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The ‘THz Gap’ 
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Electronics  

RC limited 
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Photonics  

kT limited 

Plasmonics 

Q = w0/G limited 

𝑬𝟐 
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 Far infrared plasmonic detectors 

 

 

 

 Quantum cascade laser 
transceivers 

 

 

 Coherent low dimensional 
plasmonic phenomena 
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Far Infrared Plasmonics 
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G. Gaborit et al., APL 94, 

231108 (2009) 

Metal & Semiconductor Gratings  

J. G. Rivas et al., PRL 93, 

256804 (2004) 

Semiconductor 2DEGs 

𝜔𝑝 = 𝑛2𝐷𝑒2𝑞 2𝜖𝑚∗  

Quantum Cascade Laser Cavities 

B. S. Williams, Nat. Photonics 1, 517 (2007) 



Bulk to 2D plasmons 
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𝒏𝟑𝑫 𝒎−𝟑  
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FIR 2D Plasmonic Systems 
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Grating Gated Si MOSFETs 

S.J. Allen et al., PRL 38, 980 (1977) 

Grating Gated GaAs/AlGaAs HEMTs 

Graphene Gratings 

L. Ju et al., Nat. Nano. 6, 630 (2011) 

Grating Gated GaN/AlGaN HEMTs 

A.V. Muravjov et al., APL 

96, 042105 (2010) 

X.G. Peralta et al., APL 81, 1627 (2002) 



From Plasmonic Arrays to Elements 

 Plasmon-plasmon coupling? 

 Plasmonic dispersion in coupled structures? 

 Plasmon damping & coherence length? 

 

9 
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 Detection: depleted 2DEG 

 Coupling: log-periodic antenna 

 Resonance: 2D plasmon 

wavelength set by device 

geometry 

Integrated 2D Plasmonic Devices 
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G.C. Dyer et al., Phys. Rev. Lett. 109, 126803 (2012) & G.C. Dyer et al., Appl. Phys. Lett. 100, 083506 (2012) 
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Single cavity & detector 
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G.C. Dyer et al., manuscript in preparation 

𝜹𝑽𝑫𝑺  

𝑽𝑮𝟐 = −𝟎. 𝟗𝟒 𝑽 270 GHz, 10 K 2 mm 
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Plasmonic Spectroscopy 
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Inhomogeneous 2DEG Structures 
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G.C. Dyer et al., Phys. Rev. Lett. 109, 126803 (2012) & G.C. Dyer et al., Appl. Phys. Lett. 100, 083506 (2012) 

𝜹𝑽𝑫𝑺  

𝜸𝟏 =
𝑽𝒕𝒉 − 𝑽𝑮𝟏

𝑽𝒕𝒉
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Coherent Plasmonic Coupling 
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Strongly coupled 

2D plasmonic 

resonators 

G.C. Dyer et al., Phys. Rev. Lett. 109, 126803 (2012) 

𝜸𝟏,𝟐 =
𝑽𝒕𝒉 − 𝑽𝑮𝟏,𝑮𝟐

𝑽𝒕𝒉
 

Detector 



g = 1.0 

Incipient Finite Plasmonic Crystal 
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Exp. Thy. 

g = 0.3 

Two period 

plasmonic crystal 

embedded in 10 mm 

plasmonic cavity 

𝜸 = 𝜸𝟏 = 𝜸𝟐 

G.C. Dyer et al., Phys. Rev. Lett. 109, 126803 (2012) 
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Transmission Line (TL) Theory 

19 

Telegrapher’s Equations 

 

𝜕𝑉 𝑥

𝜕𝑥
+ 𝑅 + 𝐿

𝜕

𝜕𝑡
𝐼 𝑥 = 0 

 
𝜕𝐼 𝑥

𝜕𝑥
+ 𝐺 + 𝐶

𝜕

𝜕𝑡
𝑉 𝑥 = 0 R 

G 

L 

C 

Wave Solutions 
 

𝑉 𝑥 = 𝑉+𝑒−𝑖𝑞𝑥 + 𝑉−𝑒+𝑖𝑞𝑥 

 

𝐼 𝑥 =
1

𝑍0
𝑉+𝑒−𝑖𝑞𝑥 − 𝑉−𝑒+𝑖𝑞𝑥  

Characteristic Z & Dispersion 

𝑍0 =
𝑅 + 𝑖𝜔𝐿

𝐺 + 𝑖𝜔𝐶
  

𝑖𝑞 = 𝑅 + 𝑖𝜔𝐿 𝐺 + 𝑖𝜔𝐶  



Plasmonic TL Model 

20 

(fully screened limit) (unscreened limit) 

𝑍0 =
𝑍2𝐷𝐸𝐺

𝑖𝜔𝐶 𝜔
  

𝑖𝑞 = 𝑖𝜔𝐶 𝜔 𝑍2𝐷𝐸𝐺 

𝑙𝑖𝑚
𝑞𝑑→0

𝐶 𝜔 =
𝑊𝜖

𝑑
                                                              𝑙𝑖𝑚

𝑞𝑑→∞
𝐶 𝜔 = 2𝑊𝜖𝑞 

𝑍2𝐷𝐸𝐺 =
𝑚∗

𝑒2𝑛2𝐷𝜏𝑊
1 + 𝑖𝜔𝜏  

from Drude model Im[Z2DEG] 

is kinetic inductance 

P. J. Burke et al., APL 76, 745 (2000) 
F. Rana,  IEEE Trans. on 

Nanotechnology  7, 91 (2008) 



Generalized Plasmonic TL Model 
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1
2𝑉
 𝑥 𝐼 ∗ 𝑥 = 1

2Φ 𝑥, 0 𝐼∗ 𝑥  𝜒∗ 𝜔, 𝑑  
𝑉 𝑥 ≡ Φ 𝑥, 0  

𝐼 𝑥 ≡ 𝐼 𝑥 𝜒 𝜔, 𝑑  

𝑪 𝝎 =
𝜹𝒏 𝒙

𝜹𝚽 𝒙, 𝒛 = 𝟎
= 𝑾𝝐𝒒 𝟏 + 𝒄𝒐𝒕𝒉 𝒒𝒅  

G.C. Dyer et al., Phys. Rev. Lett. 109, 126803 (2012) 

𝑪 𝝎  

𝑳𝟐𝑫𝑬𝑮 𝑹𝟐𝑫𝑬𝑮 



Generalized Plasmonic TL Model 
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𝑪 𝝎  

𝑳𝟐𝑫𝑬𝑮 𝑹𝟐𝑫𝑬𝑮 

G.C. Dyer et al., Phys. Rev. Lett. 109, 126803 (2012)  

𝐶 𝜔 = 𝑊𝜖𝑞 1 + coth 𝑞𝑑  

𝐿2𝐷𝐸𝐺 =
𝑚∗

𝑒2𝑛2𝐷𝑊
 

𝑅2𝐷𝐸𝐺 = 𝐿2𝐷𝐸𝐺 𝜏  

where:  𝜒 𝜔, 𝑑 = 1 −
𝑞 1−𝑒−2𝑞′𝑑 cos 2𝑞′′𝑑

2𝑞′ 1−𝑒−2𝑞∗𝑑 +
𝑞 𝑒−2𝑞′𝑑sin 2𝑞′′𝑑

2𝑞′′ 1−𝑒−2𝑞∗𝑑  

𝑍 =
1

𝜒 𝜔, 𝑑

𝑅2𝐷𝐸𝐺 + 𝑖𝜔𝐿2𝐷𝐸𝐺

𝑖𝜔𝐶 𝜔
  

𝑞 = −𝑖 𝑖𝜔𝐶 𝜔 𝑅2𝐷𝐸𝐺 + 𝑖𝜔𝐿2𝐷𝐸𝐺  



Discretized Plasmonic TL 
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cos 𝑞1𝑎1 𝑖𝑍 1 sin 𝑞1𝑎1

𝑖sin 𝑞1𝑎1 /𝑍 1 cos 𝑞1𝑎1

 

cos 𝑞2𝑎2 𝑖𝑍 2 sin 𝑞2𝑎2

𝑖sin 𝑞2𝑎2 /𝑍 2 cos 𝑞2𝑎2

 

cos 𝑞3𝑎3 𝑖𝑍 3 sin 𝑞3𝑎3

𝑖sin 𝑞3𝑎3 /𝑍 3 cos 𝑞3𝑎3

 

cos 𝑞4𝑎4 𝑖𝑍 4 sin 𝑞4𝑎4

𝑖sin 𝑞4𝑎4 /𝑍 4 cos 𝑞4𝑎4

 

cos 𝑞5𝑎5 𝑖𝑍 5 sin 𝑞5𝑎5

𝑖sin 𝑞5𝑎5 /𝑍 5 cos 𝑞5𝑎5

 

G.R. Aizin and G.C. Dyer, Phys. Rev. B 86, 235316 (2012) 



Discretized Plasmonic TL 
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𝑉 𝑚
𝐼 𝑚

=  
cos 𝑞𝑚𝑎𝑚 𝑖𝑍 𝑚 sin 𝑞𝑚𝑎𝑚

𝑖sin 𝑞𝑚𝑎𝑚 /𝑍 𝑚 cos 𝑞𝑚𝑎𝑚

𝑛

𝑚

𝑉 𝑛+1

𝐼 𝑛+1

 

Solution for an inhomogeneous cavity with step-like boundaries 

between TL elements is reduced to linear algebra: 

G.R. Aizin and G.C. Dyer, Phys. Rev. B 86, 235316 (2012) 
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Plasmonic Crystal Band Structure 
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1D Kronig-Penney: 

𝒄𝒐𝒔 𝟐𝒌𝑩𝒂 = 

𝒄𝒐𝒔𝒒𝟎𝒂 𝒄𝒐𝒔𝒒𝟏𝒂 −
𝟏

𝟐

𝒁𝟎

𝒁𝟏
+

𝒁𝟏

𝒁𝟎
𝒔𝒊𝒏𝒒𝟎𝒂𝒔𝒊𝒏𝒒𝟏𝒂 

a a 

G.C. Dyer et al., Nature Photonics, DOI: 10.1038/NPHOTON.2013.252 (2013) 



Four Period Plasmonic Crystal 
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G.C. Dyer et al., Nature Photonics, DOI: 10.1038/NPHOTON.2013.252 (2013) 

𝑽𝑮𝟏 → 𝟎, 𝑳𝟏 → ∞ 

Detector 



Plasmonic Tamm States 
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Crystal surface states typically found in crystal band gap 

that have complex Bloch wavevector (𝐼𝑚[𝑘𝐵] ≠ 0) 

G.R. Aizin and G.C. Dyer, Phys. Rev. B 86, 235316 (2012) 
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Defect Probing of Tamm States 
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G.C. Dyer et al., Nature Photonics, DOI: 10.1038/NPHOTON.2013.252 (2013) 

Detector 

Defect Crystal 

a a a a a 



Coupled Tamm & Defect States 
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G.C. Dyer et al., Nature Photonics, DOI: 10.1038/NPHOTON.2013.252 (2013) 



Paired Tamm States 
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W. Shockley, Physical Review 56, 317-323 (1939) 
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Classical Analogue of EIT 
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P. Tassin et. al., Phys. Rev. Lett. 102, 053901 (2009) 

“Low-Loss Metamaterials Based on 

Classical Electromagnetically 

Induced Transparency” 

Resonator A Resonator B 

Coupling 

 P
w

𝝎𝟎 = 𝟏 𝑳𝑪  



Classical Analogue of EIT 
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P. Tassin et. al., Phys. Rev. Lett. 102, 053901 (2009) 

“Low-Loss Metamaterials Based on 

Classical Electromagnetically 

Induced Transparency” 
𝒁𝑨 = 𝑹𝟏 +

𝟏 − 𝝎𝟐𝑳𝑪

𝒊𝝎𝑪
 

𝒁𝑩 = 𝑹𝟐 +
𝟏 − 𝝎𝟐𝑳𝑪

𝒊𝝎𝑪
 

𝒁𝒆𝒒 = 𝒁𝑨 +
𝒁𝑩𝒁𝑪

𝒁𝑩 + 𝒁𝑪
 

𝒁𝑪 =
𝟏

𝒊𝝎𝑪𝑪
 

Resonator A Resonator B 

Coupling 



Plasmonic Crystal-Defect EIT 
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Resonator A: 

Defect Mode 

Resonator B: 

Localized Crystal Tamm State 

Coupling 

𝑮𝟏 𝑮𝟏 𝑮𝟏 𝑮𝟏 𝑮𝟐 

G.C. Dyer et al., Nature Photonics, DOI: 10.1038/NPHOTON.2013.252 (2013) 
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G.C. Dyer et al., Nature Photonics, DOI: 10.1038/NPHOTON.2013.252 (2013) 

𝝂𝑪𝒋 =
𝜷𝑪

𝟐𝝅 𝑳𝒋𝑪𝒋

 

 

𝜷𝑪 = 𝝅 𝒂  

 

𝜹𝝂𝑪 = 𝝂𝑪𝟐 − 𝝂𝑪𝟏 

Crystal-defect eigenmodes in or 

near crystal band gap at 210 GHz 

a a a a a 
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Plasmonic waveguide 
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Quantum & photonic analogues 
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 Wannier-Stark ladder 

 

 

 

 Defect morphology & location 

 

 

 

 Plasmonic ‘tunnel’ coupling 
E. Yablonovitch et al. PRL 67, 3380-3383 (1991) 

R. Sapienza et al. PRL 91, 263902 (2003) 

D.R. Stewart et al. 

Science 278, 1784-

1788 (1997) 
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Potential material systems 
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 Nitride 2DEGs 
 >1 THz, > 77 K 

 Damping: phonon energies, coupling 

 

 

 Graphene 
 FIR to MIR, room temperature 

 Dirac plasmons 

 

 

 Type-II InAs/GaSb 
 2DEG, 2DHG & CNP 

 p-n: me = 0.03 m0, mh = 0.37 m0 

A. V. Muravjov, et al., APL 96, 042105 (2010) 

H. Yan et al., Nat. Nano. 7, 330 (2012) 

W. Pan et al. APL 102, 033504 (2013) 



THz Quantum Cascade Lasers 
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B. S. Williams, Nat. Photonics 1, 517 (2007) 

Unipolar semiconductor laser 

based on engineering of electronic 

states in conduction band  



THz QCL Transceivers 
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M. C. Wanke et. al., Nat. Photonics 4, 565 (2010) 

Schottky diode directly embedded into 

2.8 THz QCL waveguide at cavity center 

 

QCL functions as local oscillator (LO) 
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Rectified (DC) and beat 

(microwave) signals from 

QCL coupling to diode 

G.C. Dyer et al., Opt. Express 21, 3996-4004 (2013) 



Ideal Diode Picture 
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𝑰𝑫 = 𝑰𝟎 𝒆𝒙𝒑
𝑽𝑫

𝒌𝑩𝑻
− 𝟏  



Model of Rectified Response 
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Circles: measured 

change in diode current 

with ‘QCL on’ vs. ‘QCL off’ 

 

Derivatives: calculated 

from static diode I-V 

 

𝜹𝑷𝑸𝑪𝑳  calculated from 

static QCL I-V 

 

Fit: 𝜣𝑻 = 12.28 W/K & 

𝜹𝑽𝑻𝑯𝒛
𝟐 = 6.92 x 10-5 V2 

G.C. Dyer et al., Opt. Express 21, 3996-4004 (2013) 



Relative Diode Positioning 

48 

-16 -12 -8 -4 0 4 8 12 16

m+1
m

Displacement (mm)

m-1

-16 -12 -8 -4 0 4 8 12 16

m+1
m

Displacement (mm)

m-1

diode at x = 0 mm 

(mid-cavity) 

diode at x = +4 mm 

(l /8 offset) 

Fabry-Perot mode 

field distributions 

Diode location at 

center of QCL 

cavity 



400 450 500 550 600 650 700

S
ig

n
a

l 
(a

.u
)

I
QCL

 (mA)

30 K

Mode Amplitudes

450 500 550 600 650 700

2.75

2.80

2.85

2.90

I
QCL

 (mA)


 (

T
H

z
)

450 500 550 600 650 700 750

2.75

2.80

2.85

2.90

I
QCL

 (mA)


 (

T
H

z
)

400 450 500 550 600 650 700 750

1

0

-1

-2

-3

V
D
 = .6 V

d
V

D
/d

I Q
C

L
 (
m
V

/m
A

)

I
QCL

 (mA)

Lithographic Tuning 

49 

400 450 500 550 600 650 700 750

30 K

Mode Amplitudes

S
ig

n
a

l 
(a

.u
)

I
QCL

 (mA)

400 450 500 550 600 650 700

0

-1

-2

V
D
 = .8 V

d
V

D
/d

I Q
C

L
 (
m
V

/m
A

)
I
QCL

 (mA)

d
io

d
e

 a
t 

x
 =

 0
 m

m
 

d
io

d
e
 a

t 
x

 =
 +

4
 m

m
  

  
  

  
 

QCL Emission Mode Amplitudes Rectified Signal 



Diode-Laser Perturbation 
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Non-monotonic change in beat signal tuning diode: 

perturbation of QCL modes 



Imaging via Feedback 
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e- 

e- 

I = -500 nA 

Source-Drain Bias Cavity Selection 

I = +500 nA 

370 GHz 

G. C. Dyer et. al., APL 100, 083506 (2012) 



Bolometric Detection FOMs 

11K Operation, 243 GHz 

 

R > 100 kV/W 

NEP < 50 pW/Hz1/2 
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G. C. Dyer et. al., APL 100, 083506 (2012) 
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Activation Energy 

 Double quantum well material, VTH ~ -2.40 V 

 Left: Arrhenius plots VBG = -2.6 V, fits from 200-600 eV-1 

 Right: activation energy as a function of bias 
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 Via Greg Snider’s 1D 
Schrodinger-Poisson 
solver 

 Carrier density in 
backside delta doping 
and superlattice 

 Potential for parallel 
channel, ‘lever arm’ 

 From lateral barrier 
activation model: 

 

max

0.08625SD A
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V E
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Schrodinger Poisson Model 
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Temperature Dependence 
VBG = -650 mV, 420 GHz VBG = -750 mV, 420 GHz 

 Response described by “RC” over broad range of T 

 Response must be scaled to agree with dV/dT 

 Scale factor: approx. .07 W/K at 20 K, 3 W/K at 100 K 



𝛿𝑉𝐷𝑆 =
𝜕𝑅𝑐ℎ𝑎𝑛

𝜕𝑉𝑔𝑎𝑡𝑒
𝛿𝑉𝑔𝑎𝑡𝑒𝑒−𝑖(𝜔𝑡+∅) 𝛿𝑉𝐷 − 𝛿𝑉𝑆 𝑒−𝑖𝜔𝑡𝐺𝑐ℎ𝑎𝑛

=
1

2
𝑮𝒄𝒉𝒂𝒏

𝝏𝑹𝒄𝒉𝒂𝒏

𝝏𝑽𝒈𝒂𝒕𝒆
𝛿𝑉𝑔𝑎𝑡𝑒 𝛿𝑉𝐷 − 𝛿𝑉𝑆 𝑐𝑜𝑠 ∅  

Plasmonic Homodyne Mixing 

60 ∅ is relative phase between gate & channel THz potentials 

A. Lisauskas et al. J. Appl. Phys. 105, 114511 (2009). 



0

200

400

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-0.5

0.0

0.5

 -G
D

S
 

R
D

S
/

V
G

j (
V

-1
)

 V
G2

 tuned, V
G1

 = -0.74 V

 V
G1

 tuned, V
G2

 = -0.74 V

 V
G1

 tuned, V
G2

 = -0.94 V

 V
G2

 tuned, V
G1

 = -0.98 V

d
V

S
D
 (

m
V

)

V
Gj

 (V)

Homodyne Mixing Photovoltage 

61 

G.C. Dyer et al., manuscript in preparation 



Two Path Plasmonic Mixing 
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G.C. Dyer et al., manuscript in preparation 



Plasmonic Homodyne Mixing 
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THz field coupled to channel (blue) drives current across 

depleted region (red) which is rectified by gate THz field 

e- e- e- e- e- e- 

t = 0 

e- e- e- e- e- e- 

t = T/2 

t = T 
e- e- e- e- e- e- 

A. Lisauskas et al. J. Appl. Phys. 105, 114511 (2009). 



Mach-Zehnder Analogue 
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G.C. Dyer et al., manuscript in preparation 

Equivalent Optical 

Interferometer 



Inductance Comparison 
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Treat gated 2DEG like a single wire loop 

𝐿𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
𝑚∗

𝑒2𝑛2𝐷𝑊
 ~ 50 𝜇0 

 

𝐿𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =
𝑑

𝑊
𝜇0 ~ 0.05 𝜇0 W 

Φ𝑚~
𝜇0𝐼𝑑

𝑊
= 𝐼𝐿𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 

I 
Inductance per unit length 

along x-direction 

Magnetic flux per unit length 

through x-z plane 



Growth Sheet 
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GaAs / AlxGa1-xAs 

 

x = .24 



Q & Coherence Length 
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𝑸 = 
𝜷

𝟐𝜶
   𝑳𝒄 = 

𝟏

𝜶
 

𝒒 ≡ 𝜷 + 𝒊𝜶 



3 gates, response vs. transport 
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𝜹𝑽𝑫𝑺 = −𝑮𝑫𝑺

𝝏𝑹𝑫𝑺

𝝏𝑽𝑮𝟐
𝜹𝑽𝑳𝑶 𝒕  𝜹𝑽𝑫 𝒕 − 𝜹𝑽𝑺 𝒕   



Four stripe rectifier 
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Scalability 
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