad i = 1, \dots, C$$

$$\mu_{1,i} (\delta m_i - \tilde{m}_i^{\min} + m_i) = 0, \quad \mu_{2,i} (-\delta m_i + \tilde{m}_i^{\max} - m_i) = 0; \quad i = 1, \dots, C$$

$$\sum_{i=1}^C \delta m_i = 0$$

Mass-form OBR algorithm

We solve the KKT conditions directly.

First, we focus on the conditions in black, separable in the index i . For any *fixed* value of λ a solution to the “black” conditions is given by

$$\left\{ \begin{array}{lll} \delta m_i = \delta m_i^T + \lambda; & \mu_{1,i} = \mu_{2,i} = 0 & \text{if } \tilde{m}_i^{\min} - m_i \leq \delta m_i^T + \lambda \leq \tilde{m}_i^{\max} - m_i \\ \delta m_i = \tilde{m}_i^{\min} - m_i; & \mu_{2,i} = 0, \mu_{1,i} = \delta m_i - \delta m_i^T - \lambda & \text{if } \delta m_i^T + \lambda < \tilde{m}_i^{\min} - m_i \\ \delta m_i = \tilde{m}_i^{\max} - m_i; & \mu_{1,i} = 0, \mu_{2,i} = \delta m_i^T - \delta m_i + \lambda & \text{if } \delta m_i^T + \lambda > \tilde{m}_i^{\max} - m_i \end{array} \right.$$

for all $i = 1, \dots, C$.

Ignoring μ_1 and μ_2 and treating δm_i as a function of λ yields

$$\delta m_i(\lambda) = \text{median}(\tilde{m}_i^{\min} - m_i, \delta m_i^T + \lambda, \tilde{m}_i^{\max} - m_i), \quad i = 1, \dots, C.$$

This is a trivial, communication-free $\mathcal{O}(C)$ computation.

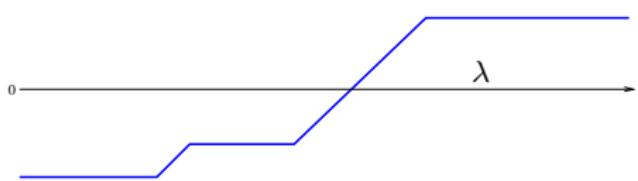
Mass-form OBR algorithm

Second, we adjust λ in an outer iteration in order to satisfy

$$\sum_{i=1}^C \delta m_i(\lambda) = 0.$$

When we find the λ^* such that $\sum_{i=1}^C \delta m_i(\lambda^*) = 0$ holds, we will have solved the full KKT conditions.

The function $\sum_{i=1}^C \delta m_i(\lambda)$ is a piecewise linear, monotonically increasing function of a single scalar variable λ . Therefore, a **secant method** can be efficiently employed as the outer iteration.



... given $\lambda_p, \lambda_c, r_p$

- 1 Compute $\delta m_i(\lambda_c) \leftarrow \text{median}(\tilde{m}_i^{\min} - m_i, \delta m_i + \lambda_c, \tilde{m}_i^{\max} - m_i) \forall i$.
- 2 Compute residual $r_c \leftarrow \sum_{i=1}^C \delta m_i(\lambda_c)$.
- 3 Set $\alpha \leftarrow (\lambda_p - \lambda_c) / (r_p - r_c)$. Set $r_p \leftarrow r_c$.
- 4 Set $\lambda_p \leftarrow \lambda_c$. Set $\lambda_c \leftarrow \lambda_c - \alpha r_c$.

In all our examples, the algorithm requires ≤ 5 secant iterations!

Mass-form OBR speed in transport applications

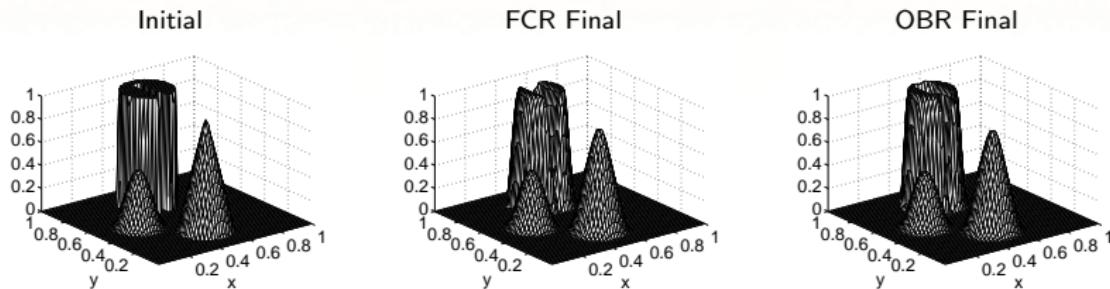


Figure: After one full revolution (810 time steps) on a 128×128 mesh.

mesh	steps	FCR time(sec)	Flux-OBR time(sec)	Mass-OBR time(sec)	ratio
64×64	408	3.3	63.7	19.3	3.4
128×128	810	26.4	496.4	18.8	26.2
256×256	1614	229.1	3464.2	15.1	222.7

Table: Computational cost. **Mass-form OBR is as fast as a local scheme!**

Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap

Mathematical formulation

Theoretical properties and benefits

Algorithm and computational cost

Mass form of optimization-based remap

Mathematical formulation

Algorithm and computational cost

New directions and technology transfer

Adaptable targets and smoothness indicators

High-order remap: BLAST, HOMME

Tensor remap: ALEGRA

Adaptable targets

- Cost-function targets are built from the reconstruction:

$$\rho^h(\mathbf{x})|_{c_i} := \rho_i^h(\mathbf{x}) = \rho_i + \mathbf{g}_i \cdot (\mathbf{x} - \mathbf{b}_i) \quad \forall c_i \in C(\Omega),$$

where ρ_i are density values on the old cells c_i , \mathbf{g}_i is a least-squares approximation of the gradient $\nabla \rho$ based on ρ_i from the cells in the neighborhood $N(c_i)$, and \mathbf{b}_i is the barycenter of c_i .

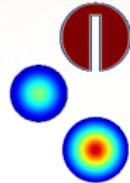
- Define **reconstruction residual**: $q_i = \sum_{j \in N(c_i)} |\rho_j - \rho_i^h(\mathbf{b}_j)|$.
- Modify the gradient of $\rho^h(\mathbf{x})$ to obtain **adaptable reconstruction**:

$$\rho^A(\mathbf{x})|_{c_i} := \rho_i^A(\mathbf{x}) = \rho_i + \alpha_i(q_i) \mathbf{g}_i \cdot (\mathbf{x} - \mathbf{b}_i) \quad \forall c_i \in C(\Omega).$$

- For a given constant $\gamma > 0$,

$$\alpha_i(q_i) = \begin{cases} 1 & \text{if "smooth"} \\ 1 + \gamma q_i / \max_{i=1, \dots, C} \{q_i\} & \text{otherwise.} \end{cases}$$

Dual variables as smoothness indicators



$$\left\{ \begin{array}{ll} \mu_{1,i} = \mu_{2,i} = 0 & \text{if } \tilde{m}_i^{\min} - m_i \leq \delta m_i^T + \lambda \leq \tilde{m}_i^{\max} - m_i \\ \mu_{2,i} = 0, \mu_{1,i} = (\tilde{m}_i^{\min} - m_i) - \delta m_i^T - \lambda & \text{if } \delta m_i^T + \lambda < \tilde{m}_i^{\min} - m_i \\ \mu_{1,i} = 0, \mu_{2,i} = \delta m_i^T - (\tilde{m}_i^{\max} - m_i) + \lambda & \text{if } \delta m_i^T + \lambda > \tilde{m}_i^{\max} - m_i, \end{array} \right.$$

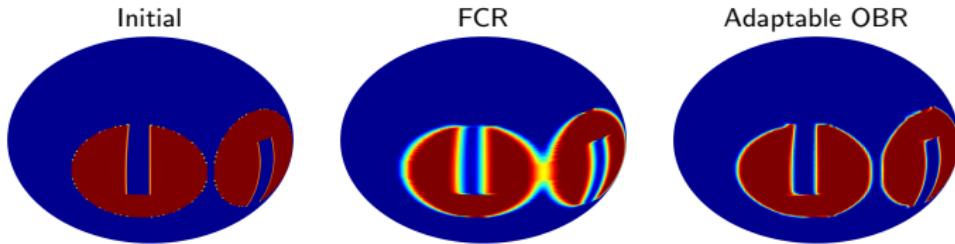


Figure: Transport results for the solid-body rotation test on the sphere, for two revolutions, left to right and back (1920 time steps) on a 0.75° mesh.

mesh	steps	FCR	Mass-OBR	ratio	FCR	Mass-OBR	rate
		time(sec)	time(sec)		L_1 error	L_1 error	
3°	480	17.4	18.2	1.0	3.25e-2	2.79e-2	—
1.5°	960	132.5	151.6	1.1	1.99e-2	1.36e-3	1.04
0.75°	1920	1184.5	1379.0	1.2	1.10e-2	5.41e-3	1.18

Dual variables as smoothness indicators

$$\left\{ \begin{array}{ll} \mu_{1,i} = \mu_{2,i} = 0 & \text{if } \tilde{m}_i^{\min} - m_i \leq \delta m_i^T + \lambda \leq \tilde{m}_i^{\max} - m_i \\ \mu_{2,i} = 0, \mu_{1,i} = (\tilde{m}_i^{\min} - m_i) - \delta m_i^T - \lambda & \text{if } \delta m_i^T + \lambda < \tilde{m}_i^{\min} - m_i \\ \mu_{1,i} = 0, \mu_{2,i} = \delta m_i^T - (\tilde{m}_i^{\max} - m_i) + \lambda & \text{if } \delta m_i^T + \lambda > \tilde{m}_i^{\max} - m_i, \end{array} \right.$$

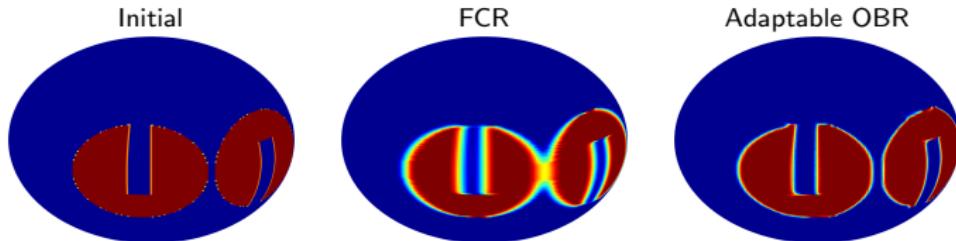


Figure: Transport results for the solid-body rotation test on the sphere, for two revolutions, left to right and back (1920 time steps) on a 0.75° mesh.

mesh	steps	FCR	Mass-OBR	ratio	FCR	Mass-OBR	rate
		time(sec)	time(sec)		L_1 error	L_1 error	
3°	480	17.4	18.2	1.0	3.25e-2	2.79e-2	—
1.5°	960	132.5	151.6	1.1	1.99e-2	1.36e-3	1.04
0.75°	1920	1184.5	1379.0	1.2	1.10e-2	5.41e-3	1.18

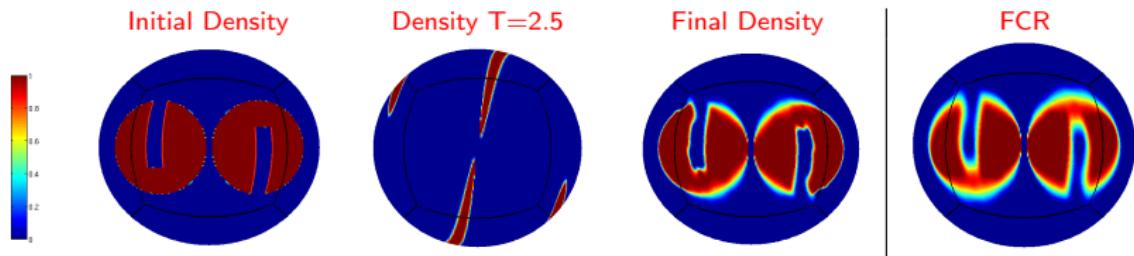
Deformational Flow Test

For a more challenging test case we transport two notched cylinders initially centered at $(\lambda_1, \theta_1) = (5\pi/6, 0)$ and $(\lambda_2, \theta_2) = (7\pi/6, 0)$ in the following deformational velocity field

$$u(\lambda, \theta, t) = 2 \sin^2 \lambda \sin 2\theta \cos(\pi t/T)$$

$$v(\lambda, \theta, t) = 2 \sin(2\lambda) \cos(\theta) \cos(\pi t/T)$$

with period $T = 5$. In this case an adaptable target is used with parameters $\gamma_1 = 0.1$ and $\gamma_2 = 0.5$, resulting in a sharper final density distribution and higher convergence rate than transport with Flux-Corrected Remap (FCR).



MVMT-a transport results for the deformational flow test on the sphere, shown at the time of maximum deformation ($t = 2.5$) and at the final time ($t = 5$) for a total of 2400 time steps on a mesh with 120x120 elements per panel. FCR results shown at right.

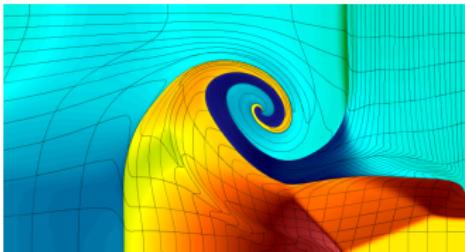
Elements per panel	# steps	FCR time(sec)	MVMT-a time(sec)	FCR L_1 error	rate	MVMT-a L_1 error	rate
30 × 30	600	45.9	46.3	5.59e-1	—	4.58e-1	—
60 × 60	1200	281.3	286.9	3.67e-1	0.61	2.49e-1	0.88
120 × 120	2400	2103.7	2140.3	2.19e-1	0.68	1.25e-1	0.94

Comparison of L_1 errors with respect to the initial condition for Flux-Corrected Remap (FCR) and MVMT-a and comparison of computational costs as measured by MatlabTM wall-clock times in seconds, on a single Intel Xeon X5450 3.0GHz processor.

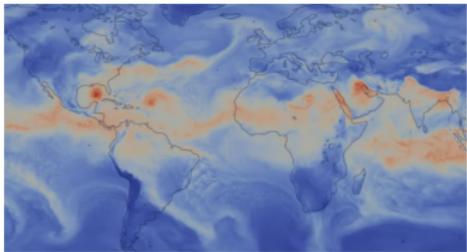
High-order remap

Software: **C**onstrained **O**ptimization **B**ased **R**emap **A**lgorithms

BLAST



HOMME

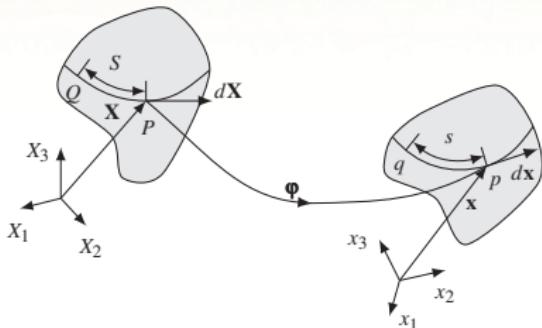


- Next-gen LLNL hydrocode.
- Mass-form OBR to enable conservative and (essentially) non-oscillatory high-order ALE.
- Integration of the COBRA library is in progress.
- Tzanio Kolev, et al.; LDRD.
- **Research:** Energy constraints.

- The default dynamical core of the Community Atmosphere / Earth System Models.
- OBR to enable a very fast conservative and monotone semi-Lagrangian scheme.
- Mark Taylor, et al.; SciDAC 3.
- **Research:** Tracer transport.

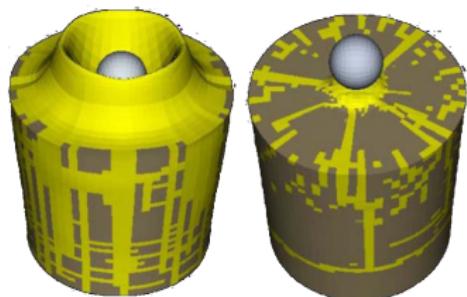
Tensor remap

ALEGRA



- Shock and multiphysics family of codes, including solid kinematics.
- Challenge:** Solid kinematics schemes fail in presence of large deformations.
- Cause:** Violation of physical constraints.
- Deformation gradient:** $\mathbf{F} = \frac{\partial \mathbf{x}_i}{\partial \mathbf{X}_A} \mathbf{e}_i \otimes \mathbf{E}_A$.
- Constraints — sparse but global:**

$$\operatorname{curl} \mathbf{F}^{-1} = \mathbf{0} \quad \text{and} \quad \det \mathbf{F} > 0.$$



- Integrated interior-point methods from our Rapid Optimization Library into ALEGRA.
- Jim Kamm, Ed Love, et al.; ASC CSAR.
- Much, much harder than scalar remap!**

Summary

- Traditional preservation of properties relies on mesh topology, variable placement, and local "worst-case scenarios" – **imposes restrictions on mesh and/or accuracy**
- Optimization-based approaches present an attractive alternative:
 - Accuracy is separated from the preservation of physical properties.
 - Physical properties can be treated as optimization constraints.
 - Discretization is relieved from securing these properties.
 - Solution is a globally optimal state: the best possible, with respect to the target state satisfying the constraints.
- Optimization-based remappers (OBR) are more robust and more accurate than explicit limiter-based remappers.
- The mass-form OBR algorithm is as fast as a local scheme.
- The optimization approach allows for specially tuned targets.
- Dual optimization variables may be used to tune targets.
- Multi-tracer transport can be done efficiently (in progress).
- Tensor remap (remap for solid deformation) needs real optimization.

Publications

- P. Bochev, D. Ridzal, K. Peterson, *Optimization-based remap and transport: A divide and conquer strategy for feature-preserving discretizations*, **J. Comput. Phys.**, In Press, 2013.
- J. R. Kamm, E. Love, A. C. Robinson, J. Young, D. Ridzal, *Edge Remap for Solids*, SAND report, Sandia National Laboratories, 2013.
- K. Peterson, P. Bochev, D. Ridzal, *Optimization-based conservative transport on the cubed-sphere grid*, in Proceedings of the 9th International Conference on Large-Scale Scientific Computations, Sozopol, Bulgaria (2013).
- P. Bochev, D. Ridzal, M. Shashkov, *Fast optimization-based conservative remap of scalar fields through aggregate mass transfer*, **J. Comput. Phys.**, 246:37–57, 2013.
- P. Bochev, D. Ridzal, G. Scovazzi, and M. Shashkov, *Constrained-optimization based data transfer: A new perspective on flux correction*, in **Flux-Corrected Transport**, edited by D. Kuzmin, R. Lohner, S. Turek, Springer-Verlag, 2012.
- P. Bochev, D. Ridzal, J. Young, *Optimization-Based Modeling with Applications to Transport. Part 1. Abstract Formulation.*, In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.), LSSC 2011, **LNCS**, vol. 7116, pp. 63–71. Springer, Heidelberg (2012).
- P. Bochev, J. Young, D. Ridzal, *Optimization-Based Modeling with Applications to Transport. Part 2: The Optimization Algorithm*, In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.), LSSC 2011, **LNCS**, vol. 7116, pp. 72–80. Springer, Heidelberg (2012).
- D. Ridzal, P. Bochev, J. Young, K. Peterson, *Optimization-Based Modeling with Applications to Transport. Part 3: Implementation and Computational Studies*, In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.), LSSC 2011, **LNCS**, vol. 7116, pp. 81–88. Springer, Heidelberg (2012).
- P. Bochev, D. Ridzal, G. Scovazzi, and M. Shashkov, *Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary Lagrangian-Eulerian methods*, **J. Comput. Phys.**, 230(13):5199–5225, 2011.