Kenneth Moreland Berk Geveci

Sandia National Laboratories Kitware, Inc.

High-performance computing relies on ever finer threading. Recent ad-
vances in processor technology include greater numbers of cores, hy-
perthreading, and accelerators with integrated blocks of cores, all of
which require more software parallelism to achieve peak performance.

Simplified Parallel Programming

The Dax Toolkit simplifies the development of parallel visualization algorithms. Below is
the Dax code that implements a threshold operation. Algorithm implementations are
encapsulated in worklets, which provide fine-grained parallelism and thread safety. The
Dax Toolkit provides schedulers that apply worklets to all elements in a mesh as well as
common and versatile communicative operations such as array compaction and point
merging. Despite the higher levels of abstraction and generalized programming inter-
face, the speed of Dax algorithms are competitive with other“hand-coded” algorithms.

// Run classify algorithm (determine how many cells are passed).
ClassifyResultType classificationArray;
scheduler.Invoke(dax: :worklet::ThresholdClassify<dax::Scalar>(0.07, 1.0),
grid,
inArray,
classificationArray);

// Build thresholded topology.

ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;

scheduler.Invoke(resolveTopology, grid, outGrid);

Scheduler

Automatic point
merging is
op’rional.

// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);

template<typename ValueType> Count Count
class ThresholdClassify : public dax::exec::WorkletMapCell Worklet Worklet
{

public:

typedef void ControlSignature(Topology,Field(Point), Field(Out)); (::J
typedef 3 ExecutionSignature(2); Count Count S
Worklet Worklet
DAX_CONT_EXPORT ><
ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
: ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) { } '1r1
-
template<typename CellTag> DAX_EXEC_EXPORT dax::Id operator()(:3)
const dax::exec::CellField<ValueType,CellTag> &values) const
{ Array Compact 3
ThresholdFunction<ValueType> threshold(this->ThresholdMin, /4020Pd
this->ThresholdMax); acce ‘ffee (1)
dax::exec::VectorForEach(values, threshold); ”9’11-5 .Wi'l'h
return threshold.valid; cont Weigh+
; O
private:
ValueType ThresholdMin; TOpOIOgy TOpOlOgy R
ValueType ThresholdMax; Worklet Worklet ; \
¥
class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{ Topology Topology
public: Worklet Worklet

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Vertices(1),Vertices(2));

template<typename InputCellTag, typename OutputCellTag>

DAX_EXEC_EXPORT

void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
dax::exec::CellVertices<OutputCellTag> &outVertices) const

Topology Reconstruction

{
outVertices.SetFromTuple(inVertices.GetAsTuple());

}
i

This work was supported in full by the DOE Office of Science, Advanced
Scientific Computing Research, under award number 10-014707,
program manager Lucy Nowell.

This work was supported by the Director, Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of Energy
under Contract No. 12-015215, through the Scientific Discovery through
Advanced Computing (SciDAC) Institute of Scalable Data Management,
Analysis and Visualization.

Sandia National Laboratories is a multi-program laboratory managed and A >
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed e
Martin Corporation, for the U.S. Department of Energy’s National Nuclear ,.4:‘-’
Security Administration under contract DE-AC04-94AL85000. v

SAND 2013-0930P

Cells extracted by
field threshold.

University of California at Davis

Kwan-Liu Ma Robert Maynard

Kitware, Inc.

Current visualization solutions cannot support this extreme level of con-
currency. Extreme scale systems require a new programming model and
a fundamental change in how we design algorithms. To address these
issues, our project builds the Data Analysis at Extreme (Dax) Toolkit.

Topological Connections

The Dax Toolkit contains algorithms designed to find, preserve, follow, and use topo-
logical connections in ways that are often ignored in GPU algorithms. For example, it
is straightforward to implement Marching Cubes on millions of threads each inde-
pendently producing geometry. But reconnecting these pieces to form a manifold
surface on massive threads is challenging. Furthermore, data structures are often
represented as connection lists from cells to their vertices. Finding the reverse con-
nection from points to incident cells, important for many visualization algorithms, re-
quires building complimentary data structures.

By providing these topology features, the Dax Toolkit can support a number of algo-
rithms otherwise difficult in a massively threaded environment. The current growing
list of such algorithms includes vertex welding, C° continuous gradient estimation,
normal generation for smooth surface rendering, curvature, vertex welding, and
cell-finding search structures.

Finding a containing cell in an
unstructured grid efficiently
requires a supporting search
structure. Our initial experi-
ments suggest that regular
structures like uniform grids
and two level grids are faster
on GPUs than structures of
deeper hierarchies (like k-d
trees).

Meshes that do not have an implicit topology are typically

represented using lists of identifiers that for each cell defines b
its connecting vertices. Thus, points incident on each cell are ‘
explicitly defined, but cells incident on each point are not di- : \\

rectly accessible. We have recently added a parallel algorithm
to build links from the points to the cells. These structures
allow us to complete algorithms that , for example, use inter-
polation on cells to derive a field and then write that field
back to points so that the generated field may also be inter-
polated.

Topological connections are often ignored
when results are fed directly to a renderer
where elements are visually connected. How-
ever, users of current production tools expect
the ability to perform a sequence of opera-
tions for more versatile visualizations. For ex-
ample, the data shown here is a contour op-
eration combined with vertex welding, coars-
ening, subdivision, curvature estimation, and
smoothed surface normals. The Dax Toolkit’s
topological capabilities make these possible.

GPU.

and overlapping grids. Analysis of these simulation re-
sults requires identifying void, pancake, filament, and / -
clump features. A primary operation of this feature iden- .~ | | % | |

tification is the finding of cells in this irreqular mesh, an
expensive operation repeated reqularly throughout
space. A recent project demonstrates that on a small
synthetic dataset, using Dax to find cells yields speed- *
ups of up to 22x with multiple cores and 65x usinga °

72 A Toolkit for Visualization at Extreme Scale

V¢ Kitware
AZERD, U-S- DEPARTMENT OF | R N a0
& ENERGY MV A’ XD UCDAVIS

@ Sandia National Laboratories

D
\

National Nuclear Security Administration

SAND2013- 8195P

http://daxtoolkit.org

UNIVERSITY OF CALIFORNIA

Implementation Efficiency

Our performance tests show both that our implementations of the threshold and marching cubes
algorithms are effective in providing efficient parallel performance and that parallel complexity can
be hidden beneath a generic templated programming interface. In addition to demonstrating the
base performance of our code on many devices, we also compare to VTK and PISTON as good repre-

sentations of the state of the art.

Threshold (No Point Merging)

oPISTON-TB5-32 I ——
Dax-T85-32 I

PISTON-TBB-16 e
Dax-T88-1¢ I NG

PISTON-CUDA I
pfeatpyy 000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Seconds
PISTON implementation modified to make output compatible with Dax and VTK.

0.38s
0.14s
0.47s
0.23s
0.16s
0.18s

Xeon E5-267

Xeon X5570

Fermi M2050

Marching Cubes (Triangle Soup)

-TpB-32 I ———
seon E5-2670PISTON-TBB-32
Dax-T55-32 I

0.50s
0.25s
0.64s

PISTON-TBB-16

Xeon X5570
Dax-TBB-16 0.385
. -]
Fermi M2050 PISTON-CUDA 0.30s
Dax-CUDA I 0.225
0.00 0.05 0.0 0.15 020 025 030 035 040 045 050 055 0.60 0.65

Seconds

OpenGL

The Dax Toolkit provides simplified integration with OpenGL-based render-
ing systems with abstracted interop capabilities. Using our TransferToOpenGL

service, any Dax array can be bound to an OpenGL

dered. This interop service works seamlessly with any device on which the
array was created. Thus, no customized code is required to manage whether

the array exists in CUDA or CPU memory.

Interop with CUDA

dax: :opengl::TransferToOpenGL (
surface.Colors, bufferHandles[1]);

(Yes, they are all

Interop with OpenMP

dax: :opengl::TransferToOpenGL (
surface.Colors, bufferHandles[1]);

Threshold (With Point Merging)

VTK-Serial

Dax-Serial NN
Dax-TBB-32 [l

VTK-Serial

Dax-Serial R
Dax-T8B-16 Il

Dax-CUDA
0 1 2 3 4 5 6

13.79s
8.37s
0.51s
14.33s
6.73s
0.82s
0.35s
12 13 14 15

Xeon E5-2670

Xeon X5570

Fermi M2050

8 9

7 10 11
Seconds

Marching Cubes (Manifold Surface)

VTK-Serial 2.27s
Xeon E5-2670 pax-Serial NN s
Dax-T88-32 Il 0455
VTK-Serial 2.42s
Xeon X5570 Dax-Serial NR— 7.24s
Dax-TBB-16] 0.73s
Fermi M2050 Dax-CUDA N 1.01s
0 1 2 3 4 5 6 7 8 9
Seconds

VTK implementation not Marching Cubes but a Synchronized Templates implementation that does not parallelize well.

Interop

aaaaaaaaaaaaaaaaaaa

object and directly ren-

Interop with TBB

dax: :opengl::TransferToOpenGL (
surface.Colors, bufferHandles[1]);

the same.)

GPU Transfer Time

It is “common knowledge” that when leveraging a GPU accelerator, transferring
data between host and device is a major bottleneck and should be avoided or

Poly Normals
0.8 _0.802 Compute

Poly Normals
Transfer

hidden whenever possible. However, our informal study shows that load time is in-

consequential for larger operations. The chart at right compares the time spentin
data transfer and computation for a sequence of common operations. The overall ¢
compute time overshadows the time spent transferring data. These results are im-
portant when integrating GPU algorithms in object-oriented systems like VTK,
ParaView, and Vislt that combine algorithms as independent units. We can simplify
the management of GPU memory by using CPU memory as the transport between

units without incurring unreasonable overhead.

Speed up compared to serial execution

0.152

0.0345

I Varching Cubes
85K 658K 5177K Transfer
points points points

Dataset

Application for N-Body Cosmology Simulation

N-body cosmology simulations produce highly irregular

Speed up compared to perfect linear scaling

%

d

-

tbb

32 48 64 80 96 112

DimensionSize(N°)

32-
pu] [_
:] //
linear
- ’r
ISH = - M
Qw - I+ - 0] 0]
) - // - A
Q - i -
S 16- =
(5} - o~
Q_) -
&
8-
4:_ hyper-threadin
2-
T T T T T T T S S S e O T S S S T S S S S S SRR I
128 2 4 8 16 32

Processors

