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= Farinfrared plasmonic detectors
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Far Infrared Plasmonics ) i,
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From Plasmonic Arrays to Elements @

= Plasmon-plasmon coupling?
= Plasmonic dispersion in coupled structures?

= Plasmon damping & coherence length?
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Integrated 2D Plasmonic Devices — .
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Single cavity & detector ) S,
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Plasmonic Spectroscopy ) 5.
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Coherent Plasmonic Coupling ) 5.
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t Finite Plasmonic Crystal .
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Transmission Line (TL) Theory
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Plasmonic TL Model ) i
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Generalized Plasmonic TL Model

e —

RZDEG Lypkg

on(x)

Clw) = P (x,z=0)

= Weq(1 + coth|qd])

V(x) = o(x,0)

SV I (x) = 30(x, 0)I* (x) x*(w,d) [(x) = 1(x)x(w,d)

21



Generalized Plasmonic TL Model ) &5,
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Discretized Plasmonic TL ) S
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Discretized Plasmonic TL ) S
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Plasmonic Crystal Band Structure
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Four Period Plasmonic Crystal
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Defect Probing of Tamm States ) 5.
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Paired Tamm States ) S

On the Surface States Associated with a Periodic Potential

WILLIAM SHOCKLEY
Bell Telephone Laboratories, New York, New York

(Received June 19, 1939)

Tamm found in this case that it was possible
“to have energy levels whose wave functions were
localized at the surface of the crystal. In this
treatment a semi-infinite crystal was used, and
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Classical Analogue of EIT .
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Classical Analogue of EIT .
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Plasmonic Crystal-Defect EIT .
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Quantum & photonic analogues ) .
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Potential material systems ) 5.
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THz Quantum Cascade Lasers
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THz QCL Transceivers ) S
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Rectified Diode Response ) 5.
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Model of Rectified Response ) .
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Relative Diode Positioning 1) ..
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Lithographic Tuning
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Diode-Laser Perturbation ) S
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Imaging via Feed back ) e,
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Bolometric Detection FOMs
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Resonant Terahertz Response 1) ..
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Activation Energy ) 5,
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Schrodinger Poisson Model ) .

Via Greg Snider’'s 1D
Schrodinger-Poisson
solver

Carrier density In
backside delta doping
and superlattice

Potential for parallel
channel, ‘lever arm’
e L L From lateral barrier
0 100 200 300 400 500 activation model:
Distance (nm) {5\/8[) E,

} ~ F0.08625 =4~
LI o kT

Energy (meV)
= N W :Ihs Cll'l 01-3'4 o)
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Hot Electron Bolometric Response @iz

40 K, 420 GHz
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Temperature Dependence ) .

Vgg =-650 mV, 420 GHz Vg =-750 mV, 420 GHz
||||||||||| as T T T T T T T T T T T T 1
s m N
Green: 20 K 110 — #‘:l:
Purple: 60 K a 5 ; =N L —
Orange: 100K | ] < 00 0 ¢
10 - N ) - S ot . =
L P -
i ! \ 1 G & \r..l' g W >
~~ ] I. v N’ sl [_‘_._._) 1 E
g  m ~ @ Green: 20 K - ~—
= 7] . < 11 © 7)) | Orange: 100 K \— -
_é = ? m @ @6 I
1 o e © Q. "
X me @ ©
1),.1) ﬂl;i! 3L &
30 20 -0 0 10 20 30 M 20 10 o0 10 20 30
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Response described by “RC” over broad range of T
Response must be scaled to agree with dV/dT
Scale factor: approx. .07 W/K at 20 K, 3 W/K at 100 K
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Plasmonic Homodyne Mixing ) 5.

IZDEG ' OVgate

<
(6V ps)

v, | |svs(o




Homodyne Mixing Photovoltage = [E:.
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o
o

o tuned, VGl =-0.74V
— VGl tuned, VGz =-0.74V
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Two Path Plasmonic Mixing ) 2.
63 61

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Y £
Physical path length L fixed, electrical length gL is tuned 62
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Plasmonic Homodyne Mixing ) 5.

gate

(= T/ ee eeee
2DEG OVgare |

- I - e S S I S e s e . )
e e eeee

D I L T

THz field coupled to channel (blue) drives current across
depleted reqgion (red) which is rectified by gate THz field




Mach-Zehnder Analogue ) .

Equivalent Optical
Interferometer

6V o (L) LA, ~ L

N\

Path 1 6VD — SVS




Inductance Comparison ) S

Treat gated 2DEG like a single wire loop

Inductance per unit length
along x-direction

*

Lyinetic = T W 50 ug

x
X d
W =wﬂo ~ 0.05 p

Lgeometric

Magnetic flux per unit length
through x-z plane

Id
mNMOW = ILgeometric




Growth Sheet

EPI-A GROWTH SHEET EA0741

OBJECTIVE: High Mobility Structure
CUSTOMER: Lilly,M
MATERIAL: GaAs, AlGaAs

SAMPLE ID: EA0741
DATE: 02-May-01
GROWER: Reno, J.

Structure
# Material Thickness Dopant Density Temp. SL Comment
1GaAs 10.0 nm undoped 635°C Cap
2 AlGaAs 98.0 nm undoped 635 °C 24.1%
3 delta-dope 0.0 nm Si (n) 1.00E+12 635°C
4 AlGaAs 75.0 nm undoped 635°C Upper Setback 24.1%
5GaAs 30.0 nm undoped 635°C Qw
6 AlGaAs 95.0 nm undoped 635°C Lower Setback24.1%
7 delta-dope 0.0 nm Si (n) 1.00E+12 635°C
8 AlGaAs 98.0 nm undoped 635°C 241%
9GaAs 3.0 nm undoped 635°C  [x300 Smoothing & EtchStop SL
10 AlGaAs 10.0 nm undoped 635°C ] 548%
11 GaAs 100.0 nm undoped 635 °C Buffer
Substrate Information I - ~ Source lnfam'mio'ri o T
Source Temp°C Flux G.R. ML/s Rheed UFG Comment
s e e Tes T e e
. a B . €es es
0‘_:::;';:;:2 8:‘;; AS2C 650.0 0000 No  Yes
Thickness: 625 pm As2X 3%0.0 0000 No  Yes
Diameters 3" Gal 1158.0 0.762 Yes Yes GaAs, 24.1% AlGaAs
Type: undoped Ga9 1090.0 0.199 Yes  Yes 54.8% AlGaAs
Vendor: AXT Rotate -15.0 0.000 No Yes
Rotate -5.0 0.000 No Yes Buffer
Si 1212.0 0.000 No Yes

Notes and Comments:

Duplicate of EA0739 but grown with lower As flux.

Ch Amlderizadoﬁ Results:

Energy Gap [2V]
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Laboratories

GaAs / Al,Ga,  As

X =.24

L L I 1 1 L 1 L 11“5'3?

56 5.8 6.0 6.8 6.4
Latllice Constant [4]




Q & Coherence Length h

a b
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3 gates, response vs. transport
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Laboratories

G3 Signal

G1 Signal

G2 Transport |

Sample B
T=8K

—\/ G2Signal v=360GHz
0.6 ' '

-3.0 -2.5 -2.0 -1.
VG(1,2,3) (V)

(6V o (1) [6Vp(E) — 6Vs(D)])
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Four stripe rectifier ) B,

(SVDS) & SVLO[(SVD — SV’) + (SV’ — SV’) + (SV’ — SV,) + (SV, — SVS)]

= (6VD3) o 6VL0[6VD - 6VS]




Scalability

vy=0.6 vy=0.4
d
2" PBG 2" PBG
st
1"PBG——= | ¢ pg——=
] d
= 2" PBG 7 PBG
st
"PBG—= | ¢t ppg——

GaAs/
AlGaAs

GaN/
AlGaN
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