(m)

Sandia
National
Laboratories

Solution transfer Scalar remap Flux-OBR Mass-OBR

Perspectives on preservatiganpsois:-gio7h
properties through optimization

Pavel Bochev Denis Ridzal Kara Peterson

Sandia National Laboratories

in collaboration with

Mikhail Shashkov (LANL)

High-Resolution Mathematical and Numerical Analysis of Involution-Constrained PDEs
Oberwolfach, September 15-20, 2013

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

P. Bochev Preservation of physical properties 1

New directions




m Solution transfer  Scalar remap Flux-OBR Mass-OBR New directions
..

- -

The larger picture

Atomistic-to-continuum Operator splitting and

coupling

solver synthesis

Study Fixed diffusion: 10¢ Fixed grid size: 128
64 | 128 2% | 102 104 | 100
0 o0 0 Q OBM-MLSSS [ 114 o7 i 62 o7 o7
ATOMISTIC MODEL  FINITE ELEMENTS ptlmlzatlo.n- m:“:
based modeling
O o

hooro- T (DOE/ASCR)

Feature-preserving
solution transfer

ALE SEMI-LAGRANGIAN

Sandia
National P. Bochev Preservation of physical properties 2



m Solution transfer  Scalar remap Flux-OBR Mass-OBR New directions
..

- -

The larger picture

Atomistic-to-continuum Operator splitting and

coupling

solver synthesis

Study Fixed diffusion: 10¢ Fixed grid size: 128
64 | 128 2% | 102 104 | 100
0 o0 0 Q OBM-MLSSS [ 114 o7 i 62 o7 o7
ATOMISTIC MODEL  FINITE ELEMENTS ptlmlzatlo.n- m:“:
based modeling
O o

hooro- T (DOE/ASCR)

Feature-preserving
solution transfer

ALE SEMI-LAGRANGIAN

Sandia
National P. Bochev Preservation of physical properties 2



d Solution transfer Scalar remap Flux-OBR Mass-OBR

Solution transfer
Scalar mass-density remap

Flux form of optimization-based remap
Mathematical formulation
Theoretical properties and benefits
Algorithm and computational cost

Mass form of optimization-based remap
Mathematical formulation
Algorithm and computational cost

New directions and technology transfer
Adaptable targets and smoothness indicators
High-order remap: BLAST, HOMME
Tensor remap: ALEGRA

Sandia
National P. Bochev Preservation of physical properties 3
Laboratories

New directions




m Solution transfer Scalar remap Flux-OBR Mass-OBR New directions

Solution transfer

Sandia
National P. Bochev Preservation of physical properties 3
Laboratories



M/ Solution transfer Scalar remap Flux-OBR Mass-OBR
Solution transfer

New directions

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Sandia
National P. Bochev Preservation of physical properties 4
Laboratories




““ Solution transfer Scalar remap Flux-OBR Mass-OBR
Solution transfer

New directions

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Sandia
National P. Bochev Preservation of physical properties 4
Laboratories




(m)

Sandia
National
Laboratories

P. Bochev

Solution transfer Scalar remap Flux-OBR

Solution transfer

——

Preservation of physical properties

Mass-OBR

New directions




M/ Solution transfer Scalar remap Flux-OBR Mass-OBR
Solution transfer

New directions

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Sandia
National P. Bochev Preservation of physical properties 4
Laboratories




M/ Solution transfer Scalar remap Flux-OBR Mass-OBR
Solution transfer

New directions

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Sandia
National P. Bochev Preservation of physical properties 4
Laboratories




Solution transfer Scalar remap Flux-OBR Mass-OBR New directions

Solution transfer

N

Sandia
National P. Bochev Preservation of physical properties 4
Laboratories



(m)

Sandia
National
Laboratories

P. Bochev

Solution transfer Scalar remap Flux-OBR

Solution transfer

N —

Preservation of physical properties

Mass-OBR

New directions




Solution transfer Scalar remap Flux-OBR Mass-OBR New directions

Solution transfer

N

Sandia
National P. Bochev Preservation of physical properties 4
Laboratories



ﬂ Solution transfer ~ Scalar remap  Flux-OBR  Mass-OBR  New directions

Solution transfer

Given: Discrete representation fa of function f on mesh A.

Find:  Accurate discrete representation fg of f on mesh B,
subject to physical constraints:

@ conservation of mass, energy, etc.
@ preservation of monotonicity

@ physically meaningful ranges for variables:
density > 0, concentration € [0, 1]

Critical task in computational science:
@ shock-hydrodynamics: ALEGRA, BLAST, etc.
@ tracer transport: sea ice — CICE, atmosphere — HOMME, etc.
@ mesh repair, rezone, untangling, reconnection, conservative
regridding in, e.g., big ocean data
@ transfer of simulation data between heterogeneous numerical models
@ data visualization on arbitrary polygonal grids
@ solution recovery for resilient computing
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Mass-density remap

Given: Old mesh C(Q2) and mean density values p; on old mesh cells ¢;.
Find: Approximations m; of masses on a new mesh C(£2) with cells ¢;,

Cl.
C2.

C3.

Sandia
National
Laboratories

m; ~ mPet = / p(x)dvV, i=1,...,C; subject to

. c -~ c
Mass conservation: >~ m;=> ., m =M.

Second-order accuracy: If p(x) is a global linear function on €,
then the mass approximations are exact,

m; = mPet = /p(x)dV, i=1,...,C.
G

Local bounds: The approximations of the mean density on the new

cells, p; = m;/V(¢;), are bounded by the old neighborhood extrema
PN < B < pm> j=1,...,C, or equivalently,

mrn = pPinV(E) < mp < pMV(G) = mm>, i=1,...,C.

P. Bochev
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Some history

19xx—-2010:
@ Scalar remap is a long-studied problem.
@ The constraints (C1)—(C3) are typically handled by construction:
— a careful choice of variables in the remap scheme;
— a special reconstruction procedure; and
— a particular choice of ‘limiter’ (WIKIPEDIA: 15 slope limiters).
@ Challenges: accuracy loss, mesh/cell dependence, robustness.
@ Game changer:
Flux-corrected remap (FCR), Shashkov et al., J. Comp. Phys., 2010.

2010-2012:
@ We use globally constrained optimization to reconcile (C1)—(C3).
@ A mathematically rigorous way to handle constraints.

@ Elegant theory, and connections to methods like FCR.
@ Improved accuracy; improved robustness; general applicability.

2012-2013:
@ Optimization-based remap at the cost of conventional remap.

Sandia
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Flux form of optimization-based remap
Mathematical formulation
Theoretical properties and benefits
Algorithm and computational cost
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1. Given the side-to-cell incidence matrix D,
or discrete divergence, define mass update

m=m+DF,

where F approximates the exact fluxes over
the swept regions r;,

mi=m; + (DF), =

Fj%FjexaCt:/p(x)dV; j=1...,S. m’+zke{j1,...,j4} ok Fi
1
2. Compute target FjT = / p"(x)dV, j=1,...,S, for some density
rj

reconstruction p"(x) that is exact for linear functions. Solve:

. . . 1 T 2 .
minimize §||F - Flz, subject to

AN < m+ DF < @

Sandia
National P. Bochev Preservation of physical properties 8
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Immediate properties
@ Local bounds are enforced directly: mmin < m 4+ DF < m™max,
@ Mass conservation is implicit: follows from the divergence form
S = Ny mit S(DF) =3 m

=0, divergence form

@ Theorem: Second-order accuracy. A sufficient condition for OBR
to recover linear densities exactly is that the centroid of any new
cell remain in the convex hull of the centroids of its old neighbors.

Less restrictive!

(a) original (b) admissible (c) inadmissible

o Independent of dimension and cell topology.

@ Separation of concerns: Optimally accurate and monotone!

Sandia
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Relation to Flux-Corrected Remap (FCR)

Theorem. FCR can be formulated as a global optimization problem.
(1) The FCR cost function is equivalent to the OBR cost function.
(2) The FCR feasible set is always a subset of the OBR feasible set.

Compressive Mesh Motion OBR Feasible Set FCR Feasible Set
P, RS N
. D 0BR(3) D FCR(2)
” £ 09\1\2‘
% E FCR(2)
s e 2 = - [l
. & 5 X » g 2 2
3 s s
Sla e e B 4
e | FeA(2)
L s M 0813
RSN / I‘
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1. OBR preserves shape when FCR may not

100 _— 100) - 100)

5 5 5

0 01 02 03 04 05 06 07 08 09 1 0 0f 02 03 04 05 06 07 08 09 1 0 0f 02 03 04 05 06 07 08 09 f
Original After a single OBR step After a single FCR step

-10 -5 0 5

Level sets of the cost function and the feasible sets:
Red region = OBR feasible set; contains flux target FT = (1,1).
Solid horizontal segment (black) = FCR feasible set.
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2. OBR preserves monotonicity when FCR may not

1 1

0.5 0.5/

>
<

CD 05 1 0 0.5 1

Figure: A 3x3 uniform initial grid (left pane) and the compressed “torture”
grid (right pane) with a 4x4-fold compression of the middle cell.

1 /

06

o \ 06 06

02 04 0.4
/ 1 1

Figure: Linear density p(x,y) = x remapped from the uniform 3 x 3 grid to
the compressed “torture” grid with ¢ = 16. Left to right: the donor-cell
method, FCR, OBR. It is clear that OBR gives the best density approximation.
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3. OBR is more accurate than FCR

09| 09|

08| 08|

07 07|

06| 04|

) — o
%

04

03| 03]

02| 02|

01 04

Remap of smooth (sine) density using OBR

Fcells F#remaps Ly err Ly err Lo err Ly rate L, rate Lo rate
128x128 640 2.69e-04 3.65e-04 2.03e-03 — — —

256 % 256 1280 6.71e-05 9.08e-05 5.07e-04 2.00 2.01 2.00
512x512 2560 1.68e-05 2.27e-05 1.20e-04 2.00 2.00 2.04
10241024 5120 4.19e-06 5.66e-06 2.69e-05 2.00 2.00 2.08

Remap of smooth (sine) density using FCR

128128 640 2.81e-04 3.47e-04 1.23e-03 — — —
256 x 256 1280 9.23e-05 1.19e-04 5.14e-04 1.61 1.54
512x512 2560 3.65e-05 5.05e-05 2.50e-04 1.47 1.39
1024 x1024 5120 1.69e-05 2.39e-05 1.24e-04 1.35 1.28
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Flux-form OBR algorithm

How about speed?

Rather than solve
minimize 1||F —FT|2 subject to
F 2 2
A" —m < DF < @™ —m

directly, we solve its equivalent dual reformulation

1 .
minimize  ~|[D"A =D pul3 — (\,m™" — m—DFT)
AL 2
—(p, —m™> 4+ m+ DFT)

subjectto A >0, u>0.

Thus, we trade the complexity in the globally coupled inequality
constraint for a more complex objective function.
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Flux-form OBR algorithm

Some notation

@ Define system matrix H € R?¢*2C and vector b € R?¢

y_|DD"  -DDT p_ [ DFT —@m™" +m
~ |-DD7T DD7 T |-DFT 4 mm™x —m

o Define the diagonal operator, Diag : R?¢ — R2¢x2C 5

Xj when =

igtlly = { 5 T 12

@ Define the operator v : R?¢ — R2€ as

X when [Hx+ b]; >0
vl = { N i

@ Define the operator K : R?¢ — R2¢x2C 35

(K = 1 when [Hx+ b]; >0
“10 " [Hx + b];i <0

Sandia
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Flux-form OBR algorithm

Semismooth Newton

@ It can be shown that under mild assumptions the solution of the
bound-constrained problem is equivalent to the solution of the
piecewise differentiable system of equations

Diag(v(x)) (Hx+ b) =0.
@ Apply Newton’s method to the nonlinear system by solving
( K(x)Diag(Hx + b) + Diag(v(x))H) p = —Diag(v(x)) (Hx + b)
for the update p at a given iterate x, followed by x < x + p.

@ Each iteration entails the solution of a large linear system.
@ Linear complexity, O(C), where C is the number of mesh cells.

o Conjecture: Parallelizes as well as multigrid — DD’ operator.
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Flux-form OBR speed in
transport applications
Initial FCR Final OBR Final

fl

A
I i)
i

|

B

Figure: After one full revolution (810 time steps) on a 128x128 mesh.

FCR Flux-OBR
mesh steps time(sec)  time(sec) ratio
64 <64 408 3.3 63.7 19.3
128x128 810 26.4 496.4 18.8
256x256 1614 229.1 3464.2 15.1

Table: Computational cost. Flux-form OBR is not competitive!
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Mass form of optimization-based remap
Mathematical formulation
Algorithm and computational cost
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Mass form of OBR

1. Define mass update
m=m-+om,

where dm approximates the exact mass
increments between new and old cells:

e O S ———

i

Note: om; = (DF);
where i =1,...,C.

2. Compute target ém; = / p"(x)dV — / p"(x)dV, i=1,...,C, for
E; Ci
density p/(x) that is exact for linear functions. Solve:

1
minimize = ||ém — om"||2 subject to
om 2 2

S, 0mi=0 and m™" < m+46m < @

Sandia
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(m)

Mass-form OBR algorithm

We solve

1
minimize = ||6m — 6m"||? subject to
om 2 2

c
de,- =0 and A™" < m+dm< MM,
i=1
Known as the singly linearly constrained QP with simple bounds, see
Dai, Fletcher (2006, Math. Program.).

Key observation: The related optimization problem without the mass
conservation constraint, Z,Czl om; = 0, is fully separable!

The related problem can be solved by independently (and concurrently)
solving C one-dimensional quadratic programs with simple bounds.

Goal: Satisfy the second constraint, Z,C:1 om; =0, “in a few iterations”.
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Mass-form OBR algorithm

Define Lagrangian functional L : RE x R x R¢ x R¢ — R,
c
L(dm, A, 11, 142) =3 Z(ém, my)? — )\; om; —

C —~ ot
D1 Hi (5’"" —m" + mi) - ZI 1 H2,i ( m" —m; — 5’"") )

where dm € R¢ are the primal optimization variables, and

X ER, u1 € RS, and pp € RE are the dual optimization variables.

KKT conditions:

omi=0m] + X+ pri—p2i; i=1,...,C
mrt—m, <dmi < WM™ —m; i=1,...,C

p,i >0, p; >0, i=1,...,C

Ml,i(5m,—mm'"+m):0, pai (=6mi + @ —m;) =0, i=1,..,C
0

Sandia
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m Solution transfer Scalar remap
Mass-form OBR algorithm

We solve the KKT conditions directly.

First, we focus on the conditions in black, separable in the index i. For
any fixed value of A\ a solution to the “black” conditions is given by

if MMt — m < dml 4 X< MM —m,

om; =om] + X; H1,i = p2,i =0
dmi=mM" —m;  po;i =0, p,;=dm; — 5m;r - if 6m;-r +A<mM —m,
omp=mM™ —m; 1 =0, pp;=0m] —mi+ X if om] +X>m"X—m.,

foralli=1,...,C.

Ignoring 1 and pp and treating dm; as a function of X yields

i=1,...,C|

dm;(\) = median(mM™™ — m., m! 4+, m™> —m,),

This is a trivial, communication-free O(C) computation.

Sandia
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Mass-form OBR algorithm

Second, we adjust A in an outer iteration in order to satisfy

C
> omi(A) =0.
i=1

When we find the A* such that Z,C:l om;(A*) = 0 holds, we will have
solved the full KKT conditions.

The function Z,C:1 dm;(\) is a piecewise linear, monotonically increasing
function of a single scalar variable \. Therefore, a secant method can
be efficiently employed as the outer iteration.

given A\p, Ac, 1p

@ Compute mi(Ac)
A median(m™" — m,, dm! + A, MM — m,) Vi.

Compute residual ro Z,C:1 omi(Ac).
@ Set o+ (N — A)/(rp — re). Set rp < re.
© Set \p + Ac. Set A\c = Ac — are.

In all our examples, the algorithm requires < 5 secant iterations!
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Mass-form OBR speed in

transport applications

Initial FCR Final OBR Final

Figure: After one full revolution (810 time steps) on a 128x128 mesh.

FCR Flux-OBR Mass-OBR
mesh steps time(sec)  time(sec) ratio  time(sec) ratio
64 <64 408 33 63.7 193 34 1.0
128x128 810 26.4 496.4 18.8 26.2 1.0
256x256 1614 229.1 3464.2 15.1  222.7 1.0

Table: Computational cost. Mass-form OBR is as fast as a local scheme!
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New directions and technology transfer
Adaptable targets and smoothness indicators
High-order remap: BLAST, HOMME
Tensor remap: ALEGRA
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Adaptable targets

@ Cost-function targets are built from the reconstruction:
(X = pH(x) = pi+8 - (x—by) Ve € C(R),

where p; are density values on the old cells ¢;, g; is a least-squares
approximation of the gradient Vp based on p; from the cells in the
neighborhood N(c;), and b; is the barycenter of c;.

@ Define reconstruction residual: g; = Z lp;j — p7(b))| -
JeN(ei)
@ Modify the gradient of p/(x) to obtain adaptable reconstruction:
PA(X)]e = p (%) = pi + aia))g; - (x—b;) Ve € C(Q).

@ For a given constant v > 0,

1 if “smooth”

@i(qi) = 147 q,-/__rPaxC{q,-} otherwise .
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Dual variables as smoothness indicators

“ B =2 =0 if mPin—m, <om] + X< Mt —m,

1

o pai =0, pr = (™" —m)—dml =X if m] + X< @t —m,
@ p1,i =0, ppi=0m] — (MM —m)+Xx if dm] +A>m">—m,

Initial FCR Adaptable OBR

Figure: Transport results for the solid-body rotation test on the sphere, for two
revolutions, left to right and back (1920 time steps) on a 0.75° mesh.

FCR Mass-OBR FCR Mass-OBR
mesh  steps time(sec)  time(sec) ratio  L; error rate  Lj error rate
3° 480 17.4 18.2 1.0 3.25e-2 — 2.79e-2 —
1.5° 960 1325 151.6 1.1 1.99e-2 0.78 1.36e-3
0.75° 1920 1184.5 1379.0 1.2 1.10e-2 0.78 5.41e-3
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Dual variables as smoothness indicators

.
{ \
H > p1i=p2;=0 : if mrin—m, < 5r_n,T A< A —m,
p2,i =0, py; = (MM —m)—dml =X if Sml + X< mPin—m,
(N p1,i =0, ppi=0m] — (MM —m)+Xx if dm] +A>m">—m,
Initial FCR Adaptable OBR

Figure: Transport results for the solid-body rotation test on the sphere, for two
revolutions, left to right and back (1920 time steps) on a 0.75° mesh.

FCR Mass-OBR FCR Mass-OBR
mesh  steps time(sec)  time(sec) ratio  L; error rate  Lj error rate
3° 480 17.4 18.2 1.0 3.25e-2 — 2.79e-2 —
1.5° 960 1325 151.6 1.1 1.99e-2 0.78 1.36e-3
0.75° 1920 1184.5 1379.0 1.2 1.10e-2 0.78 5.41e-3
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Deformational Flow Test

For a more challenging test case we transport two notched cylinders initially centered at
(A1,01) = (57/6,0) and (A2, 62) = (77 /6,0) in the following deformational velocity field

u(A, 6,t) = 2sin® Asin 26 cos (wt/ T)
v(A, 0, t) = 2sin(2)X) cos(0) cos (wt/T)

with period T = 5. In this case an adaptable target is used with parameters v; = 0.1 and
72 = 0.5, resulting in a sharper final density distribution and higher convergence rate than
transport with Flux-Corrected Remap (FCR).

Initial Density Density T=2.5 Final Density

FCR

MVMT-a transport results for the deformational flow test on the sphere, shown at the time of maximum deformation (t = 2.5) and at the
final time (t = 5) for a total of 2400 time steps on a mesh with 120x120 elements per panel. FCR results shown at right.

Sandia
National P. Bochev Preservation of physical properties 26
Laboratories



M Solution transfer Scalar remap Flux-OBR Mass-OBR New directions

Elements FCR MVMT-a  FCR MVMT-a

per panel #+ steps  time(sec)  time(sec) Ly error  rate  L; error rate
30 x 30 600 45.9 46.3 5.59e-1 — 4.58e-1 —
60 x 60 1200 281.3 286.9 3.67e-1  0.61 2.49e-1 0.88
120 x 120 2400 2103.7 2140.3 2.19e-1 0.68  1.25e-1 0.94

Comparison of L7 errors with respect to the initial condition for Flux-Corrected Remap (FCR) and MVMT-a and comparison of

computational costs as measured by Matlab ™ wall-clock times in seconds, on a single Intel Xeon X5450 3.0GHz processor.

Sandia
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.
.
High-order remap

Software: Constrained Optimization Based Remap Algorithms
BLAST HOMME

@ Next-gen LLNL hydrocode. @ The default dynamical core of

@ Mass-form OBR to enable the Community Atmosphere /
conservative and (essentially) Earth System Models.
non-oscillatory high-order ALE. @ OBR to enable a very fast

@ Integration of the COBRA conservative and monotone
library is in progress. semi-Lagrangian scheme.

@ Tzanio Kolev, et al.: LDRD. @ Mark Taylor, et al.; SciDAC 3.

@ Research: Energy constraints. @ Research: Tracer transport

Sandia
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Tensor remap

ALEGRA

Shock and multiphysics family of codes,
including solid kinematics.

o Challenge: Solid kinematics schemes

fail in presence of large deformations.
@ Cause: Violation of physical constraints.
@ Deformation gradient: F = g—)’&e; R Ea.
o Constraints — sparse but global:

curlF'1 =0 and detF>0.

@ Integrated interior-point methods from our
Rapid Optimization Library into ALEGRA.

o Jim Kamm, Ed Love, et al.; ASC CSAR.
@ Much, much harder than scalar remap!
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@ Traditional preservation of properties relies on mesh topology, variable
placement, and local " worst-case scenarios” — imposes restrictions on
mesh and/or accuracy

@ Optimization-based approaches present an attractive alternative:

— Accuracy is separated from the preservation of physical properties.

— Physical properties can be treated as optimization constraints.

— Discretization is relieved from securing these properties.

— Solution is a globally optimal state: the best possible, with respect to
the target state satisfying the constraints.

@ Optimization-based remappers (OBR) are more robust and more accurate
than explicit limiter-based remappers.

@ The mass-form OBR algorithm is as fast as a local scheme.
@ The optimization approach allows for specially tuned targets.
@ Dual optimization variables may be used to tune targets.

@ Multi-tracer transport can be done efficiently (in progress).

@ Tensor remap (remap for solid deformation) needs real optimization.
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