
Kenneth Moreland
Sandia National Laboratories

Robert Maynard
Kitware, Inc.

Berk Geveci
Kitware, Inc.

Kwan-Liu Ma
University of California at Davis

A Toolkit for Visualization at Extreme Scale

This work was supported in full by the DOE O�ce of Science, Advanced
Scienti�c Computing Research, under award number 10-014707,
program manager Lucy Nowell.

This work was supported by the Director, O�ce of Advanced Scienti�c
Computing Research, O�ce of Science, of the U.S. Department of Energy
under Contract No. 12-015215, through the Scienti�c Discovery through
Advanced Computing (SciDAC) Institute of Scalable Data Management,
Analysis and Visualization.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.
SAND 2013-0930P

http://daxtoolkit.org

Scheduler

Array Compact

Topology Reconstruction

D
ax Fram

ew
ork

Count
Worklet

Count
Worklet

Count
Worklet

Count
Worklet

Topology
Worklet

Topology
Worklet

Topology
Worklet

Topology
Worklet

template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:
 typedef void ControlSignature(Topology,Field(Point), Field(Out));
 typedef _3 ExecutionSignature(_2);

 DAX_CONT_EXPORT
 ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
 : ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) { }

 template<typename CellTag> DAX_EXEC_EXPORT dax::Id operator()(
 const dax::exec::CellField<ValueType,CellTag> &values) const
 {
 ThresholdFunction<ValueType> threshold(this->ThresholdMin,
 this->ThresholdMax);
 dax::exec::VectorForEach(values, threshold);
 return threshold.valid;
 }
private:
 ValueType ThresholdMin;
 ValueType ThresholdMax;
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:
 typedef void ControlSignature(Topology, Topology(Out));
 typedef void ExecutionSignature(Vertices(_1),Vertices(_2));

 template<typename InputCellTag, typename OutputCellTag>
 DAX_EXEC_EXPORT
 void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
 dax::exec::CellVertices<OutputCellTag> &outVertices) const
 {
 outVertices.SetFromTuple(inVertices.GetAsTuple());
 }
};

// Run classify algorithm (determine how many cells are passed).
ClassifyResultType classificationArray;
scheduler.Invoke(dax::worklet::ThresholdClassify<dax::Scalar>(0.07, 1.0),
 grid,
 inArray,
 classificationArray);

// Build thresholded topology.
ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;
scheduler.Invoke(resolveTopology, grid, outGrid);

// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);

Templated cell

tags specialize

for cell type.

Hazard-free access with lightweight containers.

Automatic point
merging is
 optional.

Simpli�ed Parallel Programming
The Dax Toolkit simpli�es the development of parallel visualization algorithms. Below is
the Dax code that implements a threshold operation. Algorithm implementations are
encapsulated in worklets, which provide �ne-grained parallelism and thread safety. The
Dax Toolkit provides schedulers that apply worklets to all elements in a mesh as well as
common and versatile communicative operations such as array compaction and point
merging. Despite the higher levels of abstraction and generalized programming inter-
face, the speed of Dax algorithms are competitive with other “hand-coded” algorithms.

Cells extracted by
�eld threshold.

Current visualization solutions cannot support this extreme level of con-
currency. Extreme scale systems require a new programming model and
a fundamental change in how we design algorithms. To address these
issues, our project builds the Data Analysis at Extreme (Dax) Toolkit.

High-performance computing relies on ever �ner threading. Recent ad-
vances in processor technology include greater numbers of cores, hy-
perthreading, and accelerators with integrated blocks of cores, all of
which require more software parallelism to achieve peak performance.

Our performance tests show both that our implementations of the threshold and marching cubes
algorithms are e�ective in providing e�cient parallel performance and that parallel complexity can
be hidden beneath a generic templated programming interface. In addition to demonstrating the
base performance of our code on many devices, we also compare to VTK and PISTON as good repre-
sentations of the state of the art.

Implementation E�ciency

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Seconds

PISTON-TBB-32

PISTON-TBB-16
Dax-TBB-16

Dax-TBB-32

Dax-CUDA
PISTON-CUDA

Xeon E5-2670

Xeon X5570

Fermi M2050

0.38s

0.14s

0.47s

0.23s

0.16s

0.18s

Threshold (No Point Merging)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Seconds

Xeon E5-2670

Xeon X5570

Fermi M2050

VTK-Serial
Dax-Serial

Dax-TBB-16

Dax-TBB-32

Dax-CUDA

VTK-Serial
Dax-Serial

13.79s

8.37s

0.51s

14.33s

6.73s

0.82s

0.35s

Threshold (With Point Merging)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
Seconds

PISTON-TBB-32

PISTON-TBB-16
Dax-TBB-16

Dax-TBB-32

Dax-CUDA
PISTON-CUDA

Xeon E5-2670

Xeon X5570

Fermi M2050

0.50s

0.25s

0.64s

0.38s

0.30s

0.22s

Marching Cubes (Triangle Soup)

Xeon E5-2670

Xeon X5570

Fermi M2050

VTK-Serial
Dax-Serial

Dax-TBB-16

Dax-TBB-32

Dax-CUDA
0 1 2 3 4 5 6 7 8 9

Seconds

VTK-Serial
Dax-Serial

2.27s

8.68s

0.45s

2.42s

7.24s

0.73s

1.01s

Marching Cubes (Manifold Surface)

PISTON implementation modi�ed to make output compatible with Dax and VTK.

VTK implementation not Marching Cubes but a Synchronized Templates implementation that does not parallelize well.

Topological Connections
The Dax Toolkit contains algorithms designed to �nd, preserve, follow, and use topo-
logical connections in ways that are often ignored in GPU algorithms. For example, it
is straightforward to implement Marching Cubes on millions of threads each inde-
pendently producing geometry. But reconnecting these pieces to form a manifold
surface on massive threads is challenging. Furthermore, data structures are often
represented as connection lists from cells to their vertices. Finding the reverse con-
nection from points to incident cells, important for many visualization algorithms, re-
quires building complimentary data structures.

By providing these topology features, the Dax Toolkit can support a number of algo-
rithms otherwise di�cult in a massively threaded environment. The current growing
list of such algorithms includes vertex welding, C0 continuous gradient estimation,
normal generation for smooth surface rendering, curvature, vertex welding, and
cell-�nding search structures.

b
a

b

a

Finding a containing cell in an
unstructured grid e�ciently
requires a supporting search
structure. Our initial experi-
ments suggest that regular
structures like uniform grids
and two level grids are faster
on GPUs than structures of
deeper hierarchies (like k-d
trees).

Topological connections are often ignored
when results are fed directly to a renderer
where elements are visually connected. How-
ever, users of current production tools expect
the ability to perform a sequence of opera-
tions for more versatile visualizations. For ex-
ample, the data shown here is a contour op-
eration combined with vertex welding, coars-
ening, subdivision, curvature estimation, and
smoothed surface normals. The Dax Toolkit’s
topological capabilities make these possible.

Meshes that do not have an implicit topology are typically
represented using lists of identi�ers that for each cell de�nes
its connecting vertices. Thus, points incident on each cell are
explicitly de�ned, but cells incident on each point are not di-
rectly accessible. We have recently added a parallel algorithm
to build links from the points to the cells. These structures
allow us to complete algorithms that , for example, use inter-
polation on cells to derive a �eld and then write that �eld
back to points so that the generated �eld may also be inter-
polated.

Application for N-Body Cosmology Simulation

OpenGL Interop
The Dax Toolkit provides simpli�ed integration with OpenGL-based render-
ing systems with abstracted interop capabilities. Using our TransferToOpenGL
service, any Dax array can be bound to an OpenGL object and directly ren-
dered. This interop service works seamlessly with any device on which the
array was created. Thus, no customized code is required to manage whether
the array exists in CUDA or CPU memory.

Interop with CUDA Interop with OpenMP

(Yes, they are all the same.)

Interop with TBB
dax::opengl::TransferToOpenGL(
 surface.Colors, bufferHandles[1]);

dax::opengl::TransferToOpenGL(
 surface.Colors, bufferHandles[1]);

dax::opengl::TransferToOpenGL(
 surface.Colors, bufferHandles[1]);

GPU Transfer Time

85K
points

658K
points

5177K
points

Marching Cubes
Transfer

Marching Cubes
Compute

Poly Normals
Transfer

Poly Normals
Compute

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Dataset

Se
co

nd
s

0.0345

0.152

0.802
It is “common knowledge” that when leveraging a GPU accelerator, transferring
data between host and device is a major bottleneck and should be avoided or
hidden whenever possible. However, our informal study shows that load time is in-
consequential for larger operations. The chart at right compares the time spent in
data transfer and computation for a sequence of common operations. The overall
compute time overshadows the time spent transferring data. These results are im-
portant when integrating GPU algorithms in object-oriented systems like VTK,
ParaView, and VisIt that combine algorithms as independent units. We can simplify
the management of GPU memory by using CPU memory as the transport between
units without incurring unreasonable overhead.

N-body cosmology simulations produce highly irregular
and overlapping grids. Analysis of these simulation re-
sults requires identifying void, pancake, �lament, and
clump features. A primary operation of this feature iden-
ti�cation is the �nding of cells in this irregular mesh, an
expensive operation repeated regularly throughout
space. A recent project demonstrates that on a small
synthetic dataset, using Dax to �nd cells yields speed-
ups of up to 22× with multiple cores and 65× using a
GPU.

SAND2013-8195P

