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template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:
  typedef void ControlSignature(Topology,Field(Point), Field(Out));
  typedef _3 ExecutionSignature(_2);

  DAX_CONT_EXPORT
  ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
    : ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) {  }

  template<typename CellTag>  DAX_EXEC_EXPORT  dax::Id operator()(
      const dax::exec::CellField<ValueType,CellTag> &values) const
  {
    ThresholdFunction<ValueType> threshold(this->ThresholdMin,
                                           this->ThresholdMax);
    dax::exec::VectorForEach(values, threshold);
    return threshold.valid;
  }
private:
  ValueType ThresholdMin;
  ValueType ThresholdMax;
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:
  typedef void ControlSignature(Topology, Topology(Out));
  typedef void ExecutionSignature(Vertices(_1),Vertices(_2));

  template<typename InputCellTag, typename OutputCellTag>
  DAX_EXEC_EXPORT
  void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
                  dax::exec::CellVertices<OutputCellTag> &outVertices) const
  {
    outVertices.SetFromTuple(inVertices.GetAsTuple());
  }
};

// Run classify algorithm (determine how many cells are passed).
ClassifyResultType classificationArray;
scheduler.Invoke(dax::worklet::ThresholdClassify<dax::Scalar>(0.07, 1.0),
                 grid,
                 inArray,
                 classificationArray);

// Build thresholded topology.
ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;
scheduler.Invoke(resolveTopology, grid, outGrid);

// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);
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Simpli�ed Parallel Programming
The Dax Toolkit simpli�es the development of parallel visualization algorithms. Below is 
the Dax code that implements a threshold operation. Algorithm implementations are 
encapsulated in worklets, which provide �ne-grained parallelism and thread safety.  The 
Dax Toolkit provides schedulers that apply worklets to all elements in a mesh as well as 
common and versatile communicative operations such as array compaction and point 
merging. Despite the higher levels of abstraction and generalized programming inter-
face, the speed of Dax algorithms are competitive with other “hand-coded” algorithms.

Cells extracted by 
�eld threshold.

Current visualization solutions cannot support this extreme level of con-
currency. Extreme scale systems require a new programming model and 
a fundamental change in how we design algorithms. To address these 
issues, our project builds the Data Analysis at Extreme (Dax) Toolkit.

High-performance computing relies on ever �ner threading. Recent ad-
vances in processor technology include greater numbers of cores, hy-
perthreading, and accelerators with integrated blocks of cores, all of 
which require more software parallelism to achieve peak performance. 

Our performance tests show both that our implementations of the threshold and marching cubes 
algorithms are e�ective in providing e�cient parallel performance and that parallel complexity can 
be hidden beneath a generic templated programming interface.  In addition to demonstrating the 
base performance of our code on many devices, we also compare to VTK and PISTON as good repre-
sentations of the state of the art. 

Implementation E�ciency
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PISTON implementation modi�ed to make output compatible with Dax and VTK.

VTK implementation not Marching Cubes but a Synchronized Templates implementation that does not parallelize well.

Topological Connections
The Dax Toolkit contains algorithms designed to �nd, preserve, follow, and use topo-
logical connections in ways that are often ignored in GPU algorithms. For example, it 
is straightforward to implement Marching Cubes on millions of threads each inde-
pendently producing geometry. But reconnecting these pieces to form a manifold 
surface on massive threads is challenging. Furthermore, data structures are often 
represented as connection lists from cells to their vertices. Finding the reverse con-
nection from points to incident cells, important for many visualization algorithms, re-
quires building complimentary data structures.

By providing these topology features, the Dax Toolkit can support a number of algo-
rithms otherwise di�cult in a massively threaded environment. The current growing 
list of such algorithms includes vertex welding, C0 continuous gradient estimation, 
normal generation for smooth surface rendering, curvature, vertex welding, and 
cell-�nding search structures.
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Finding a containing cell in an 
unstructured grid e�ciently 
requires a supporting search 
structure. Our initial experi-
ments suggest that regular 
structures like uniform grids 
and two level grids are faster 
on GPUs than structures of 
deeper hierarchies (like k-d 
trees).

Topological connections are often ignored 
when results are fed directly to a renderer 
where elements are visually connected. How-
ever, users of current production tools expect 
the ability to perform a sequence of opera-
tions for more versatile visualizations. For ex-
ample, the data shown here is a contour op-
eration combined with vertex welding, coars-
ening, subdivision, curvature estimation, and 
smoothed surface normals. The Dax Toolkit’s 
topological capabilities make these possible.

Meshes that do not have an implicit topology are typically 
represented using lists of identi�ers that for each cell de�nes 
its connecting vertices. Thus, points incident on each cell are 
explicitly de�ned, but cells incident on each point are not di-
rectly accessible. We have recently added a parallel algorithm 
to build links from the points to the cells. These structures 
allow us to complete algorithms that , for example, use inter-
polation on cells to derive a �eld and then write that �eld 
back to points so that the generated �eld may also be inter-
polated.

Application for N-Body Cosmology Simulation

OpenGL Interop
The Dax Toolkit provides simpli�ed integration with OpenGL-based render-
ing systems with abstracted interop capabilities. Using our TransferToOpenGL 
service, any Dax array can be bound to an OpenGL object and directly ren-
dered. This interop service works seamlessly with any device on which the 
array was created. Thus, no customized code is required to manage whether 
the array exists in CUDA or CPU memory.

Interop with CUDA Interop with OpenMP

(Yes, they are all the same.)

Interop with TBB
dax::opengl::TransferToOpenGL(
  surface.Colors, bufferHandles[1]);

dax::opengl::TransferToOpenGL(
  surface.Colors, bufferHandles[1]);

dax::opengl::TransferToOpenGL(
  surface.Colors, bufferHandles[1]);
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It is “common knowledge” that when leveraging a GPU accelerator, transferring 
data between host and device is a major bottleneck and should be avoided or 
hidden whenever possible. However, our informal study shows that load time is in-
consequential for larger operations. The chart at right compares the time spent in 
data transfer and computation for a sequence of common operations. The overall 
compute time overshadows the time spent transferring data. These results are im-
portant when integrating GPU algorithms in object-oriented systems like VTK, 
ParaView, and VisIt that combine algorithms as independent units. We can simplify 
the management of GPU memory by using CPU memory as the transport between 
units without incurring unreasonable overhead.

N-body cosmology simulations produce highly irregular 
and overlapping grids. Analysis of these simulation re-
sults requires identifying void, pancake, �lament, and 
clump features. A primary operation of this feature iden-
ti�cation is the �nding of cells in this irregular mesh, an 
expensive operation repeated regularly throughout 
space. A recent project demonstrates that on a small 
synthetic dataset, using Dax to �nd cells yields speed-
ups of up to 22× with multiple cores and 65× using a 
GPU.
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