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1 Introduction

At its heart, the electroweak hierarchy problem is a question of how an infrared (IR) scale

can emerge from an ultraviolet (UV) scale without fine-tuning of UV parameters. Given

the sensitivity of the Standard Model Higgs mass to UV scales, the expectation of effective

field theory (EFT) is that the two should coincide. Conventional solutions to the hierarchy

problem introduce both symmetries that control UV contributions to the Higgs potential

and dynamics that generate IR contributions, leading to considerable structure at the weak

scale and correspondingly sharp experimental tests. Ongoing exploration of the weak scale

has given no evidence for these solutions, despite their theoretical soundness.

In the face of increasingly powerful LHC data in excellent agreement with the Standard

Model, it’s worth taking seriously the possibility that Nature may be leading us to the

conclusion that there is no new physics at the weak scale. While this is often taken to

suggest the existence of considerable fine-tuning in the Higgs potential, here we pursue an
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alternative idea. Perhaps the apparent violation of EFT expectations at the weak scale is

a sign of the breakdown of EFT itself.

This statement is not as radical as it may at first seem. That EFT must eventually

break down is not a new idea; it has long been known that gravity contains low-energy

effects which cannot be understood in the context of EFT. The fact that black holes radiate

at temperatures inversely proportional to their masses [1] necessitates some sort of ‘UV/IR

mixing’ in gravity — infrared physics must somehow ‘know about’ heavy mass scales in

violation of a näıve application of decoupling. As a perhaps-more-fundamental raison

d’être for such behavior, the demand that observables in a theory of quantum gravity

must be gauge-(that is, diffeomorphism-)invariant dictates that they must be nonlocal (see

e.g. [2–6]), again a feature which standard EFT techniques do not encapsulate. In view

of this, the conventional position is that EFT should remain a valid strategy up to the

Planck scale, at which quantum gravitational effects become important. But once locality

and decoupling have been given up, how and why are violations of EFT expectations to be

sequestered to inaccessible energies? Indeed, the ‘firewall’ argument [7] evinces tension with

EFT expectations in semiclassical gravity around black hole backgrounds at arbitrarily low

energies and curvatures.

That quantum gravitational effects will affect infrared particle physics is likewise not a

new idea. This has been the core message of the Swampland program [8], which has been

cataloging — to varying degrees of concreteness and certainty — ways in which otherwise

allowable EFTs may conjecturally be ruled out by quantum gravitational considerations.

These are EFTs which would look perfectly sensible and consistent to an infrared effective

field theorist, yet the demand that they be UV-completed to theories which include Einstein

gravity reveals a secret inconsistency. While this is powerful information, the extent to

which the UV here meddles with the IR is relatively minor — just dictating where one

must live in the space of infrared theories. Even so, they have been found to have possible

applications to SM puzzles, including the hierarchy problem [9–18].

In theory far more flagrant violations of low-energy expectations are permissible —

that is, the extent to which quantum gravitational violation of EFT will affect the infrared

of our universe is not at all certain. Of course any proposal to see new effects from a

breakdown of EFT must contend with the rampant success of the SM EFT in the IR.

Certainly a violation of EFT must both come with good reason and be deftly organized

to spoil only those observed EFT puzzles. For the former, the need for quantum gravity

is obviously compelling. As to the latter, it is interesting to note that the most pressing

mysteries involve the relevant parameters in the SM Lagrangian.

Ultimately, our ability to address the hierarchy problem through quantum gravita-

tional violations of EFT is limited by our incomplete understanding of quantum gravity.

This motivates finding non-gravitational toy models that violate EFT expectations on their

own, providing a calculable playground in which to better understand the potential con-

sequences of UV/IR mixing. In this work we pursue the idea that UV/IR mixing may

have more direct effects on the SM by considering noncommutative field theory (NCFT)

as such a toy model. These theories model physics on spaces where translations do not

commute [19, 20], and have many features amenable to a quantum gravitational interpre-
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tation — indeed, noncommutative geometries have been found arising in various limits of

string theory [21–24].1

This noncommutativity bears out the general expectation that the general-relativistic

notion of spacetime should break down in a theory of quantum gravity [36]. Its realization

here leads directly both to UV/IR mixing in the form of a violation of decoupling and to

nonlocal effects in interactions. This gives rise to many interesting effects, but particularly

fascinating for our purposes is that UV divergences present in the S-matrix elements of

QFTs on commutative spaces can be transmogrified into new infrared poles in the corre-

sponding field theory on noncommutative space [37]. An effective field theorist living in a

noncommutative space would have no way to understand the appearance of this infrared

scale; its existence is intrinsically linked to the geometry of spacetime and to the far UV

of the theory. Such an effective field theorist would see a surprising lack of new physics

accompanying this pole to explain its presence.

It is clear from the outset that the direct application of NCFT to understand the

hierarchy problem is immediately hindered by the Lorentz invariance violation which is

inherent to these theories. Precisely how fatal this might be is not entirely clear; results

regarding the extent to which ‘generic’ Lorentz violation is empirically ruled out [38] are

partly circumvented here by the fact that the Lorentz violation is not generic, but comes

as part of some larger structure. In this case the novel effects of UV/IR mixing in fact

only appear in nonplanar loop diagrams [39] and care is required when interpreting EFT

constraints on Lorentz violation — a point we will emphasize in section 2. Even so, it

is difficult to imagine that observed properties of the weak scale and the wide range of

constraints on Lorentz violation leave room for NCFT to be directly relevant to puzzles of

the Standard Model.

Thus we make no claim about having solved the hierarchy problem. The value of this

work is in the exploration of this toy model of UV/IR mixing, which possesses the intriguing

feature that ultraviolet dynamics generate a scale whose lightness would be baffling to an

effective field theorist. As this is the only model (of which we are aware) with this feature

— and this feature, at the level of words, increasingly matches the experimental situation

with the Higgs — it’s worth understanding its appearance in as much detail as possible.

To make this work self-contained for the contemporary particle theorist, we begin with

an extensive introduction. In section 2, we review quantum field theory on noncommutative

spaces with an emphasis on the violation of EFT expectations. In section 3 we use this

technology to go over the classic result of [37] which first identified this emergent infrared

pole in a Euclidean φ4 theory. We compute also the effect in dimensional regularization to

evince the regularization-independence of the UV/IR mixing effects.

In section 4 we ask how general the effect of UV/IR mixing is within NCFT, which leads

us to study noncommutative Yukawa theory in detail. We find that the scalar propagator

again develops a new infrared pole at one loop, in contrast with previous work. Intrigu-

ingly, the pole in this case is accessible in s-channel scattering in the Lorentzian theory,

1Noncommutative branes arising in gauge theory matrix models have also been found to contain emergent

gravitational effects, and so have been suggested as novel quantum theories of gravity [25–34]. We do not

pursue this perspective here, but refer the reader to [35] for a review of this approach.
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making Yukawa theory a promising setting for probing phenomenological consequences of

UV/IR mixing.

In section 5 we upgrade our model to the softly-broken Wess-Zumino model to study

the interplay between UV-finiteness and UV/IR mixing effects. When the fermion is kept

in the spectrum of the theory below the cutoff, the lack of UV sensitivity of the field theory

removes the light pole. As the fermion is taken above the cutoff, an effective theorist again

sees effects past those observed in Wilsonian EFT. These results are expected, but this

model affords us a concrete demonstration that UV/IR mixing can only have interesting

low-energy effects if the field theory is UV sensitive, and puts this naturalness strategy

in stark contrast to conventional approaches. Of course, this also makes addressing the

hierarchy problem with UV/IR mixing a potentially Pyrrhic victory: to generate an IR

scale, the field theory alone cannot be fully predictive.

Finally, in section 6 we examine the appearance of the emergent light pole in NCFT

from more general arguments, so as to ascertain the relative importance of nonlocality and

Lorentz-violation for these effects. The conclusion is inevitably that in this case the two

are inexorably linked, and no strong conclusion about the possibility of finding a light pole

in a theory with only one or the other is available. However, we provide some direction

toward future explorations into both of these possibilities. We wrap up in section 7.

2 Noncommutative field theory

In this section we review the salient features of the formulation of noncommutative field

theories and the standard formalism for studying their perturbative physics. Useful general

references for this background include [40, 41]. Readers familiar with NCFT may wish to

skip to section 3, but we emphasize that our interest is necessarily non-perturbative in the

parameter controlling the noncommutativity, unlike much of the earlier phenomenologi-

cal literature.

Physics on noncommutative spaces involves the introduction of a nonzero commutator

between position operators

[x̂µ, x̂ν ] = iθµν , (2.1)

where we will refer to θµν = −θνµ as the noncommutativity tensor, and we emphasize that

it is covariant under Lorentz transformations. So while it does break Lorentz invariance,

it only does so in the way that turning on a magnetic field in your lab chooses a preferred

frame, and it can indeed be thought of as simply a background field. This basic definition is

reminiscent of the introduction of a nonzero commutator in passing from classical mechanics

to quantum mechanics. Indeed much of the structure is precisely analogous, including

importantly the construction of noncommutative versions of familiar commutative theories

via a quantization map. At an even more basic level, the above nonzero commutator

induces an uncertainty relation

∆x̂µ∆x̂ν ≥
|θµν |

2
, (2.2)

which immediately makes apparent the presence of UV/IR mixing in this theory. If you

attempt to create a wavepacket which is very small in one direction it will necessarily be
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elongated in another, and so we see already the non-trivial mixing of UV and IR modes.

This clearly violates the separation of scales which is baked in to EFT. Thus purely from

the defining relation of noncommutative geometry, we see already an indication that non-

commutative theories should violate EFT expectations.

Field theories on this space may be conveniently formulated in terms of fields that

are functions of commuting coordinates imbued with a new field product, known as a

Groenewold-Moyal product (or star-product), with position-space representation

f(x) ? g(x) = exp

(
i

2
θµν∂

µ
y ∂

ν
z

)
f(y)g(z)

∣∣∣∣
y=z=x

= f(x) exp

(
i

2

←−
∂ µθµν

−→
∂ ν
)
g(x). (2.3)

It is important to observe that this is a nonlocal product, since it contains an infinite

series of derivative operators. So we see again that one of the tenets of EFT has been

violated by our basic definition of field theory on noncommutative spaces.

With this in hand we may now write down noncommutative versions of familiar theories

in terms of commuting coordinates, which will then allow us to use normal QFT methods

to analyze them. First note that this noncommutative quantization will not affect the

quadratic part of the tree-level action due to momentum conservation and the antisymme-

try of the noncommutativity tensor. For the interacting part of the action the effects of

noncommutative quantization are not so trivial, but are easy to analyze classically. As an

example, for a simple φn theory we find

L(NC)
int =

λ

n!

n copies︷ ︸︸ ︷
φ(x) ? φ(x) ? · · · ? φ(x) . (2.4)

Note, importantly, that the star-product has endowed our vertices with a notion of

ordering, as it is only cyclically invariant. If we now Fourier transform the action to

momentum space, we find that we can account for the effects of quantization on the tree-

level action with a simple modification of the momentum-space vertex factor:

Ṽ (k1, . . . , kn) = δ (k1 + · · ·+ kn) exp

(
i

2

n∑
i<j

kµi k
ν
j θµν

)
. (2.5)

A word of caution is in order. We can now express the action in momentum space as

S(NC)
int =

λ

n!

∫ ( n∏
i

d4ki

)
δ (k1 + · · ·+ kn)φ(k1)φ(k2) . . . φ(kn) exp

(
i

2

n∑
i<j

kµi k
ν
j θµν

)
,

(2.6)

and so — as good effective field theorists — we may be tempted to expand the exponential

for small momenta ∼
∣∣k2
∣∣ |θ| � 1. Indeed, doing so would give us a series of irrelevant op-

erators which would correct the leading interaction. However, once the theory is truncated

at some finite order in θ, we are left with a perfectly local EFT. In other scenarios where

an infinite series of operators appears, this is a valid approximation procedure and allows

one to calculate the leading corrections a theory predicts. But here our definition of NCFT

introduces UV/IR mixing which we expect to violate EFT expectations. Truncating the
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series removes these effects entirely, and a theory so defined no longer has anything to do

with NCFT — at least not in the effects we will be interested in, which are nonperturba-

tive in θ as we shall see explicitly in the following sections. There has been much work

expended on these ‘noncommutative-inspired’ theories, but they do not contain UV/IR

mixing, and do not capture the most striking and most interesting features of physics on a

noncommutative space, from our perspective.2

With that in mind, we may now proceed to do perturbative quantum field theory

calculations, but we must worry about keeping track of all the phases from each of the

vertices. In fact there is another simplification that occurs, as found by Filk [39], which

allows us to simplify the process of finding the phase factor for a diagram to a graph-

topological statement. Filk proved two simple rules for the phase factors:

1. An internal line which ends on two different vertices can be contracted while keeping

the ordering of the other lines fixed.

Ṽ (k1, . . . , kn1 , p) Ṽ (−p, kn1+1, . . . , kn2) = Ṽ (k1, . . . , kn2) δ(k1 + · · ·+ kn1 + p) (2.7)

2. A loop which doesn’t cross any lines can be eliminated. Note that the fixed ordering

of the lines at a vertex means that we can now meaningfully speak of lines which do

or don’t cross each other.

Ṽ (k1, . . . , kn1 , p, kn1+1, . . . , kn2 ,−p) = Ṽ (k1, . . . , kn1 , kn1+1, . . . , kn2)

if

n2∑
i=n1+1

ki = 0 (2.8)

The proof of these facts relies only on the antisymmetry of θµν and the fact that each

vertex contains a momentum-conserving delta function. We may make use of this to simply

find the phase factor of any Feynman diagram. Using the first rule, we can reduce any

diagram to a single vertex, which is a rosette of the external lines and closed loops. The

second rule allows us to eliminate loops which don’t cross other lines.

If the graph was planar (including, importantly, any tree-level graph), then by def-

inition all loops can be eliminated. So all contributions to phase factors from internal

lines cancel, and we’re only left with an overall phase corresponding to the ordering of the

external lines, which has remained fixed throughout the reduction process.

For a nonplanar graph, in this representation it is easy to see that we only pick up

phase factors from lines which cross. The loop gives vertex legs with ±pµ, and for an

external line which doesn’t cross this loop, both loop legs will be on the same side of it in

the cyclic ordering, and so the two terms will cancel in the sum. Only for an external line

which crosses it are the ±p on different sides, and so the antisymmetry of θ will make the

two negative signs cancel to give a coherent phase for this vertex. Thus we define Iij , the

2We are not the first to issue a warning of this sort — see e.g. [42, 43] in the context of connecting

noncommutativity to the real world, and [44] which discusses the general case of nonlocal interactions.
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intersection matrix of an oriented graph:

Iij =


1 line j crosses i from right

−1 line j crosses i from left

0 line j does not cross i

(2.9)

Then for any graph G, the contribution Γ(G) of the phase factors is just

Γ(G) = Ṽ ({external momenta})× exp

(
i

2

∑
ij

Iijki ∧ kj

)
, (2.10)

where we’ve defined ki ∧ kj ≡ kµi θµνkνj .

In what follows we will omit the overall external phase when evaluating diagrams,

as it will not be important for our purposes. We have now simplified perturbative field

theory on noncommutative spaces down to the simple task of marking line-crossings, at

least at the level of writing down integrands of amplitudes. The triviality of this task for

tree-level graphs leads to the interesting feature that tree-level amplitudes on noncommu-

tative spaces are the same as on commutative manifolds, and it is only at loop-level that

we find deviations. We will see in the next section that the loop integration will bring

surprising features.

An important issue for the interpretation of NCFTs is that of their unitarity. There

is no problem in Euclidean space, but for Lorentzian spacetimes with noncommutativity

in the time directions (‘timelike’ or ‘space-time’ noncommutativity when −kµθµρθρνkν ≡
k ◦ k < 0 is allowed), one may find a breakdown of unitarity by taking cuts of one-loop

diagrams [45, 46].3 This may be interpreted physically as being due to the production

of tachyonic states, which if added to the Fock space of the theory result in a formal

restoration of the cutting relations whilst making the nonunitarity explicit [49].

This failure of unitarity is well-understood from the stringy perspective. Spatial non-

commutativity appears from a background magnetic field and the field theory limit to

a spacelike NCFT is smooth [23]. In the case of timelike noncommutativity, however,

approaching the field theory limit forces an electric field to supercritical values whence

pair-production of charged strings destabilizes the vacuum [50]. Study of string theories

with timelike noncommutativity (e.g. ‘noncommutative open string theory’ [50, 51]) is out-

side our scope, but there are at least some hints of similar UV/IR mixing effects as those in

the NCFT [52]. We note in passing that there are further interesting connections between

NCFTs and string theories — not only do particles on noncommutative spaces act in many

ways like rods of size L ∼ pθ (see e.g. [53–57]), mimicking the behavior of extended objects,

but there have been many hints in the spacelike theories that the curious IR effects in the

NCFT are reproducing effects from closed strings, despite the fact that these have been

decoupled (e.g. [37, 52, 58–65]).

Within the realm of field theory, there have long been suggestions that this difficulty

is pointing to the need for a modified definition of quantum field theories on timelike

3Though it is interesting to note that the special case of ‘lightlike’ noncommutativity is also

unitary [47, 48].
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noncommutative spaces (for some early references, see [66–73]). From this perspective, the

issue is that such field theories are non-local in time, which renders nonsensical the normal

time-ordering involved in the perturbative Dyson series (at the least). That is, our effective

definition of these theories above via the diagrammatic expansion may be too näıve. An

interesting line of work is to formulate a modification of the standard quantum field theory

machinery to non-local-in-time theories which avoids the unitarity issue by construction.

We note that the same UV/IR mixing effects of interest in the two-point function have

been seen to persist in at least some of these approaches (e.g. [68]). For some recent work

on the formulation and properties of nonlocal field theories, see e.g. [44, 74–78].

Below we will begin in Euclidean space, where k ◦ k ≥ 0 is guaranteed for any θµν ,

but will then venture into Lorentzian signature. All of our calculations and the general

features we find, including finding new infrared poles, will hold robustly in spacelike non-

commutative theories. However we will comment also on how these features are modified

when timelike noncommutativity is turned on, taking license from the aforementioned hints

that unitary completions/reformulations of timelike NCFT may retain the UV/IR mixing

exhibited in the näıve approach.

3 Real scalar φ4 theory

In this section we review the perturbative physics of the noncommutative real scalar φ4

theory at one loop, which was first studied in detail by Minwalla, Van Raamsdonk, and

Seiberg in [37].4

In four Euclidean dimensions the action on noncommutative space becomes

S =

∫
d4x

(
1

2
∂µφ∂

µφ+
1

2
m2φ2 +

g2

4!
φ ? φ ? φ ? φ

)
, (3.1)

where we have already used the fact that the quadratic part of the noncommutative action

is the same as the commutative theory to eliminate the star product there. Our object

of interest will be the one-loop correction to the two-point function. In the commutative

theory this is given by a single Feynman diagram, but the noncommutative theory contains

both a planar diagram and a nonplanar diagram.

−Γ
(2)
1 =

p

k

+

p

k

The expressions for these two diagrams now differ — not only in symmetry factor but also

due to the phase in the integrand. We find

Γ
(2)
1,planar =

g2

3 (2π)4

∫
d4k

k2 +m2

Γ
(2)
1,nonplanar =

g2

6 (2π)4

∫
d4k

k2 +m2
eik

µθµνpν .

(3.2)

4Some early results in this model may also be found in [79, 80].
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We may already see that something interesting should happen, as in the nonplanar diagram

the phase mixes the internal and external momenta. One may intuit that the rapidly

oscillating phase in the UV of the loop integration will dampen the would-be divergence,

and indeed we will see that nonplanar diagrams are finite. However, unlike in the case

where the vertex factor vanishes rapidly for large Euclidean momenta and so ensures UV-

finiteness [78], here the damping is in some sense ‘marginal’. This fact will be responsible

for the interesting feature we will find presently.

The simplest method to evaluate noncommutative diagrams is to use Schwinger pa-

rameters, recalling the identity 1
k2+m2 =

∫∞
0 dα e−α(k2+m2). The presence of the phase

in the nonplanar diagram means we must complete the square before going to spherical

coordinates to get a Gaussian integral. This means that after the momentum integrals we

end up with

Γ
(2)
1,planar =

g2

48π2

∫
dα

α2
e−αm

2

Γ
(2)
1,nonplanar =

g2

96π2

∫
dα

α2
e−αm

2− p◦p
4α

(3.3)

where again p ◦ q = −pµθ2
µνq

ν . Moving to Schwinger space trades large-k divergences for

small-α divergences, which we now smoothly regulate by multiplying the integrands by

exp
(
−1/(Λ2α)

)
so that the small α region will be driven to zero. Note that a term of this

form already exists in the expression for the nonplanar diagram. After introducing the

regulator, we can evaluate the integrals to find

Γ
(2)
1,planar =

g2

48π2

(
Λ2 −m2 log

(
Λ2

m2

)
+O(1)

)
Γ

(2)
1,nonplanar =

g2

96π2

(
Λ2

eff −m2 log

(
Λ2

eff

m2

)
+O(1)

)
,

(3.4)

where we’ve defined

Λ2
eff ≡

1

1/Λ2 + p ◦ p/4
, (3.5)

which is the effective cutoff of the nonplanar diagram.

The first thing to note is that it seems the UV divergence of the nonplanar diagram

has disappeared — the graph is finite in the limit Λ → ∞, and so appears to have been

regulated by the noncommutativity of spacetime. In fact the effect is more subtle, as

alluded to earlier, and now the UV and IR limits of this amplitude do not commute. If we

first take an infrared limit p ◦ p → 0 we find that Λeff → Λ and the ultraviolet divergence

of the commutative theory reappears. If we take the UV limit Λ → ∞ first we find an

IR divergence 1
p◦p , so the noncommutativity has transmogrified the UV divergence into an

IR one.5

5We note here that the failure of a ‘correspondence principle’ between commutative and noncommutative

theories as θµν → 0 is clearly intrinsically linked to the appearance of UV/IR mixing. This failure doesn’t

violate Kontsevich’s proof of the existence of deformation quantization for any symplectic manifold [81], as

that is confined solely to ‘formal’ deformation quantization — that is, the production of a formal power
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Turning to the question of renormalizability, one may näıvely ask if we can absorb

all UV divergences into a finite number of counterterms. Under this criterion, it is clear

that this procedure works in the noncommutative theory at least when the commutative

version is renormalizable. In the current case, we may absorb the UV divergences of

this correction to the two-point function into a redefinition of the physical mass, M2 =

m2 + g2Λ2

48π2 − g2m2

48π2 log Λ2

m2 , and so write down a one-particle irreducible quadratic effective

action which has a finite Λ→∞ limit:

S
(2)
1PI =

∫
d4p

(2π)4

1

2

(
p2 +M2 +

g2

96π2
(p◦p

4 + 1
Λ2

)
− g2M2

96π2
log

1

M2
(p◦p

4 + 1
Λ2

) + · · ·+O(g4)

)
φ(p)φ(−p). (3.6)

However, in the Λ → ∞ limit one finds that at one loop the propagator now has two

poles. The first is a standard radiative correction to the free pole, but the second has

appeared ex nihilo at one loop:

p2 = −m2 +O(g2)

p ◦ p = − g2

24π2m2
+O(g4),

(3.7)

where we have assumed that θµν is full rank. The former is to be interpreted as the on-

shell propagation of the particles associated to our fundamental field φ. If θµν has only

one eigenvalue 1/Λ2
θ — with Λθ thought of as the scale associated with the breakdown

of classical geometry — we have p ◦ p = p2

Λ4
θ
. We see that the new pole appears at p2 ∝

g2 Λ4
θ

m2 , and so if our field φ lives in the deep UV of the theory, our new pole appears at

parametrically low energy scales. To the extent that poles are particles, we appear to have

generated a new light particle from ultraviolet dynamics.6

The interpretation of the new pole can be sharpened by considering more carefully the

criteria for renormalizability in Wilsonian EFT. In a Wilsonian picture, we upgrade our

Lagrangian parameters to running parameters, and define our theory at the scale Λ as

SWilson(Λ) =

∫
d4x

(
1

2
Z(Λ)∂µφ∂

µφ+
1

2
Z(Λ)m2(Λ)φ2 +

Z2(Λ)g2(Λ)

4!
φ ? φ ? φ ? φ

)
.

(3.8)

It is immediately apparent from the above calculation that we cannot write the ac-

tion at a lower scale Λ0 < Λ in this same form by choosing appropriate definitions for

Z(Λ),m(Λ), g(Λ) — there’s nowhere to put the 1
p◦p term!7

series expansion of the algebra of observables in terms of the deformation parameter. As was noted in

section 2 and is now on prime display, the physics of the theory with nonperturbative θ-dependence is

starkly different from that of any truncation.
6Although there is no pole at finite Λ, a scale is still induced in the form of an infrared cutoff ∼ Λ2

θ/Λ.
7There has been much work on understanding renormalizability of NCFTs, especially with an eye toward

finding a mathematically well-defined four-dimensional quantum field theory with a non-trivial continuum

limit. Renormalizability has been proven for modifications of NCFTs where the free action is supplemented
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Stated more precisely, for Wilsonian renormalizability we require that we can define

the running couplings such that correlation functions computed from this action converge

uniformly to their Λ → ∞ limits. However, this requirement is flatly violated by the

noncommutation of the UV and IR limits of the diagrams. For any finite value of Λ,

the effective action of equation (3.6) differs significantly from its limiting value for small

momenta p ◦ p � 1
Λ2 . This is the precise sense in which the violation of Wilsonian EFT

appears in this one-loop correction.

This brings up the question of how an effective field theorist would describe the uni-

verse if they unknowingly lived on a noncommutative space. A consistent Wilsonian in-

terpretation can be regained by including a degree of freedom which can absorb the new

infrared dynamics of the quadratic effective action. Since we need this to involve the φ

momentum, this new particle must mix linearly with the φ field. We manufacture its tree-

level Lagrangian such that the problematic inverse p ◦ p term in the quadratic effective

action of φ is replaced with its Λ → ∞ value for all values of Λ, to satisfy our precise

condition for Wilsonian renormalizability. To see how this works, we add to our tree level

Wilsonian action

∆S(Λ) =

∫
d4x

(
1

2
∂χ ◦ ∂χ+

1

2

Λ2

4
(∂ ◦ ∂χ)2 + i

1√
24π2

gχφ

)
. (3.9)

Since χ appears quadratically, we may integrate it out exactly at tree level to find a

contribution to the effective action

∆S1PI(Λ) =

∫
d4p

(2π)4

1

2

(
− g2

96π2
(p◦p

4 + 1
Λ2

) +
g2

24π2p ◦ p

)
φ(p)φ(−p) (3.10)

This precisely subtracts off the problematic term in the original 1PI quadratic effective

action and adds back its Λ→∞ limit, as we had wanted. Ignoring the logarithmic term,8

we are left with an effective action which is manifestly independent of the cutoff Λ, and

so satisfies our criterion for Wilsonian renormalizability.9 We discuss the generalization of

this procedure in appendix A.

by an additional term which adjusts its long-distance behavior. Such an action is manufactured either by

requiring it manifest ‘Langman-Szabo’ duality [82] pµ ↔ 2(θ−1)µνx
ν [83, 84] or by adding a 1/p ◦ p term

to the free Lagrangian [85], the latter of which directly has the interpretation of adding ‘somewhere to put

the 1/p ◦ p counterterm’. For recent reviews of these and related efforts we refer the reader to [86, 87]. It

would be interesting to understand fully the extent to which the physics of these schemes agrees with the

interpretation of the IR effects as coming from auxiliary fields [37, 61].
8Discussion of the interpretation of logarithmic singularities as being due to auxiliary fields propagating

in extra dimensions may be found in [61].
9In equation (3.9), the four-derivative quadratic action of the auxiliary field can be rewritten as two

fields with two-derivative actions, one of which is of negative norm and may be thought of as the ‘Lee-Wick

partner’ of the positive norm state [88], viz.

L =
1

2
∂χ′ ◦ ∂χ′ − 1

2
∂χ̃ ◦ ∂χ̃− 1

2

4

Λ2
χ̃2 + i

1√
24π2

g
(
χ′ − χ̃

)
φ, χ′ ≡ χ+ χ̃ (3.11)

One may then wonder if the lightness of the new IR pole may be understood through the regularization

performed by the Lee-Wick field, as is done for the Higgs in the ‘Lee-Wick standard model’ [89]. However,

in that theory the Higgs is kept light because every particle comes with a Lee-Wick partner, and so all

diagrams contributing to corrections to the Higgs mass are made finite. The presence of the Higgs’ Lee-Wick
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Now while we have written down an action which identifies the new observed IR pole

with a field and in doing so gives our effective action a Wilsonian interpretation, the extent

to which χ can be taken seriously as a fundamental degree of freedom is unclear.10 The new

pole is inaccessible in Euclidean space — so one does not immediately conclude there is a

tachyonic instability — and relatedly, when we näıvely analytically continue this result to

Lorentzian spacetime this new pole is inaccessible in the s-channel.11 However, its presence

is still enough to break unitarity for this theory [45], and in fact may still be interpreted

as being due to the presence of tachyons [49]. As discussed in section 2, it is possible this

may be resolved if analytical continuation is adjusted for nonlocal-in-time theories, or it

may be that a UV theory cures this apparent violation.

Separately, it is not obvious much has been gained by attributing the new pole to a

new, independent field, past acting as a formal tool to regain a notion of renormalizability.

Since the only interaction of χ above is linear mixing, its action is not renormalized — any

divergences are instead absorbed into the running of φ parameters — and so no interactions

are generated. Furthermore one is obstructed from integrating out the heavy field φ to come

up with an effective action of χ at low energies by the fact that the kinetic terms of χ are

non-standard, which prevents diagonalization of the quadratic terms in the Lagrangian.

Thus it seems it is intrinsically linked with the heavy scalar which begat it.

There are further obstructions to asking that this specific mechanism be responsible for

the lightness of an observed particle such as the Higgs. Prime among these is the modified

dispersion relation of the new field, p ◦ p = O(g2), which means that the free propagation

of this field would be Lorentz violating.12 We will explore these issues further in the next

sections, as in the Yukawa theory of section 4 the new pole will appear with the opposite

sign and so will offer the prospect of appearing as an s-channel pole.

partner alone is not enough to keep it light. Here, the lightness of χ can be understood diagrammatically

as being simply due to the fact that its only interaction is linear mixing with φ, and so any correction

to its two-point function is absorbed into that of the two-point function of φ. A further issue with the

Lee-Wick rewriting is that the seeming perturbative unitary of the theory is normally guaranteed by the

Lee-Wick partner being heavy and unstable. But as we take the Λ→∞ limit in our Wilsonian action, we

see that the Lee-Wick partner becomes massless as well, in accordance with the result that this theory is

non-unitary [45].
10We note that in matrix models containing dynamical noncommutative geometries it has been argued

that emergent infrared singularities should be associated with the dynamics of the geometry (see e.g. [35,

90]). As our field theories are formulated on fixed noncommutative backgrounds, this interpretation is

unavailable to us.
11Note that this peculiar connection regarding (in)accessibility is due to the Lorentz violation. While

the normal pole which is inaccessible in Euclidean signature becomes accessible for timelike momenta in

Lorentzian signature, the Wick rotation affects the noncommutative momentum contraction differently.

When taking x4 → −ix0, one also rotates θ4ν → −iθ0ν such that equation (2.1) continues to hold for

the same numerical θµν . For the simplest configuration of full-rank noncommutativity with θµν block-

off-diagonal and only one eigenvalue 1/Λ2
θ, the Euclidean p ◦ p = p2/Λ4

θ becomes a Lorentzian p ◦ p =

(p20 − p21 + p22 + p23)/Λ4
θ. So a noncommutative pole which is inaccessible in the Euclidean theory becomes

accessible in the Lorentzian theory for spacelike momenta, while a noncommutative pole which can be

accessed in the Euclidean theory becomes accessible in the s-channel in Lorentzian signature.
12This dispersion relation means that χ only propagates in noncommutative directions, and so attempts

to use hidden extra-dimensional noncommutativity to avoid four-dimensional Lorentz violation constraints

seem a phenomenological nonstarter.
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We emphasize that a new infrared scale whose lightness is unexplained in the context

of Wilsonian effective field theory is an exciting feature that makes further exploration of

UV/IR mixing an interesting pursuit. The fact that it here appears as the scale of a pole in

a propagator makes the connection to the hierarchy problem captivating, but asking that

this toy model — where Lorentz violation is at the fore — literally solve the problem for

us would be too much. We proceed without further hindrance in exploring NCFT so as to

learn more about the appearance and effects of UV/IR mixing here.

3.1 Dimensional regularization

A good question to ask is whether, or to what extent, these effects are an artifact of our

choice of regularization. To demonstrate their physicality, we repeat the calculation of the

one-loop correction to the two-point function now in dimensional regularization. We set

up our integral in d = 4 − ε dimensions, having defined g2 = g̃2µ̃ε, and we again go to

Schwinger space:

Γ
(2)
1,planar =

g̃2µ̃ε

3 (2π)d

∫
ddk dα e−α(k2+m2)

Γ
(2)
1,nonplanar =

g̃2µ̃ε

6 (2π)d

∫
ddk dα e−α(k2+m2)+ikµθµνpν .

(3.12)

After completing the square in the nonplanar integral, the momentum integral and the

Schwinger integral may then be performed analytically, with the results:

Γ
(2)
1,planar =

g̃2µ̃ε

3 (4π)d/2
(m2)

d
2
−1Γ

(
1− d

2

)
Γ

(2)
1,nonplanar =

g̃2µ̃ε

6 (4π)d/2
2
d
2 (m2)

1
2

( d
2
−1) (
√
p ◦ p)1− d

2 K d
2
−1 (m

√
p ◦ p) .

(3.13)

If we expand the planar graph in the limit ε → 0, which should be thought of as probing

the ultraviolet, we recover

Γ
(2)
1,planar = − g̃2m2

3(4π)2

[
2

ε
+ ln

µ2

m2

]
, (3.14)

where in MS we would subtract off the pole and find the renormalization group evolution

of m from the logarithmic term, as usual.

The question of dimensional regularization for the nonplanar diagram is a subtle

one [91]. If we first take the ε → 0 limit of equation (3.13), we see this manifestly has

no divergences, and we are simply left with the finite, ε0 term

Γ
(2)
1,nonplanar =

g2m2

6(4π)2

[
4

m2p ◦ p
− ln

4

m2p ◦ p
− 1 + 2γ

]
, (3.15)

which we have expanded near p ◦ p → 0 to manifest the IR divergence. We have again

transmogrified our UV divergence into an IR pole. We now expect to see that the IR limit
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does not commute with the above UV limit. To do so, we expand equation (3.13) around

p ◦ p→ 0 to find

Γ
(2)
1,nonplanar =

g̃2m2

6(4π)2

πε/2µ̃ε

mε
Γ

(
−1+

ε

2

)
+

g̃2

24π2
µ̃επε/2Γ

(
1− ε

2

)
p◦p−1+ε/2+O(p◦p). (3.16)

If we were to now blindly take the ε → 0 limit of this expression, we would again get

equation (3.15), contrary to our expectations. However, we notice that if the dimension of

spacetime over which we had performed the integral was particularly low ε > 2, then we

have incorrectly kept the second term in equation (3.16), as that term would be at least

O(p ◦ p). If we were to work in d < 2, expand in p ◦ p → 0 and so ignore that term, and

then analytically continue back to d = 4, we would instead find the ε−1 pole

Γ
(2)
1,nonplanar = − g̃2m2

6(4π)2

[
2

ε
+ ln

µ2

m2

]
, (3.17)

and now we recover the UV divergence that was present in the commutative theory, so

that once again we find the UV and IR limits don’t commute.

The key to understanding clearly this seemingly ambiguous dimensional regularization

procedure is that while Γ
(2)
1,nonplanar(p ◦ p) ∼

∫
ddq dα e−α(q2+m2)− p◦p

4α is convergent in d > 2

for p ◦ p > 0, at p ◦ p = 0 it is only convergent for d < 2. Since it is a property of

dimensional regularization that if an integral converges in δ dimensions, it converges to the

same value in d < δ dimensions [92], we may thus perform the integral at d < 2 for all

p ◦ p and correctly find equation (3.13). It is only when taking the IR limit that we must

remember the integral was performed in d < 2 dimensions, and so our expansion to get

equation (3.17) is unambiguously correct. Thus our conclusion that the UV and IR limits

of the two-point function do not commute here is robust.

It is thus clear that the UV/IR mixing we have observed in this model is not an artifact

of a choice of regularization, and is in fact a physical feature of this noncommutative

field theory.

4 Yukawa theory

4.1 Motivation: strong UV/IR duality

We observed in our first example that the UV divergences of the real φ4 commutative

theory are transmogrified into infrared poles in the noncommutative theory.13 It is natural

to ask whether this “strong UV/IR duality” [93] is a common feature of all noncommuta-

tive theories.

The answer is no, and the simplest counterexample is provided in the case of a complex

scalar field with global U(1) symmetry and self-interaction [93]. In the quantization of the

13While we only presented the calculation of the one-loop correction to the two-point function, [37] goes

through corrections to the two- and n-point functions for φn with n = 3, 4 and finds the same features in

all cases.
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scalar potential we have two quartic terms which are noncommutatively-inequivalent due

to the ordering non-invariance, so the general noncommutative potential is

V = m2|φ|2 +
λ1

4
φ∗ ? φ ? φ∗ ? φ+

λ2

4
φ∗ ? φ∗ ? φ ? φ, (4.1)

where λ1 and λ2 are now different couplings. By doodling some directed graphs, one sees

simply that the one-loop correction to the scalar two-point function contains planar graphs

with each of the λ1, λ2 vertices, but the only nonplanar graph has a λ2 vertex. There is

thus no necessary connection of the ensuing nonplanar IR singularity to the UV divergence

in the θ → 0 limit, as the coefficients are unrelated (and in particular, we are free to turn

off the IR singularity at one loop by setting λ2 = 0).

Another important counterexample is that of charged scalars, the simplest example

of which is noncommutative scalar QED, which was first constructed in [94]. There is

a very rich and interesting structure of gauge theories on noncommutative spaces, a full

discussion of which is far beyond the scope of this paper. We refer the reader to [43, 95–100]

for discussions of some features relevant to SM model-building. We here satisfy ourselves

with the simplest case, for which we have the noncommutative Lagrangian14

L =
1

4g2
Fµν ? F

µν + (Dµφ)∗ ? (Dµφ) + V (φ, φ∗) , (4.2)

where even though we’re quantizing U(1) we have Fµν = ∂µAν − ∂νAµ − i [Aµ ∗, Aν ] due

to the noncommutativity, where [· ∗, ·] is the commutator in our noncommutative algebra.

The vector fields transform as Aµ 7→ U ? Aµ ? U
† + i∂µU ? U †, where U(x) is an element

of the noncommutative U(1) group, which consists of functions U(x) =
(
eiθ(x)

)
?
, which is

the exponential constructed via power series with the star-product.

The potential and the covariant derivative both depend on the representation we choose

for the scalar. In contrast to commutative U(1) gauge theory, where we merely assign φ a

charge, our only choices now are to put φ in either the fundamental or the adjoint of the

gauge group. Note that an adjoint field smoothly becomes uncharged in the commutative

limit. Such a field φ transforms as φ 7→ U ? φ ? U †. The covariant derivative is thus

Dµφ = ∂µφ − ig [Aµ ∗, φ]. The gauge-invariant potential then includes both quartic terms

in equation (4.1), in addition to others such as φ∗ ? φ ? φ ? φ, since the adjoint complex

scalar is uncharged at the level of the global part of the gauge symmetry. Strong UV/IR

duality then should not hold here either.

The situation is even worse if φ is in the fundamental, where it transforms as φ 7→ U ?φ

and φ∗ 7→ φ∗ ? U−1 with covariant derivative Dµφ = ∂µφ − iAµ ? φ. It is easy to see in

this case that the λ2 interaction term is no longer gauge invariant, and a charged scalar

may only self-interact through V = λ1φ
∗ ?φ?φ∗ ?φ. Purely from gauge invariance we thus

see that a fundamental scalar has no nonplanar self-interaction diagrams in the one-loop

14It is important to note that many fundamental concepts which one normally thinks of as depending upon

Lorentz invariance still hold on noncommutative spaces, due to a ‘twisted Poincaré symmetry’ [101–104].

This includes the unitary irreducible representations, so it is sensible to speak of a vector field.
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g₂ g₂

g₂

g₂

g₂ g₂ g₂ g₂

Figure 1. Representative leading nonplanar corrections to the self-energies in the noncommutative

Yukawa theory of [107]. Fermion lines have arrows and dashing denotes nonintersection.

correction to its two-point function, and so there is no remnant of strong UV/IR duality

to speak of.15

The question is then whether there are other examples where this strong UV/IR duality

does occur, or whether it is perhaps a peculiar feature of real φn theories on noncommu-

tative spaces. To answer this, we will study in detail another case of especial phenomeno-

logical significance: Yukawa theory. Noncommutative Yukawa theory was first studied

in [107].16 Our result on the presence of strong UV/IR mixing differs, for reasons we will

explain henceforth.

4.2 Setup

For reasons that will soon become clear, we will now work directly in Minkowski space, and

begin with a commutative theory of a real scalar ϕ and a Dirac fermion ψ with Yukawa

interaction:

L(C) = −1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 + iψ/∂ψ − ψMψ + gϕψψ. (4.3)

When constructing a noncommutative version of this theory, the quadratic part of

the action does not change. However, ordering ambiguities appear for the interaction

term, and we in fact find two noncommutatively-inequivalent interaction terms which

generically appear:

L(NC)
int = g1ϕ ? ψ ? ψ + g2ψ ? ϕ ? ψ. (4.4)

These terms are inequivalent because the star product is only cyclically invariant. In

the analysis of [107], only the g2 interaction was included. As a result, it was concluded

that this theory contains no nonplanar diagrams at one loop, and the first appear at two

loops as in figure 1. This immediately tells us that the one-loop quadratic divergence of

the scalar self-energy will not appear with a one-loop IR singularity, and so rules out the

putative strong UV/IR duality of the theory they studied.

15Noncommutative QED also has strange behavior in the gauge sector that runs counter to strong UV/IR

duality — the photon self-energy correction gains an infrared singularity from nonplanar one-loop diagrams,

even though the commutative quadratic power-counting divergence is forbidden by gauge-invariance. The

theory is constructed in detail in [105], while more physical interpretation is given in [106], and the possible

relation to geometric dynamics in the context of matrix models is discussed in [90].
16Aspects of noncommutative Yukawa theory have also been studied recently in d=3 in [108], and with

a modified form of noncommuativity in [109].
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However, we must ask whether we actually have the freedom to choose g1 and g2 inde-

pendently. To address that question, we must understand the role of discrete symmetries

in noncommutative theories. For ease of reference we here repeat our definition of the

noncommutativity parameter

[xµ, xν ] = iθµν (2.1)

It is manifest that the noncommutativity tensor does not transform homogeneously under

either parity or time-reversal, but only under their product: PT : xµ → −xµ ⇒ PT : θµν →
θµν . So while any Lagrangian with full-rank noncommutativity unavoidably violates both

P and T , it may preserve PT .

Since both ϕ and the scalar fermion bilinear are invariant under all discrete symmetries,

these symmetries näıvely play no further role in this theory. However, the time-reversal

operator is anti-unitary, and thus negates the phase in the star-product:

(PT )−1 (f(x) ? g(x))PT = g(x) ? f(x). (4.5)

Armed with this, we may now apply CPT to our interaction Lagrangian, to find

(CPT )−1L(NC)
int CPT = g1ψ ? ϕ ? ψ + g2ϕ ? ψ ? ψ. (4.6)

Comparing with equation (4.4), we see that our interactions have been re-cycled! Requiring

that our interactions preserve CPT amounts to imposing

(CPT )−1L(NC)
int CPT = L(NC)

int =⇒ g1 = g2 (4.7)

And so the theory of [107] appears to violate CPT.17 When we instead include both

orderings of interactions the nonplanar diagrams now occur at the first loop order. Further-

more, with both couplings set equal the planar and nonplanar diagrams will have the same

coefficients, which reopens the question of strong UV/IR duality for this theory. In the

following we will keep g1 and g2 distinguished merely to evince how the different vertices

appear, but in drawing conclusions about the theory we will set them equal.18

17We note that while the CPT theorem has only been proven in NCFT without space-time noncom-

mutativity [110–113], the difficulty in the general case is related to the issues with unitarity discussed in

section 2, and we expect it should hold in a sensible formulation of the space-time case as well.
18We should note that in the construction of noncommutative QED it has been argued that it is sensible

to assign θ the anomalous charge conjugation transformation C : θµν → −θµν ([114] and many others since).

The argument is that charged particles in noncommutative space act in some senses like dipoles whose dipole

moment is proportional to θ, and so charge conjugation should naturally reverse these dipole moments. Here,

however, our particles are uncharged, and thus we have no basis for arguing in this manner. Furthermore,

such an anomalous transformation makes charge conjugation relate theories on different noncommutative

spacesMθ →M−θ. The heuristic picture of the CPT theorem (that is, the reason we care about CPT being

a symmetry of our physical theories) is that after Wick rotating to Euclidean space, such a transformation

belongs to the connected component of the Euclidean rotation group [115], and so is effectively a symmetry

of spacetime. So it is at the least not clear that defining a CPT transformation that takes one to a different

space accords with the reason CPT should be satisfied in the first place.
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4.3 Scalar two-point function

First we consider the planar diagrams, of which there are two:

−iΓ2,s,p
1 (p) = g₁ g₁p

k	+	p/2

k	-	p/2

+ g₂ g₂p

k	-	p/2

k	+	p/2

The ‘symmetrization’ of the momenta of the internal propagators is an important

calculational simplification. This calculation is textbook save for our Schwinger-space

regularization, so we will be brief and merely point out the salient features. The sum of

these diagrams gives

Γ
(2),s,p
1 (p) = i(−1)

(
(ig1)2 + (ig2)2

) ∫ d4k

(2π)4

(−i)2Tr
[(
M − /k − /p/2

) (
M − /k + /p/2

)]
((k + p/2)2 +M2) ((k − p/2)2 +M2)

.

(4.8)

To evaluate this, we must now introduce two Schwinger parameters α1, α2 and then

switch to ‘lightcone Schwinger coordinates’ which effects the change
∫∞

0 dα1

∫∞
0 dα2 →∫∞

0 dα+

∫ +α+

−α+
dα−. Regulating the integral by exp

[
−1/
√

2α+Λ2
]
, we may then evaluate

and isolate the divergences as Λ→∞ to find

Γ
(2),s,p
1 (p) = −(g2

1 + g2
2)

2π2

[
Λ2 − 6M2 + p2

4
log

(
Λ2

M2 + p2/4

)
+ . . .

]
(4.9)

Turning now to the nonplanar diagrams, there are again two

−iΓ(2),s,np
1 =

g₂
p

g₁ + g₂p g₁

Each now has one g1 vertex and one g2 vertex, which makes it clear why the analysis

of [107] found no such diagrams. The two diagrams will come with opposite phase factors,

eip∧k and eik∧p, so we can compute one and then find the other by taking p 7→ −p. In this

case it’s obvious that after completing the square we will only be left with terms which are

quadratic in p, and so the two diagrams give the same contribution. We can thus compute

both terms at the same time.

The phase factor in the integrand will modify our change of variables, as it did in the

φ4 case, to give again an effective cutoff for this diagram due to the noncommutativity.

We find

Γ
(2),s,np
1 (p) =

g1g2

π2

∫
dqdα1dα2q

3

(
M2 − q2 +

α1α2

(α1 + α2)2 p
2 +

p ◦ p
4(α1 + α2)2

)
× e−(α1+α2)(q2+M2)− α1α2

α1+α2
p2− p◦p

4(α1+α2) . (4.10)

We can now follow the same steps to regulate and integrate this, and again find a

closed-form expression for the pieces which contain divergences. Note that unlike the φ4
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calculation, we can already see that the nonplanar expression will not merely be given by

Λ → Λeff, as the change of variables has here modified the numerator of the integrand

to give an extra piece to the momentum polynomial multiplying the exponential. And so

integration gives us

Γ
(2),s,np
1 (p) =

g1g2

1920π2

[
3
(
640M2 + p4p ◦ p+ 40(4M2 + p2)p ◦ pΛ2

eff

)
K0

(√
4M2 + p2

Λeff

)

+ 20
√

4M2 + p2Λeff

(
−96 + p2p ◦ p+ 12p ◦ pΛ2

eff

)
K1

(√
4M2 + p2

Λeff

)]
.

(4.11)

We must now think slightly more carefully about what we want to add to the quadratic

effective action to find a Wilsonian interpretation of this theory. We may isolate the IR

divergence that appears when the cutoff is removed by first taking the limit Λ →∞ with

p ◦ p held fixed, and then expanding around p ◦ p = 0. We may then ask that this same

divergence appears at any value of Λ. To account for this IR divergence, we must add to

our effective action

∆S1PI(Λ) = −1

2

∫
d4p

(2π)4

g1g2

2π2

(
Λ2

eff −
4

p ◦ p

)
ϕ(p)ϕ(−p), (4.12)

which can easily be done through the addition of an auxiliary scalar field as was done in

section 3 and is discussed in more generality in appendix A. After having added this to

our action, for small p ◦ p the scalar two-point function now behaves as Γs1(p) = − 2g1g2
π2p◦p +

. . . for any value of Λ. The new pole in this case has the opposite sign as that in 3.9,

and so will be accessible in Euclidean signature, clearly signaling a tachyonic instability.

While this puts the violation of unitarity in this theory on prime display, it also means

that this pole will be accessible in the s-channel in the Lorentzian theory if we allow for

timelike noncommutativity.

We emphasize that any conclusions about the Lorentzian theory with timelike non-

commutativity are speculative and dependent upon a solid theoretical understanding of

a unitary formulation of the field theory, and in principle such a formulation could find

radically different IR effects than this näıve approach. However, it was found in [68] that

a modification of time-ordering to explicitly make the theory unitary (at the expense of

microcausality violation) leaves the one-loop correction to the self-energy unchanged in φ4

theory, and the same might be expected to hold true for Yukawa theory. This makes it

worthwhile to at least briefly consider the potential phenomenological consequences of the

new pole.

At low energies, the propagator is here modified to m2 +(pi+pj)
2− 2g1g2

π2
1

(pi+pj)◦(pi+pj) .

If we consider scattering of fermions through an s-channel ϕ and take the simple case of a

noncommutativity tensor which in the lab frame has one eigenvalue 1/Λ2
θ with m2 � Λ2

θ,

then the emergent pole appears at s = 2g1g2
π2

1−β2

1+β2

Λ4
θ

m2 . Here s = −(pi + pj)
2 is the invariant

momentum routed through the propagator, and β is the boost of the (pi + pj) system

with respect to the lab frame. The Lorentz-violation here then has the novel effect of
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smearing out the resonance corresponding to the light pole for a particle which is produced

at a variety of boosts. This is in contrast to the pole at m2, which gives a conventional

resonance at leading order. Of course, we have not constructed a fully realistic theory

in any respect, and ultimately it may well be that other Lorentz-violating effects provide

the leading constraint. Nonetheless, the lineshape of resonances may be an interesting

observable in this framework.

A further feature of this opposite sign of the new pole compared to that in the φ4 theory

is that the unusual momentum-dependence of the two-point function will lead to ordered

phases which break translational invariance [37, 116–119]. While a Lorentz-violating back-

ground field may possibly be very well constrained, the detailed constraint depends on its

wavelength and the ways in which it interacts with the SM. But this is another obvious

line of exploration for constraining realistic NCFTs.

4.4 Fermion two-point function

There are again two planar diagrams:

−iΓ(2),f,p
1 = p

g₁ g₁
+ p g₂ g₂

No new features appear in the evaluation of these diagrams, so we merely quote the fi-

nal result:

Γ
(2),f,p
1 = −g

2
1 + g2

2

16π2

(
M − /p

2

)
log

4p2Λ2

m4 + 2m2(p2 −M2) + (M2 + p2)2
+ . . . (4.13)

We also have two nonplanar diagrams, which again mix the two vertices

−iΓ(2),f,np
1 = p

g₁
g₂ + p

g₁
g₂

Here we find that the different phase factors for each diagram, which we saw were

inconsequential for the nonplanar corrections to the scalar, have an important role. When

we complete the square in each of the two cases, we find that one of the diagrams has

an integrand proportional to
(
M − /p α2

α1+α2
− 1

2
pµθµνγν
α1+α2

)
and the other is proportional to(

M − /p α2
α1+α2

+ 1
2
pµθµνγν
α1+α2

)
, so the would-be divergence in pθ will cancel manifestly between

the two diagrams. After this everything proceeds as before, and we find

Γ
(2),f,np
1 = −g1g2

8π2

(
M − /p

2

)
log

4p2Λ2
eff

m4 + 2m2(p2 −M2) + (M2 + p2)2
+ . . . (4.14)

We see that with g1 = g2 ≡ g, the fermion quadratic effective action also behaves

as expected from ‘strong UV/IR duality’. The logarithmic divergence of the commuta-

tive theory has been transmogrified in the nonplanar diagrams into IR dynamics via the

simple replacement Λ → Λeff, and so a p ◦ p → 0 pole will emerge when we remove the

cutoff. We discuss the use of an auxiliary field to restore a Wilsonian interpretation here

in appendix A.2.
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4.5 Three-point function

The correction to the vertex function constitutes further theoretical data toward the Wilso-

nian interpretation of the noncommutative corrections. We calculate the one-loop correc-

tion in this section and delay the discussion of the use of auxiliary fields to account for

them until appendix A.3. We will find that while we can use the same fields to account for

the modifications to both the propagators and the vertices, the physical interpretation of

such fields is unclear.

We can compute corrections for each fixed ordering of external lines separately since

they’re coming from different operators. For simplicity we’ll compute the g1 ordering,

which we will denote Γϕψψ3 (r, p, `). There are four diagrams in total: one planar diagram

with two insertions of the g2 vertex, one nonplanar diagram with two insertions of the g1

vertex, and two nonplanar diagrams with one insertion of each. It is easy to see by looking

at the diagrams that the same expressions with g1 ↔ g2 compute the correction to the

other ordering, Γψϕψ3 (r, p, l).

The new feature of this computation is that we now need three Schwinger parameters,

and this presents a problem for our previous computational approach. We won’t be able to

perform the two finite integrals before expanding in a variable which isolates the divergences

when α1 + α2 + α3 → 0, analogously to what we did in 2d Schwinger space. Instead we

slice 3d Schwinger space such that we can perform the integral which isolates the leading

divergences first, and then — as long as we’re content only to understand this divergence —

we can discard the rest without having to worry about performing the other two integrals.

The planar diagram is

iΓϕψψ3,p (p, `) = p g₂ g₂
g₁

l ,

and corresponds to the expression

Γϕψψ3,p (p, `) = − i(ig1)(ig2)2 (4.15)

×
∫

d4k

(2π)4

(−i)3
(
M − (/k + /p

2 + /̀
2)
)(

M − (/k − /p

2 −
/̀
2

)
(
(k + p

2 + `
2)2 +M2

) (
(k − p

2 −
`
2)2 +M2

) (
(k + p

2 −
`
2)2 +m2

) .
After moving to Schwinger space, integrating over the loop momentum, and introducing a

cutoff exp
(
−1/

(
Λ2(α1 + α2 + α3)

))
, we switch variables to

α1 = ξ1η, α2 = ξ2η, α3 = (1− ξ1 − ξ2)η, (4.16)

under which
∫∞

0 dα1

∫∞
0 dα2

∫∞
0 dα3 →

∫ 1
0 dξ1

∫ 1−ξ1
0 dξ2

∫∞
0 dη η2. Performing the momen-

tum integral transfers the divergence for large k to a divergence in small α1 +α2 +α3 = η.

This will allow us to find the leading divergent behavior immediately by carrying out the

η integral and then expanding in Λ→∞. This yields

Γϕψψ3,p (p, `) =
g1g

2
2

16π2
log
(
Λ2
)

+ finite, (4.17)
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where we are unable to determine the IR cutoff of the logarithm, but this suffices for

our purposes.

The three nonplanar graphs now each receive a different phase corresponding to which

external line crosses the internal line

iΓϕψψ3,np (p, `) = p
g₁

l
g₁g₁

+ p l
g₁

g₂
g₁

+ p l
g₁

g₂
g₁

,

where the first gets exp [−i(k ∧ p+ k ∧ `+ p ∧ `)], the second exp [−i(k ∧ p+ p ∧ `/2)], and

the third exp [−i(k ∧ `+ p ∧ `/2)]. The evaluation of these diagrams proceeds as in the

previous examples. If we take the IR limit p, `→ 0 of the nonplanar contributions to this

ordering of the three-point function and then expand in large Λ we find

lim
p,`→0

Γϕψψ3,np (p, `) =
g2

1(g1 + 2g2)

16π2
log
(
Λ2
)

+ finite. (4.18)

However, if we first take the UV limit Λ→ 0, and then expand in small momenta, we find

lim
Λ→∞

Γϕψψ3,np (p, `) =
g2

1

16π2

[
g1 log

(
4

(p+ `) ◦ (p+ `)

)
+ g2 log

(
4

p ◦ p

)
+ g2 log

(
4

` ◦ `

)]
+ finite, (4.19)

where we again see UV/IR mixing, and we note that each nonplanar diagram has been

effectively cutoff by the momenta which cross the internal line. We discuss the use of aux-

iliary fields to restore a Wilsonian interpretation to this vertex correction in appendix A.3.

5 Softly-broken Wess-Zumino model

We now turn our attention to the softly-broken noncommutative Wess-Zumino model as

a controllable example of the interplay between UV/IR mixing and the finiteness of the

field theory. We will restrict ourselves to calculating the one-loop correction to the scalar

two-point function. Since the new poles appearing in the quadratic effective action in

the scalar and Yukawa theories are intimately related to the quadratic divergences of the

commutative theories, we will not be surprised to find that this feature will disappear when

both the scalar and the fermion are present in the EFT below the cutoff. By studying the

softly-broken theory we can take the fermion above or below the cutoff to smoothly see

the relation between the finiteness of the field theory and the effects of UV/IR mixing.

The exactly supersymmetric noncommutative Wess-Zumino model was first discussed in

detail in [120], and the absence of an infrared pole in a softly-broken theory was first noted

in [106]. The softly-broken Wess-Zumino model was first considered in [42].19

19Our one-loop results agree with those of [42] save for their claim that logarithmic IR divergences are

absent in the exactly supersymmetric theory, which contradicts [120]. We will below find a logarithmic

IR divergence in the wavefunction renormalization which is independent of the soft-breaking, which is

consistent with the expectations of strong UV/IR duality.

– 22 –



J
H
E
P
0
3
(
2
0
2
0
)
0
3
7

The noncommutative Wess-Zumino theory can be suitably formulated in off-shell su-

perspace as

L =

∫
d4θ ZΦ†Φ +

∫
d2θ

(
1

2
MΦ2 +

1

6
y Φ ? Φ ? Φ

)
+ h.c., (5.1)

where Φ is a chiral superfield and we have included a wavefunction renormalization factor

in the Kähler potential Z = 1 +O(y2). We can introduce soft supersymmetry breaking by

promoting this factor to a spurion Z = 1 + (|M |2−m2)θ2θ†2, the only effect of which is to

modify the scalar mass spectrum.

Formulating the noncommutative theory including the auxiliary F fields makes it man-

ifest that we have preserved supersymmetry off-shell. This procedure is in fact precisely the

same as quantizing after integrating out F , and so we end up with a star-product version

of the familiar Lagrangian:

−LNCWZ =Z∂µφ∗∂µφ− iZψ†σ̄µ∂µψ

+ Z−1m2φ∗φ+
1

2
Mψψ +

1

2
M∗ψ†ψ†

+
1

2
Z−1yφ ? ψ ? ψ +

1

2
Z−1y∗φ∗ ? ψ† ? ψ†

+
1

2
Z−1yM∗φ ? φ ? φ∗ +

1

2
Z−1y∗Mφ∗ ? φ∗ ? φ

+
1

4
Z−1 |y|2 φ ? φ ? φ∗ ? φ∗ (5.2)

where φ is a complex scalar and ψ is a Weyl fermion. Of course, now that we’ve

introduced supersymmetry breaking we expect to find that there is further renormalization

beyond that associated with Z, but keeping the manifest factors of Z will allow us to easily

compare to our expectations for the supersymmetric limit.

The calculation of the one-loop correction to the two-point function goes much as the

previously-demonstrated examples. The presence of the three-scalar interaction gives a

new class of diagrams, whose evaluation is routine. The two-component fermions yield

slightly different factors than did the Dirac fermions [121]. Finally, it is important to note

that the results for the diagrams computed in section 3 cannot be used here, as we must

here regulate uniformly using exp(−1/(Λ2(α1 +α2))) like we did in section 4. This may be

easily accommodated by writing the integrand in the quartic diagrams as 1
k2+m2

k2+m2

k2+m2 .

Adding up all these diagrams and taking the limit where Λ,Λeff are large, we find that

the one-loop scalar two-point function may be organized as

Γ(2),s ≡ Zp2 + Z−1(m2 + δm2) (5.3)

Z = 1 +
y2

32π2
log

[
ΛΛeff

M2

]
+ . . . (5.4)

δm2 =
y2

32π2

(
M2 −m2

)
log

[
ΛΛeff

M2

]
+ . . . , (5.5)

where we make manifest the presence of supersymmetric nonrenormalization in the limit

m → M , which acts as a non-trivial check. As expected, the absence of the quadratic
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UV divergence in the Wess-Zumino model has led to the absence of an infrared pole from

the noncommutativity, even as the fermion is made arbitrarily heavy relative to the scalar.

However, logarithmic UV/IR mixing still occurs.

We may repeat this calculation using dimensional regularization and taking note of the

issues which arose in section 3.1. Using the same parametrization of the one-loop two-point

function as above, the planar diagrams contribute

Zplanar = 1 +
y2

64π2

(
2

ε
+ log

µ2

M2

)
+ . . . (5.6)

δm2
planar =

y2

64π2
(M2 −m2)

(
2

ε
+ log

µ2

M2

)
+ . . . , (5.7)

as expected. The full form of the nonplanar diagrams is unenlightening, but if we take the

IR limit p ◦ p→ 0 first, they give precisely the same contribution as the planar diagrams,

since the diagram degeneracies are all the same in this case. Taking the UV limit ε → 0

first (and staying in d < 2), we instead find

Znonplanar = 1 +
y2

64π2
log

4

M2p ◦ p
+ . . . (5.8)

δm2
nonplanar =

y2

64π2
(M2 −m2) log

4

M2p ◦ p
+ . . . , (5.9)

which has precisely the same correspondence with the Schwinger-space regularization as

we saw for the φ4 case.

We thus see clearly the conflict between supersymmetry and the use of UV/IR mixing

to explain low-energy puzzles. UV/IR mixing transmogrified UV momentum dependence

into IR momentum dependence, and so depended crucially on the sensitivity of our field

theory to UV modes. For a theory which is finite as a field theory, the dependence on the

UV physics has been removed, and so we see no interesting IR effects.

Of course, in the presence of a cutoff Λ it is also possible to study the behavior of

the scalar two-point function when M2 � Λ2 � |M2 −m2| as the fermion is taken above

the cutoff while keeping the scalar light. This corresponds to taking M/Λ,M/Λeff > 1

and then expanding in the limit where Λ,Λeff are large. This gets rid of the nonplanar

Yukawa-type diagrams and, as one might expect, results in a return of UV sensitivity in

the scalar EFT below the cutoff, foreshadowing a return of the UV/IR mixing effects. The

scalar mass-squared in this limit becomes

δm2 =
y2

256π2

(
6M2 + 16Λ2 + 8Λ2

eff

)
+ . . . . (5.10)

and UV/IR mixing reappears at the quadratic level. So our EFT intuition isn’t totally out

the window; it’s been broken in a controlled way, and we can smoothly interpolate between

theories with and without UV/IR mixing by taking the states responsible for finiteness

above the cutoff. This sharpens the sense in which UV/IR mixing can do something

interesting in the IR as long as the field-theoretic description of our universe is never finite.

Ultimately, this highlights a central challenge for approaching the hierarchy problem

via UV/IR mixing. The hierarchy problem is particularly sharp when the full theory is
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finite and scale separation is large, in which case the sensitivity of the Higgs mass to

underlying scales is unambiguous. But UV/IR mixing effects potentially relevant to the

hierarchy problem are absent in this case, and emerge only when finiteness is lost. This

tension is not necessarily fatal to UV/IR approaches to the hierarchy problem — ultimately

the UV sensitive degrees of freedom are not the ones we would wish to identify with the

Higgs — but it bears emphasizing.

Moreover, there is a possible loophole in the general argument that finiteness must be

surrendered in order to generate a scale from UV/IR mixing. The presence of interesting

effects in the IR here depends solely on the UV sensitivity of the nonplanar diagrams. The

‘orbifold correspondence’ [122–124] provides non-supersymmetric field theories constructed

via orbifold truncation of N > 0 theories whose planar diagrams agree with those of the

supersymmetric theory and so are finite. A noncommutative orbifold field theory [125] may

then provide a theory which is fully predictive, yet which still generates an infrared scale

via UV/IR mixing. Generally, it may be possible that UV/IR mixing appears in such a

way that it is the sole effect sensitive to short distances.

6 Whence UV/IR mixing?

To attempt to formulate a realistic theory which uses UV/IR mixing to solve extant the-

oretical puzzles, it would be useful to have an understanding of which features of NCFT

were responsible for the curious infrared effects discussed above. This would be helpful

whether one wishes to test out these ideas in any of the many proposed modifications of

NCFT, or to write down other toy models which share some features of NCFT but are

based upon different principles.

Qualitatively, the two unusual features involved in the formulation of NCFT are

Lorentz invariance violation and nonlocality. However, it is obvious that one may have

theories with one or both of these features without the interesting effects we have seen.

The answer then is not so simple as pointing to one axiom or another of EFT which has

been broken, but depends sensitively on the way in which they are broken. We briefly

explore two ways we may better understand the interplay here between nonlocality and

Lorentz-violation and how they come together to cause surprising low-energy effects. We

first give a general argument based on the way nonlocality appears to postdict the form of

the violation of EFT expectations. We then phenomenologically examine the loop integra-

tion appearing in our NCFT calculations to diagnose what caused the appearance of the

IR pole. This will lead us to discuss an avenue toward investigating (or manufacturing)

such effects in nonlocal, Lorentz-invariant theories.

To see how EFT expectations may be violated, consider the peculiar way in which the

noncommutative effects in the one-loop action (e.g. equation (3.6)) induce nonlocality. In

Wilsonian EFT, integrating out momentum modes p & Λ produces a nonlocal theory at

those scales, or equivalently on distances x . 1/Λ. However, particles on a noncommutative

space can be thought of as rods of size L ∼ pθ [53–57]. This tells us that in a NCFT we

should expect nonlocality to be present for scales x . pθ. Comparing the two scales, we see

that we should find nonlocal effects past those expected in Wilsonian EFT for 1
Λ < pθ. Here
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this momentum-dependent nonlocality occurs in a Lorentz-violating way. This expectation

was exactly borne out in the examples above, where we saw that the one-loop effective

action in momentum space is nonlocal for p ◦ p� 1/Λ2 [37].

Purely from this analysis of the form of nonlocality, we may conclude there will be a

breakdown of Wilsonian renormalization. After we remove the cutoff, the theory should

be nonlocal on all scales p ◦ p > 0. But if we compute a correlation function at a large-but-

finite Λ, the theory will still be local for momenta p ◦ p < 1/Λ2, and so will greatly differ

from the continuum result. So our surprising discovery of the non-uniform convergence of

correlation functions in the examples above is understood easily from this picture.

While this sort of momentum-dependent nonlocality may seem ad hoc, it has been

suggested previously for separate purposes. It has been argued [126] that quantum gravity

should obey a ‘Generalized Uncertainty Principle’ ∆x & ~
∆p + `2p∆p, with `p the Planck

length, based on the use of Hawking radiation to measure the horizon area of a black hole.

This gives precisely the same sort of momentum-dependent nonlocality as we saw above.

We refer the reader to [127] for a review of the Generalized Uncertainty Principle, [128, 129]

for similar conclusions within string theory, and [130] for a more general review of the

appearance of an effective minimal length in quantum gravity. It would be interesting

to investigate other field theories which obey such uncertainty principles and determine

whether UV/IR mixing causes similar features as appear in NCFT. For theories which

violate Lorentz invariance, care must be taken to avoid arguments that even Planck-scale

Lorentz violation is empirically ruled out [38, 131].

We may also attempt to phenomenologically diagnose what caused the appearance

of the IR pole from the form of the loop integration. The presence of an exponential of

momenta was clearly crucial, and this implies a necessity of nonlocality. It’s also clear that

the modification of the cutoff in the nonplanar diagrams Λ 7→ Λeff, which rendered the

diagrams UV finite in a way that brought UV/IR mixing, was a result of the contraction

between the loop momentum and the external momentum. Less obviously, one may see that

any quadratic term in loop momentum in the exponential would have erased this feature,

as after momentum integration one would find an integrand ∼ 1
1+α+

, and any divergence

will have disappeared. Heuristically, the quadratic suppression in loop momentum is too

strong and regulates the UV divergence entirely independently of the cutoff, so no UV/IR

mixing appears. NCFT disallows such terms as a result of momentum contractions being

performed with an antisymmetric tensor, and this particular mechanism seems to imply

the necessity of Lorentz invariance violation. However, this argument only considers small

deviations from the form of the integral in NCFT. Further discussions of the form of loop

integrals with generalizations of the star-product may be found in [132, 133].

Likely a better approach to understand the prospect for finding features similar to that

of NCFT in a Lorentz invariant theory is to back up and study formulations of Lorentz

invariant extensions of NCFT. This is accomplished by upgrading the noncommutativity

tensor θµν from a c-number to an operator. This was proposed already by Snyder in

1947 [19], and this approach has been revived a number of times more recently (e.g. [134–

138]). Schematically, this results in an action containing an integral over θµν

S =

∫
d4x d6θ W (θ) L(φ, ∂φ), (6.1)
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where W (θ) is a ‘weighting function’, and the Lagrangian is still defined using the star-

product. The challenge in this approach for our purposes is in devising a method for

nonperturbative calculations in θ, which as we saw above was necessary to preserve the

features of UV/IR mixing.

Searching more generally for Lorentz invariant theories which contain UV/IR mixing

will likely allow more promising phenomenological applications. That such theories should

exist can be broadly motivated by quantum gravity, as any gravitational theory is ex-

pected both to be nonlocal and to have UV/IR mixing. That Lorentz violation should be

present is less clear. A particularly interesting line of development is to then understand

in detail the class of nonlocal theories that would have UV/IR mixing of a sort similar

to that discussed here. Recent work toward placing nonlocal quantum field theories on

solid theoretical ground [44, 78] is clearly of sharp interest here, though the larger goal is

quite distinct. The nonlocality studied in these works is designed to render the field theory

UV-finite, and so the nonlocal vertex kernels are chosen precisely to avoid the introduction

of new poles by ensuring these are momentum-space entire functions which vanish rapidly

in Euclidean directions. The nonlocal vertices of NCFT manage to introduce new poles

by oscillating as p → ∞, which presumably allows for the appearance of new ‘endpoint

singularities’ [139, 140], though a full examination of the Landau equations in NCFT has

not (to our knowledge) been performed. Our interest is thus in a disjoint class of nonlocal

theories, where new poles can appear in interesting ways. Classifying the space of such the-

ories and developing an approach to systematically understand their unitarity properties

seems well motivated.

7 Conclusions

The lack of evidence for conventional solutions to the hierarchy problem has placed particle

physics at a crossroads. While it is possible that the answer ultimately lies further down the

well-trodden path of existing paradigms, the appeal of less-travelled paths grows greater

with every inverse femtobarn of LHC data.

In this work we have ventured to take seriously the apparent failure of expectations

from Wilsonian effective field theory regarding the hierarchy problem by investigating a

concrete framework — noncommutative field theory — in which Wilsonian EFT itself

breaks down. Not only does noncommutative field theory violate Wilsonian expectations, it

provides a sharp instance of UV/IR mixing: ultraviolet modes of noncommutative theories

can generate an infrared scale whose origin is opaque to effective field theory. To the

extent that UV/IR mixing has any relevance to the hierarchy problem, the emergence of

an infrared scale seems to be among the most promising effects. Although the real-world

applicability of these theories is likely limited by their Lorentz violation, they nonetheless

provide valuable toy models for exploring the potential relevance of UV/IR mixing to

problems of the Standard Model.

To this end, we have surveyed existing results on noncommutative theories with an eye

towards ‘strong UV/IR duality’ — the transmogrification of UV divergences into infrared

poles at the same order. This led us to a detailed analysis of noncommutative Yukawa
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theory, perhaps the most useful toy model for thinking about the hierarchy problem (insofar

as the Yukawa sector of the Standard Model is responsible for the largest UV sensitivity

of the Higgs mass, and highlights the relative UV insensitivity of the fermion masses). In

the noncommutative theory, the presence of both inequivalent Yukawa couplings implies

the same strong UV/IR duality exhibited by real φ4 theory: a quadratic divergence in the

one-loop correction to the scalar mass from fermion loops gives rise to a simple IR pole,

while a logarithmic UV divergence in the one-loop correction to the fermion mass from

scalar loops give rise to only a logarithmic IR divergence. Intriguingly, the infrared pole in

the scalar two-point function appears accessible in the s-channel in the Lorentzian theory,

a feature which gives it particular phenomenological relevance.

We then introduced softly-broken supersymmetry as a way to explore the interplay

between (in)finiteness and UV/IR mixing. Choosing soft terms in order to keep the scalar

light as the fermion mass is varied concretely illustrates several expected features. Strong

UV/IR duality is preserved in the sense that both UV and IR divergences are absent at

quadratic order (and persist at logarithmic order) when both the scalar and the fermion

are in the spectrum. However, infrared structure reappears as the fermion mass is raised

above a fixed cutoff and (quadratic) finiteness is lost. This underlines the sense in which

UV/IR mixing may only ever play an interesting role when the field theory is quadratically

UV sensitive at all scales, a scenario in which the hierarchy problem is less concrete.

Finally, building on the lessons from the toy models considered here, we have high-

lighted a variety of interesting lines of exploration in theories featuring nonlocality with or

without Lorentz violation that may be of relevance to the hierarchy problem.

While the prospect that UV/IR mixing will solve outstanding theoretical problems

in the low-energy universe is possibly fanciful, now is the time for such reveries. The

paradigms of the past few decades of particle theory are under considerable empirical

pressure, and innovative approaches are needed. At the very least, by pushing the limits

of EFT we stand to learn more about the broad spectrum of phenomena possible within

quantum field theory.
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A Wilsonian interpretations from auxiliary fields

In this appendix we discuss various generalizations of the procedure introduced in [37, 61]

to account for the new structures appearing in the noncommutative quantum effective

action via the introduction of additional auxiliary fields.
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A.1 Scalar two-point function

It is simple to generalize the procedure discussed in section 3 to add to the quadratic

effective action of φ any function we wish through judicious choice of the two-point function

for an auxiliary field σ which linearly mixes with it. In position space, if we wish to add

to our effective Lagrangian

∆Leff =
1

2
c2φ(x)f(−i∂)φ(x), (A.1)

where f(−i∂) is any function of momenta, and c is a coupling we’ve taken out for conve-

nience, then we simply add to our tree-level Lagrangian

∆L =
1

2
σ(x)f−1(−i∂)σ(x) + icσ(x)φ(x), (A.2)

where f−1 is the operator inverse of f . It should be obvious that this procedure is entirely

general. As applied to the Euclidean φ4 model, we may use this procedure to add a second

auxiliary field to account for the logarithmic term in the quadratic effective action as

∆L =
1

2
σ(x)

1

log
[
1− 4

Λ2∂◦∂
]σ(x)− gM√

96π2
σ(x)φ(x), (A.3)

where we point out that the argument of the log is just 4/(Λ2
effp ◦ p) in position space. We

may then try to interpret σ also as a new particle. As discussed in [61], its logarithmic

propagator may be interpreted as propagation in an additional dimension of spacetime.

Alternatively, we may simply add a single auxiliary field which accounts for both

the quadratic and logarithmic IR singularities by formally applying the above procedure.

But having assigned them an exotic propagator, it then becomes all the more difficult to

interpret such particles as quanta of elementary fields.

A.2 Fermion two-point function

To account for the IR structure in the fermion two-point function, we must add an auxiliary

fermion ξ. If we wish to find a contribution to our effective Lagrangian of

∆Leff = c2ψ̄Oψ, (A.4)

where O is any operator on Dirac fields, then we should add to our tree-level Lagrangian

∆L = −ξ̄O−1ξ + c
(
ξ̄ψ + ψ̄ξ

)
, (A.5)

with O−1 the operator inverse of O. In the Lorentzian Yukawa theory of section 4, if we

add to the Lagrangian

∆L = −ξ M − i
/∂/2

M2 − ∂2/4

[
log

(
1− 4

Λ2∂ ◦ ∂

)]−1

ξ +
g

2
√

2π

(
ξψ + ψξ

)
. (A.6)

we again find a one-loop quadratic effective Lagrangian which is equal to the Λ →∞ value

of the original, but now for any value of Λ.
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A.3 Three-point function

We may further generalize the procedure for introducing auxiliary fields to account for

IR poles to the case of poles in the three-point effective action. It’s clear from the form

of the IR divergences in equation (4.19) that they ‘belong’ to each leg, and so näıvely

one might think this means that the divergences we’ve already found in the two point

functions already fix them. However those corrections only appear in the internal lines and

were already proportional to g2, and so they will be higher order corrections. Instead we

must generate a correction to the vertex function itself which only corrects one of the legs.

To do this we must introduce auxiliary fields connecting each possible partition of

the interaction operator. However, while an auxiliary scalar χ coupled as χϕ + χψψ

would generate a contribution to the vertex which includes the χ propagator with the

ϕ momentum flowing through it, it would also generate a new (ψψ)2 contact operator,

which we don’t want. To avoid this we introduce two auxiliary fields with off-diagonal

two-point functions, a trick used for similar purposes in [61]. By abandoning minimality,

we can essentially use an auxiliary sector to surgically introduce insertions of functions of

momenta wherever we want them.

We can first see how this works on the scalar leg. We add to our tree-level Lagrangian

∆L = −χ1(x)f−1(−i∂)χ2(x) + κ1χ1(x)ϕ(x) + κ2χ2(x) ? ψ(x) ? ψ(x). (A.7)

Now to integrate out the auxiliary fields we note that for a three point vertex, one may use

momentum conservation to put all the noncommutativity between two of the fields. That

is, χ2(x) ? ψ(x) ? ψ(x) = χ2(x)(ψ(x) ? ψ(x)) = (ψ(x) ? ψ(x))χ2(x) as long as this is not

being multiplied by any other functions of x. So we may use this form of the interaction

to simply integrate out the auxiliary fields. We end up with

∆Leff = κ1κ2ψ ? ψ ? f(−i∂)ϕ (A.8)

which is exactly of the right form to account for an IR divergence in the three-point function

which only depends on the ϕ momentum.

For the fermionic legs, we need to add fermionic auxiliary fields which split the Yukawa

operator in the other possible ways. We introduce Dirac fields ξ, ξ′ and a differential

operator on such fields O−1(−i∂). Then if we add to the Lagrangian

∆L = −ξO−1ξ′−ξ′O−1ξ+c1(ξ?ψ?ϕ+ψ?ξ?ϕ)+c2(ξ?ϕ?ψ+ψ?ϕ?ξ)+c3(ξ′ψ+ψξ′), (A.9)

we now end up with a contribution to the effective Lagrangian

∆Leff = c1c3

(
ψ̄ ?O (ψ) ? ϕ+ ψ̄ ?O (ψ ? ϕ)

)
+ c2c3

(
ψ̄ ? ϕ ?O (ψ) + ψ̄ ?O (ϕ ? ψ)

)
,

(A.10)

where we have abused notation and now the argument of O specifies which fields it acts

on. These terms have the right form to correct both vertex orderings.

Now that we’ve introduced interactions between auxiliary fields and our original fields,

the obvious question to ask is whether we can utilize the same auxiliary fields to correct
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both the two-point and three-point actions. In fact, using two auxiliary fields with off-

diagonal propagators per particle we may insert any corrections we wish. The new trick is

to endow the auxiliary field interactions with extra momentum dependence.

For a first example with a scalar, consider differential operators f , Φ, and add to the

Lagrangian

∆L = −χ1f
−1(−i∂)χ2 + κ1χ1ϕ+ κ2χ2ψ ? ψ + gϕΦ(−i∂)χ2. (A.11)

We may now integrate out the auxiliary fields and find

∆Leff = gκ1ϕf(Φ(ϕ)) + κ1κ2ψ ? ψ ? f(ϕ) (A.12)

where we’ve assumed that f and Φ commute. If we take Φ = 1 then we have the in-

terpretation of merely inserting the χ two-point function in both the two-and three-point

functions. But we are also free to use some nontrivial Φ, and thus to make the corrections

to the two- and three-point functions have whatever momentum dependence we wish. It

should be obvious how to generalize this to insert momentum dependence into the scalar

lines of arbitrary n−point functions.

The case of a fermion is no more challenging in principle. For differential operators

O,F , we add

∆L = − ξO−1ξ′ − ξ′O−1ξ + c1(ξ ? ψ ? ϕ+ ψ ? ξ ? ϕ) + c2(ξ ? ϕ ? ψ + ψ ? ϕ ? ξ)

+ c3(ξ′ψ + ψξ′) +
g

2

(
ξ̄O−1Fψ + ψ̄O−1Fξ

)
, (A.13)

and upon integrating out the auxiliary fields we find

∆Leff = gc3ψ̄Fψ + c1c3

(
ψ̄ ?O (ψ) ? ϕ+ ψ̄ ?O (ψ ? ϕ)

)
+ c2c3

(
ψ̄ ? ϕ ?O (ψ) + ψ̄ ?O (ϕ ? ψ)

)
, (A.14)

where the generalization to n-points is again clear. Note that in the fermionic case it’s

crucial that we be allowed to insert different momentum dependence in the corrections to

the two- and three-point functions, as these have different Lorentz structures.

Now we cannot quite implement this for the two- and three-point functions calculated

in section 4, for the simple reason that we regulated these quantities differently. That is, we

have abused notation and the symbol ‘Λ’ means different things in the results for the two-

and three-point functions. In order to carry out this procedure, we could simply regulate

the two-point functions in 3d Schwinger space, though we run into the technical obstruction

that the integration method above only calculates the leading divergence, which is not good

enough for the scalar case.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[12] L.E. Ibáñez, V. Martin-Lozano and I. Valenzuela, Constraining the EW hierarchy from the

weak gravity conjecture, arXiv:1707.05811 [INSPIRE].

[13] Y. Hamada and G. Shiu, Weak gravity conjecture, multiple point principle and the standard

model landscape, JHEP 11 (2017) 043 [arXiv:1707.06326] [INSPIRE].
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[16] E. Gonzalo and L.E. Ibáñez, The fundamental need for a SM Higgs and the weak gravity

conjecture, Phys. Lett. B 786 (2018) 272 [arXiv:1806.09647] [INSPIRE].

[17] N. Craig, I. Garcia Garcia and S. Koren, Discrete gauge symmetries and the weak gravity

conjecture, JHEP 05 (2019) 140 [arXiv:1812.08181] [INSPIRE].

[18] N. Craig, I. Garcia Garcia and S. Koren, The weak scale from weak gravity, JHEP 09

(2019) 081 [arXiv:1904.08426] [INSPIRE].

[19] H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [INSPIRE].

[20] A. Connes, Noncommutative geometry, Academic Press, New York U.S.A. (1994).

– 32 –

https://doi.org/10.1007/BF02345020
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,43,199%22
https://doi.org/10.1103/PhysRevD.48.R2373
https://arxiv.org/abs/gr-qc/9306030
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9306030
https://doi.org/10.1103/PhysRevD.74.064018
https://doi.org/10.1103/PhysRevD.74.064018
https://arxiv.org/abs/hep-th/0512200
https://inspirehep.net/search?p=find+EPRINT+hep-th/0512200
https://doi.org/10.1103/PhysRevD.94.029903
https://arxiv.org/abs/1507.07921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07921
https://doi.org/10.1103/PhysRevD.94.104038
https://arxiv.org/abs/1607.01025
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.01025
https://doi.org/10.1007/JHEP11(2018)074
https://arxiv.org/abs/1802.01602
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.01602
https://doi.org/10.1007/JHEP02(2013)062
https://arxiv.org/abs/1207.3123
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3123
https://arxiv.org/abs/hep-th/0509212
https://inspirehep.net/search?p=find+EPRINT+hep-th/0509212
https://doi.org/10.1103/PhysRevLett.113.051601
https://doi.org/10.1103/PhysRevLett.113.051601
https://arxiv.org/abs/1402.2287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2287
https://doi.org/10.4310/ATMP.2017.v21.n7.a8
https://doi.org/10.4310/ATMP.2017.v21.n7.a8
https://arxiv.org/abs/1610.01533
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.01533
https://doi.org/10.1007/JHEP11(2017)066
https://doi.org/10.1007/JHEP11(2017)066
https://arxiv.org/abs/1706.05392
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.05392
https://arxiv.org/abs/1707.05811
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.05811
https://doi.org/10.1007/JHEP11(2017)043
https://arxiv.org/abs/1707.06326
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.06326
https://doi.org/10.1007/JHEP02(2018)040
https://arxiv.org/abs/1709.01790
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.01790
https://doi.org/10.1007/JHEP06(2018)051
https://arxiv.org/abs/1803.08455
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.08455
https://doi.org/10.1016/j.physletb.2018.09.034
https://arxiv.org/abs/1806.09647
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.09647
https://doi.org/10.1007/JHEP05(2019)140
https://arxiv.org/abs/1812.08181
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.08181
https://doi.org/10.1007/JHEP09(2019)081
https://doi.org/10.1007/JHEP09(2019)081
https://arxiv.org/abs/1904.08426
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.08426
https://doi.org/10.1103/PhysRev.71.38
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,71,38%22


J
H
E
P
0
3
(
2
0
2
0
)
0
3
7

[21] A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory:

compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].

[22] M.R. Douglas and C.M. Hull, D-branes and the noncommutative torus, JHEP 02 (1998)

008 [hep-th/9711165] [INSPIRE].

[23] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999)

032 [hep-th/9908142] [INSPIRE].

[24] R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].

[25] V.O. Rivelles, Noncommutative field theories and gravity, Phys. Lett. B 558 (2003) 191

[hep-th/0212262] [INSPIRE].

[26] H.S. Yang, Exact Seiberg-Witten map and induced gravity from noncommutativity, Mod.

Phys. Lett. A 21 (2006) 2637 [hep-th/0402002] [INSPIRE].

[27] H.S. Yang, On the correspondence between noncommuative field theory and gravity, Mod.

Phys. Lett. A 22 (2007) 1119 [hep-th/0612231] [INSPIRE].

[28] H.S. Yang, Instantons and emergent geometry, EPL 88 (2009) 31002 [hep-th/0608013]

[INSPIRE].

[29] H. Steinacker, Emergent gravity from noncommutative gauge theory, JHEP 12 (2007) 049

[arXiv:0708.2426] [INSPIRE].

[30] H. Steinacker, Emergent gravity and noncommutative branes from Yang-Mills matrix

models, Nucl. Phys. B 810 (2009) 1 [arXiv:0806.2032] [INSPIRE].

[31] H. Steinacker, Covariant field equations, gauge fields and conservation laws from Yang-Mills

matrix models, JHEP 02 (2009) 044 [arXiv:0812.3761] [INSPIRE].

[32] H. Grosse, H. Steinacker and M. Wohlgenannt, Emergent gravity, matrix models and

UV/IR mixing, JHEP 04 (2008) 023 [arXiv:0802.0973] [INSPIRE].

[33] D. Klammer and H. Steinacker, Fermions and emergent noncommutative gravity, JHEP 08

(2008) 074 [arXiv:0805.1157] [INSPIRE].

[34] H. Steinacker, On the Newtonian limit of emergent NC gravity and long-distance

corrections, JHEP 12 (2009) 024 [arXiv:0909.4621] [INSPIRE].

[35] H. Steinacker, Emergent geometry and gravity from matrix models: an introduction, Class.

Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].

[36] B.S. DeWitt, The quantization of geometry, in Gravitation: an introduction to current

research, L. Witten ed., Wiley, New York U.S.A. (1962).

[37] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics,

JHEP 02 (2000) 020 [hep-th/9912072] [INSPIRE].

[38] J. Collins et al., Lorentz invariance and quantum gravity: an additional fine-tuning

problem?, Phys. Rev. Lett. 93 (2004) 191301 [gr-qc/0403053] [INSPIRE].

[39] T. Filk, Divergencies in a field theory on quantum space, Phys. Lett. B 376 (1996) 53

[INSPIRE].

[40] R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207

[hep-th/0109162] [INSPIRE].

[41] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001)

977 [hep-th/0106048] [INSPIRE].

– 33 –

https://doi.org/10.1088/1126-6708/1998/02/003
https://arxiv.org/abs/hep-th/9711162
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711162
https://doi.org/10.1088/1126-6708/1998/02/008
https://doi.org/10.1088/1126-6708/1998/02/008
https://arxiv.org/abs/hep-th/9711165
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711165
https://doi.org/10.1088/1126-6708/1999/09/032
https://doi.org/10.1088/1126-6708/1999/09/032
https://arxiv.org/abs/hep-th/9908142
https://inspirehep.net/search?p=find+EPRINT+hep-th/9908142
https://doi.org/10.1088/1126-6708/1999/12/022
https://arxiv.org/abs/hep-th/9910053
https://inspirehep.net/search?p=find+EPRINT+hep-th/9910053
https://doi.org/10.1016/S0370-2693(03)00271-5
https://arxiv.org/abs/hep-th/0212262
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212262
https://doi.org/10.1142/S0217732306021682
https://doi.org/10.1142/S0217732306021682
https://arxiv.org/abs/hep-th/0402002
https://inspirehep.net/search?p=find+EPRINT+hep-th/0402002
https://doi.org/10.1142/S0217732307023675
https://doi.org/10.1142/S0217732307023675
https://arxiv.org/abs/hep-th/0612231
https://inspirehep.net/search?p=find+EPRINT+hep-th/0612231
https://doi.org/10.1209/0295-5075/88/31002
https://arxiv.org/abs/hep-th/0608013
https://inspirehep.net/search?p=find+EPRINT+hep-th/0608013
https://doi.org/10.1088/1126-6708/2007/12/049
https://arxiv.org/abs/0708.2426
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.2426
https://doi.org/10.1016/j.nuclphysb.2008.10.014
https://arxiv.org/abs/0806.2032
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2032
https://doi.org/10.1088/1126-6708/2009/02/044
https://arxiv.org/abs/0812.3761
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3761
https://doi.org/10.1088/1126-6708/2008/04/023
https://arxiv.org/abs/0802.0973
https://inspirehep.net/search?p=find+EPRINT+arXiv:0802.0973
https://doi.org/10.1088/1126-6708/2008/08/074
https://doi.org/10.1088/1126-6708/2008/08/074
https://arxiv.org/abs/0805.1157
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1157
https://doi.org/10.1088/1126-6708/2009/12/024
https://arxiv.org/abs/0909.4621
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4621
https://doi.org/10.1088/0264-9381/27/13/133001
https://doi.org/10.1088/0264-9381/27/13/133001
https://arxiv.org/abs/1003.4134
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.4134
https://doi.org/10.1088/1126-6708/2000/02/020
https://arxiv.org/abs/hep-th/9912072
https://inspirehep.net/search?p=find+EPRINT+hep-th/9912072
https://doi.org/10.1103/PhysRevLett.93.191301
https://arxiv.org/abs/gr-qc/0403053
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0403053
https://doi.org/10.1016/0370-2693(96)00024-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B376,53%22
https://doi.org/10.1016/S0370-1573(03)00059-0
https://arxiv.org/abs/hep-th/0109162
https://inspirehep.net/search?p=find+EPRINT+hep-th/0109162
https://doi.org/10.1103/RevModPhys.73.977
https://doi.org/10.1103/RevModPhys.73.977
https://arxiv.org/abs/hep-th/0106048
https://inspirehep.net/search?p=find+EPRINT+hep-th/0106048


J
H
E
P
0
3
(
2
0
2
0
)
0
3
7

[42] G. Amelino-Camelia, G. Mandanici and K. Yoshida, On the IR/UV mixing and

experimental limits on the parameters of canonical noncommutative space-times, JHEP 01

(2004) 037 [hep-th/0209254] [INSPIRE].

[43] V.V. Khoze and J. Levell, Noncommutative standard modelling, JHEP 09 (2004) 019

[hep-th/0406178] [INSPIRE].

[44] E.T. Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev. D 92 (2015) 125037

[arXiv:1507.00981] [INSPIRE].

[45] J. Gomis and T. Mehen, Space-time noncommutative field theories and unitarity, Nucl.

Phys. B 591 (2000) 265 [hep-th/0005129] [INSPIRE].

[46] A. Bassetto, L. Griguolo, G. Nardelli and F. Vian, On the unitarity of quantum gauge

theories on noncommutative spaces, JHEP 07 (2001) 008 [hep-th/0105257] [INSPIRE].

[47] O. Aharony, J. Gomis and T. Mehen, On theories with lightlike noncommutativity, JHEP

09 (2000) 023 [hep-th/0006236] [INSPIRE].

[48] M.M. Sheikh-Jabbari and A. Tureanu, Light-like noncommutativity, light-front quantization

and new light on UV/IR mixing, Phys. Lett. B 697 (2011) 63 [arXiv:1010.0317] [INSPIRE].
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