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ABSTRACT

Machine learning (ML), including deep learning (DL), has become increasingly popular in the
last few years due to its continually outstanding performance. In this context, we apply machine
learning techniques to “learn” the microstructure using both supervised and unsupervised DL tech-
niques. In particular, we focus (1) on the localization problem bridging (micro)structure — (local-
ized) property using supervised DL and (2) on the microstructure reconstruction problem in latent
space using unsupervised DL.

The goal of supervised and semi-supervised DL is to replace crystal plasticity finite element
model (CPFEM) that maps from (micro)structure — (localized) property, and implicitly the (mi-
cro)structure — (homogenized) property relationships, while the goal of unsupervised DL is (1)
to represent high-dimensional microstructure images in a non-linear low-dimensional manifold,
and (2) to discover a way to interpolate microstructures via latent space associating with latent
microstructure variables. At the heart of this report is the applications of several common DL
architectures, including convolutional neural networks (CNN), autoencoder (AE), and generative
adversarial network (GAN), to multiple microstructure datasets, and the quest of neural architec-
ture search for optimal DL architectures.
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1. INTRODUCTION

Machine learning (ML), including shallow learning and deep learning (DL), has shown a great
potential to overcome human experts from various subject matters, including playing chess [2],
shogi, go [3, 4]. As the fundamental block of DL, convolutional neural networks (CNN) are
engineered with novel algorithms to smartly and automatically extract features from complicated
image and object representations and deeply learn how to perform classification or regression.
Superior performance is a signature of DL in most applications. In this report, we aim to bring the
capability of DL towards materials science applications in two main tracks.

In the first track, which is supervised learning, we aim to develop the prototype of 3D-CNN called
CPNet. The overarching objective for CPNet is to learn and predict the materials response, e.g.
strain, obtained by crystal plasticity finite element model (CPFEM), of different materials and
subjected to various loading conditions. We realize that the this problem is highly complicated.
Therefore, within the scope of this report, we will limit to a fixed materials that is subjected to a
fixed loading condition.

In the second track, which is unsupervised learning, we aim to learn the unsupervised represen-
tation of microstructures. Along the line of this topic is the nonlinear dimensionality reduction
framework for microstructure generation and reconstruction problems. However, the implication
of unsupervised learning in microstructure is beyond microstructure generation and reconstruction
and could have lasting impacts in community perception of process-structure-property linkages.

2. MICROSTRUCTURE DATASETS

In this project, as in many other DL applications for materials science, one of the computational
bottlenecks is the lack of data to train. To mitigate this challenge, we utilize the large-scale com-
putational resource from Sandia and use Big Compute to meet the demand of Big Data [S5]. We
consider five different microstructure datasets, where four of them consists of computational and
synthetic microstructures, and one of them consists of experimental microstructures. For each syn-
thetic dataset, except for the UHCSDB dataset, we generate 50,000 microstructures, where 40,000
are used for training and 10,000 are used for testing. Another potential candidate is the spinodal
decomposition microstructure dataset via phase-field simulation, which was not considered in this
study due to the prohibited computational cost to generate.

Section 2.1 describes the generation of synthetic microstructure images using Gaussian filter on
a uniformly random field. Sections 2.2, 2.3, and 2.4 applies different SPPARKS simulations to
generate microstructure images for welding with serpentine style, simple style, and grain growth.
Section 2.5 discusses the possibility of applying on real experimental microstructures.

2.1. Synthetic microstructures

In this dataset, we adopt the microstructure generation workflow from Fernandez-Zelaia et al. [1],
as shown in Figure 2-1], to generate synthetic microstructures with a slight modification. Figure 2-1|
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Figure 2-1 Synthetic microstructure generation. Photo courtesy of Fernandez-Zelaia
et al. [1].

describes the workflow for generating synthetic microstructures. First, a uniformly random num-
ber is sampled at each pixel of an image, where dimension is a user-defined variable. Then, a
Gaussian filter with periodic boundary condition, where the covariance matrix is also user-defined,
is applied to filter the microstructure image. Finally, a binary/discrete microstructure is created
by thresholding the “smooth” microstructure, where the threshold generally depends on the target
volume of fraction. Because a grayscal image is more meaningful and contains more information
than a binary image, we stop at the “smooth” microstructure image and does not apply any thresh-
old for segmenting the microstructure. The dimension of the microstructure images is 128 x 128
for experimental purposes.

Figure 2-2 (top row) shows the smooth grayscale microstructure image before thresholding, where
Figure 2-2 (bottom row) shows the binary microstructure after thresholding. It is easy to threshold
the microstructure, i.e. from a smooth microstructure to a binary microstructure, but it is very
challenging to go from a binary to a smooth microstructure.

2.2. SPPARKS/Potts additive small 2d

This dataset is generated by running the SPPARKS example 50,000 times using different seeds
on a 100 sites x 100 sites computational domain. The processing parameters are fixed. The final
output microstructure is then saved as a 512 pixel x512 pixel .jpg image. Only the gray color
version is retained, since the color version does not provide any additional information. Figure 2-3
shows a sample of 9 different microstructures with different seeds.
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Figure 2-2 Synthetic random microstructure by uniform sampling and Gaussian filter.
Top row: grayscal images. Bottom row: binary images.

# SPPARKS potts/additive test file

seed 56789

app_style potts/additive 1000 30 40 7 8 40 60 12 12 0.1

o

# | nspins = atoi(arg[1])

o

# | nspins = atoi(arg[l]); #Number of spins

# | spot_width = atoi(arg[2]); #Width of the melt pool

# | melt_tail_length = atoi(arg[3]); #Length of tail from meltpool midpoint

# | melt_depth = atoi(arg(4]); #How many lattice sites deep the melt pool is

# | cap_height = atoi(arg([5]); #Height of the cap leading the meltpool

# o

# | HAZ = atoi(arg([6]); #Size of the HAZ surrounding the melt pool (must be larger than spot_width)

# | tail_HAZ = atoi(arg[7]); #Length of hot zone behind meltpool (must be larger than melt_tail_length)

# | depth_HAZ = atof(arg[8]); //Depth of the hot zone underneath the meltpool (must be larger than melt_depth)
# | cap_HAZ = atoi(arg([8]); #Size of HAZ infront of the melt pool (must be larger than cap_height)

# | exp_factor = atof(arg[9]); #Exponential parameter for mobility decay in haz M(d) = exp(-exp_factor * d)
o

#Define simulation domain and initialize site variables
%

i

dimension 3

lattice sc/26n 1.0

region box block 0 100 0 100 0 1

region transverse block 0 100 50 75 0 1
region longitudinal block 50 75 0 100 0 1
boundary nnn

create_box box

create_sites box
set il range 1 1000
set dl value 0.0

B

#Define an additive scan pattern using a combination of pass, transverse_pass, cartesian_layer, and pattern

#

am_pass 1 dir X distance 100.0 speed 10

am_transverse_pass 1 distance 100.0 increment 25

am_cartesian_layer 1 start_position 0 0 pass_id 1 transverse_pass_id 1 serpentine 1
#am_cartesian_layer 2 start_position 0 0 pass_id 1 transverse_pass_id 1 serpentine 0
am_pattern 1 num_layers 1 layer_ids 1 z_start 0 z_increment 5

#Setup the solver type and parameters. Must use a "sweep" style solver
#

sector yes

sweep random mask no
temperature 0.0

3

i

#Specify output commands and styles.

#

diag_style energy

stats 1.0

#dump 1 text 5.0 dump.additived.* id il dl
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#If SPPARKS was not compiled with libjpeg, comment out the lines below.
# dump top image 2 top.small2D.*.jpg site site crange 1 1000 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 2 size 512 512 sdiam 1.05
# dump mobility_top image 2 mobility top.small2D.*.jpg dl il view 0.0 0.0 shape cube size 512 512 sdiam 1.05 box no 1 zoom 2

## binary images only
dump top image 2 top.small2D.*.jpg site site crange 1 1 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 2 size 512 512 sdiam 1.05

dump_modify top boundcolor black backcolor black pad 4
# dump_modify mobility_top smap 0 1 cf 0.05 5 min blue 0.45 lightblue 0.65 yellow 0.75 orange max red

#dump transverse image 2 transverse.small2D.*.jpg site site crange 1 1000 center s 0.5 0.5 0.5 drange 1 1 view 90.0 -90.0 shape cube box no 1 zoom 1.5 size 512 512
#dump_modify transverse cwrap yes region transverse boundcolor black backcolor black pad 4

#dump longitudinal image 2 longitudinal.small2D.*.jpg site site crange 1 1000 drange 1 1 view 90.0 0.0 shape cube box no 1 zoom 1.5 size 512 512
#dump_modify longitudinal cwrap yes region longitudinal boundcolor black backcolor black pad 4
X

i

run 100

2.3. SPPARKS/Potts weld

In the same manner, the SPPARKS/Potts weld dataset is created. An initial computational domain
of 200 sites x 500 sites is considered. A Potts/weld model is then applied with teardrop shape for
the melting pool to create the microstructure. A final time-step is specified based on the velocity
of the melting pool to ensure that the microstructure has been finalized. The final microstructure
is then saved to a 1000 pixels x 400 pixels. To further reduce the size effect, we further crop
the image along the welding axis from 1000 pixels to 600 pixels and take off 200 pixels on the
left or the right of the microstructure image. Figure 2-4 shows a sample of 9 different welding
microstructures using SPPARKS.

seed 123456

# app_potts_weld input parameters

# POOL PARAMETERS

#

# app_name num_spins yp alpha beta velocity haz
app_style potts/weld 3500000 0 0.75 0.50 12.0 50.0
# width length

weld_shape_teardrop width 100.0 case III

# Run with ’'pulse weld’

# 0<=pulse_amplitude<=1  2<frequency
# pulse 0.25 32
dimension 3

# periodic x

# not periodic y
# not periodic z
# boundary p n n
boundary n n n

# NOTE: spk2vti writer does not currently support a lattice constant different from ’1.0

lattice sc/26n 1.0

region box block 0 200 0 500 0 1
create_box  box

create_sites box

# Initialize grains
# read_sites site.init

# Run without grain initialization from ’potts_init’
# COMMENT out this line if using ’read_sites’ above

set site range 1 3500000

sweep raster
sector yes

diag_style energy

# Simulation temperature
temperature 0.25

12
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Figure 2-3 SPPARKS Potts/additive microstructures.
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stats 1.0

# # Write 'dump’ files; see 'dump’ documentation

# dump 1 text 52.0 steady_weld.dump

# dump_modify 1 delay 52.0

# diag_style cluster stats no delay 52.0 delt 52.0 filename steady_weld.cluster

# Write ’image’; see 'dump’ documentation

# images written every 2 seconds

# dump top image 2 top.*.Jjpg site site crange 1 3500000 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 2.0 size 1024 1024 sdiam 1.05

dump teardrop image 2 teardrop_*.jpg site site crange 1 1 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 5.0 size 1000 400 view 0.0 0.0 sdiam 1.05
# dump_modify  top cwrap yes boundcolor black backcolor black pad 4

dump_modify teardrop boundcolor black backcolor black pad 0

# dump bottom image 2 bottom.*.jpg site site crange 1 3500000 drange 1 1 view 180.0 0.0 boundary site 1 shape cube box no 1 zoom 2.0 size 1024 1024 sdiam 1.05

# dump_modify bottom cwrap yes boundcolor black backcolor black pad 4

run 52.0

#E#HEEE R #EH cropMs.py
import numpy as np

import skimage

import skimage.io as io

img = skimage.io.imread(’teardrop_26.Jpg’)
# img.shape

crop = img[:, 200:800, :]
io.imsave (' cropTeardrop_26.Jpg’, crop)
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Figure 2-4 SPPARKS Potts/weld additive manufacturing microstructures.
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2.4. SPPARKS/Grain growth

The SPPARKS/Potts grain growth simulation is used to generate microstructures. A k7" of 0.85
is used on a 128 sites x 128 sites computational domain. The grain growth simulation is per-
formed for 1500 Monte Carlo step and the final microstructure is obtained. Figure 2-5/ shows 9
different microstructures obtained from the SPPARKS grain growth simulation. The final size of
microstructure image in this dataset is 256 pixels x 256 pixels.

# SPPARKS ’‘potts’ model for modeling ‘grain’ growth

# let N=128, 256

# let Q=2048

# kT="0.85"

# spk_flame.gnu -var kT $kT -var N $N -var Q $Q < grain_growth.in

variable N equal 128
variable Q equal 2048
variable kT equal 0.85

seed 56897

# Use ’Potts’ app to simulate grain growth;
# Site ’spins’ can assume values of its nearest neighbors.
app_style potts/neighonly ${0Q}

# 2d lattice; Each site has 8 neighbors
dimension 2
lattice sq/8n 1.0

# Define lattice extent called ’square’;
region square block 0 ${N} 0 ${N} -1.0 1.0

# Define ’axis’ aligned simulation domain on ’square’
create_box  square

# Creates sites on lattice defined above;
# Also creates neighborhood list for each site
create_sites box

# Initializes sites randomly with values between 1 and {Q}
set site range 1 ${Q}

# Simulation temperature; Units of energy
temperature ${kT}

# KMC solver

solve_style tree

# sectors are required to run 'tree’ kmc in parallel
sector yes

# Diagnostic style energy computes the total energy for all sites
diag_style energy

# Print diagnostic information to screen 50 steps
stats 50.0

# Write snapshot of site values
# to 'grain_growth.dump’ every 50 steps

# dump 1 text 50.0 grain_growth.dump
# Write ’cluster/grain’ diagnostics
diag_style cluster stats no delt 50.0 filename grain_growth.cluster

# Write ’image’; see 'dump’ documentation

variable zoomFactor equal 2.00
variable imageDim equal ${N}*${zoomFactor} # or 2*${N}*${zoomFactor}
# dump grain_growth_image_Color image 1 grain_growth_Color.*.jpg site site crange 1 ${Q}

# dump_modify  grain_growth_image_Color boundcolor black backcolor white pad 1

drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 1.95 size ${im

dump grain_growth_image Bnw image 1 grain_growth Bnw.*.jpg site site crange 1 1 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom ${zoomFactor} size ${
dump_modify grain_growth_image_Bnw boundcolor black backcolor white pad 0

# Run for 1400 *spparks* steps
run 1500.0

15
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Figure 2-5 SPPARKS Potts/grain growth microstructures.
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2.5. UltraHigh Carbon Steel DataBase (UHCSDB) with image-inpainting

The dataset is created using the novel image inpainting method proposed by Tran and Tran [6] re-
cently applying on the high-fidelity microstructure UHCSDB dataset. Figure 2-6 shows 12 variants
of the same original microstructure (micrograph #13). Potentially, the image inpainting technique
can help mitigate the demand of Big Data to train DL architectures for microstructure.

(a) Recon. ms. 1 (b) Recon. ms. 2 (c) Recon. ms. 3 (d) Recon. ms. 4

(e) Recon. ms. 5 (f) Recon. ms. 6 (g) Recon. ms. 7 (h) Recon. ms. 8
(i) Recon. ms. 9 (j) Recon. ms. 10 (k) Recon. ms. 11 (I) Recon. ms. 12

Figure 2-6 Inpainting UHCSDB microstructures.

2.6. Localization datasets

Based on our established collaboration with Prof. Surya Kalidindi and Dr. Yuksel Yabansu, we
obtain the localization dataset for two-phase composite materials which has been used to vali-
date the Materials Knowledge System (MKS) framework. Other datasets are available on MATIN
platform [7] at Georgia Tech. The dataset focused in this study was initially proposed in [8] in
developing and validating the MKS framework, and subsequently expanded over years [9].

3. LITERATURE REVIEWS

Iyer et al. [10] and Chun et al. [11] utilized GAN to generate and reconstruct microstructure. Fok-
ina et al. [12] employed StyleGAN to generate and reconstruct microstructure. From the creation of

17



GAN by Goodfellow et al. [13], further improvements have been made, chronologically as Radford
et al. [14], Liu et al. [15], Karras et al. [16], and Karras et al [17]. For example, Bostanabad [18]
adopted VGG19 [19] to reconstruct 3D microstructure from 2D images using transfer learning.
Iyer et at. [10] employed an auxiliary classifier Wasserstein GAN with gradient penalty to generate
microstructure from UHCSDB, which is the same dataset considered in this work. Singh et al. [20]
used Wasserstein GAN to generate and reconstruct microstructure with binary phases. DeCost et
al. [21] applied VGG16 and t-SNE [22, 23] to visualize microstructure on their latent manifold
space. DeCost et al. [24] applied a pre-trained VGG16 [19] for deep semantic segmentation in
the same UHCSDB dataset. Ling et al. [25] also used VGG16 to extract features for SEM images
between different datasets in the hope of generalization and interpretation. Li et al. [26] employed
an auto-encoder (AE) approach to generate microstructures. Chun et al. [11] employed GAN to
generate microstructures and showed that GAN is able to generate better quality images compared
to AE, which is a well-known problem in computer vision. Mosser et al. [27] proposed a GAN to
generate microstructure. Cang et al. [28, 29] employed deep belief network in reconstructing bi-
nary microstructure. Bostanabad et al. [30] proposed a tree-based ML technique for 2D stochastic
microstructure reconstruction based on classification trees.

Zichenko [31] proposed an isotropic algorithm for random close packing of equi-sized spheres with
periodic boundary conditions. Groeber et al. [32, 33, 34] proposed an automatic statistical frame-
work to characterize [33] and to create statistically equivalent synthetic microstructures [34]. Full-
wood et al. [35, 36] proposed a phase-recovery algorithm based on two-point correlation statistics
to reconstruct the microstructure. Latief et al. [37] suggested a stochastic geometrical modeling
approach to generate a u-CT images of Fontainebleau sandstone. Staraselski et al. [38] demon-
strated the application of two-point correlation function in constructing 3D representative volume
element. Feng et al. [39] proposed a stochastic microstructure reconstruction for two-phase com-
posite materials based on nonlinear transformation of Gaussian random fields that matches the
marginal probability distribution function and the two-point correlation function. Chen et al. [40]
employed simulated annealing method to reconstruct 3D multiphase microstructure and demon-
strated with 2D and 3D reconstruction with three-phase sandstone. Xu et al. [41, 42] proposed a
descriptor-based methodology using multiple microstructure descriptors as evaluation criteria to
reconstruct 3D microstructure. Chen et al. [43] proposed a multiscale computational scheme to
stochastically reconstruct the 3D heterogeneous polycrystalline microstructure from a single 2D
electron back-scattered diffraction (EBSD) micrograph. Tran et al. [6] proposed a non-local patch-
based image inpainting to reconstruct microstructures at the experimental level. Li et al. [44, 45]
conducted a comparison study on the effects of multiple objectives in the microstructure recon-
struction problem.

4. SOLVING LOCALIZATION PROBLEM VIA DEEP LEARNING
TECHNIQUES

In this section, we utilize the supervised DL technique to learn the map from (micro)structure to
the (localized) property, which is the material response, i.e. strain, under the imposed loading
boundary condition. Before getting to the details, we note that brute-force application for directly
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solving localization without subsampling does not work, because it could result in a computation-
ally intractable DNN to learn. We follow the approach in Yang et al. [46] due to this reason.

Elastic prediction using MKS [47, 48] and its extension for plastic extension has been proposed
by Yabansu et al. [47, 48] de Oca Zapiain et al [49], respectively. The main idea is to construct a
reduced-order model based on two-point statistics and to carefully calibrate the coefficients. The
MKS is then used to predict the local materials response, such as strain field. Liu et al. [50, 51]
developed a physics-based microstructure descriptors approach to parameterize microstructures as
inputs and constructed the map using regression trees and support vector regressors. Recently,
DL techniques have been proposed to solve the localization problem [46] and the homogenization
problem [52, 53] subsequently. Generally speaking, the homogenization problem is much easier
to solve because the quantity of interest (Qol) is single-output, as opposed to multi-output in the
localization problem.

In this section, we implement and examine a variety of DL architectures in PyTorch that are capable
of solving localization problems using the same datasets. 6840 microstructures are used as the
training dataset, 1710 microstructures are used as the testing dataset, which constitute a dataset of
8550 microstructure with 80/20 split.

inkTesting.sh

# test: 2
_filterName="_SplineFilterOrder2"
# loop over (40,49) out of (0,49) for
for i in $(seq 40 49); do
for ii in 1 3 5 7; do
for 33 in 1 3 5 73 da
for kk in 1 3 5 7; do

In -sf ../microstructures/M_gaussian_${ii}_${3jj}_S{kk}_vE_25_75.Idx${1i}.npy
In -sf ../responses/Strain.Resp_M_gaussian_${ii}_${Jjj}_${kk}_vE_25_75.Idx${i}.npy
ln -sf ../responses/Stress.Resp_M_gaussian_${ii}_${3jj}_S{kk}_vf_25_75.Idx${i}.npy
In -sf ../_SplineFilterOrder2_Microstructures/_SplineFilterOrder2_M_gaussian_${ii}_${3jj}_${kk}_vEf_2
done
done
done
done
# remove broken links
find -L . -name . -o -type d -prune -o -type 1 -exec rm {} +
% linkTraining.sh
#!/bin/
Tan 1=3_7._ 25_75_set2.1dx0.npy # _set2_ g from .Idx0. t 1x
ian -7 25_75.Idx0.npy # no annotation (_setl_) range from .Idx0. to .Idx49.
80
# test: 20%
_filterName="_SplineFilterOrder2"
# loop ver (0,39) out of (0,49) for _ A
for i in $(seq 0 39); do

for ii in 1 3 5 7; do
for jj im 1.3 5 7; do
for kk in 1 3 5 7; do
In -sf ../microstructures/M_gaussian_${ii}_${jj}_S${kk}_vf_25_75.1Idx${i}.npy
In -sf ../responses/Strain.Resp_M_gaussian_${ii}_${3jj}_${kk}_vf_25_75.Idx${1i}.npy
In -sf ../responses/Stress.Resp_M_gaussian_${ii}_${jj}_${kk}_vf_25_75.Idx${1i}.npy

In -sf ../rescaled_responses/RescaledStrain.Resp_M_gaussian_${ii}_${jj}_S${kk}_vEf_25_75.IdxS${i}.npy
In -sf ../rescaled_responses/RescaledStress.Resp_M _gaussian_${ii}_${jj}_S${kk}_vEf_25_75.IdxS{i}.npy
In -sf ../_SplineFilterOrder2_Microstructures/_SplineFilterOrder2_M_gaussian_${ii}_${jj}_${kk}_vE_25_75.Idx${i}.npy
done
done
done
done
# loop over (0,;79) out ef (0;99) for _ L
for i in $(seq 0 79); do
for ii in 1 35 7} de
for jj in 1 3 5 7; do
for kk in 1 3 5 7; do
In -sf ../microstructures/M_gaussian_${ii}_${jj}_${kk}_vE_25_75_set2.Idx${1i}.npy
In -sf ../responses/Strain.Resp_M_gaussian_${ii}_${jj}_${kk}_vE_25_75_set2.Idx${i}.npy
In -sf ../responses/Stress.Resp_M_gaussian_${ii}_${jj}_${kk}_vE_25_75_set2.Idx${i}.npy
In -sf ../rescaled_responses/RescaledStrain.Resp_M gaussian_${ii}_${jj}_S${kk}_vEf_25_75_set2.Idx${il}n
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1n -sf ../rescaled_responses/RescaledStress.Resp_M gaussian_${ii}_${3jj}_${kk}_vE_25_75_set2.Idx${i}}npy
In -sf ../_SplineFilterOrder2_Microstructures/_SplineFilterOrder2_M_gaussian_${ii}_${jj}_${kk}_vEf_25_75_set2.Idx${i}.npy

done
done
done
done
# remove broken links
find -L . -name . -o -type d -prune -o -type 1 -exec rm {} +
4.1. Microstructure filter

The role of the microstructure filter is to convert the representation of the microstructure from
discrete representation (which is binary in this case) to continuous representation. It is common
for engineers and materials scientists to encode the type of materials under discrete representa-
tion, e.g. hard phase as 0 and soft phase as 1. The microstructure filter effectively converts the
approximation problem of DL from f : 2 de, f(m)=rto f: Kd3 — Q{d3, f(m) =r, where
m is the microstructure and r is the microstructure response. The first problem is NP-hard, as it is
analogous to combinatorial optimization problem, whereas the second problem is P-hard.

4.2. Normalization

% /ascldap/users/anhtran/scratch/dataset/matin/mveLocalization/high_contrast_elastic/subsamples/_SplineFilterOrder2/train
import numpy as np
fileList = np.loadtxt ('msFileList.txt’, dtype=str

n = len(filelList)

meanArr = []

stdArr = []

prefix = ’'* § '’, "Stress.Resp_’, ’Strain.Resp_’

for i in range(n):
ms = np.load(prefix + fileList[i])
meanArr += [ms.mean ()]
stdArr += [ms.std()]
print ("done %d’ % i)

print (np.mean (np.array(stdArr))) # b
print (np.mean (np.array (meanArr))) # based on the law of arge number

ed on the law of large number

After filtering the microstructures, we estimate the mean and standard deviation of Qols as fol-
lows.

e Ms: u=0.5506806080114989;c = 0.4831280930966276.

e Stress: u = 0.038860694801369854;6 = 0.03840891767246447.

e Strain: u = 0.0009999999999876312; 6 = 0.0008990865991095956.
e BlurredMs: u = 0.814312086506682; 6 = 0.5549198340004976.

Then, the inputs SVE and outputs SVE responses are normalized with their corresponding means
and standard deviations, respectively.

% rescaleStrainFile.py

import numpy as np

fileList = np.loadtxt (’strainFilelList.txt’, dtype=str)

n = len(filelList)

for i in range(n):
strain = np.load(fileList[i])
rescaledStrain = (strain - 0.0009999999999876312) / 0.0008990865991095956
fileName = ’'Rescaled’ + fileList[i]
np.save (fileName, rescaledStrain, allow_pickle=True, fix_imports=True)
print ("done %d’ % i)
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The script to visualize microstructures and responses (€,6) in 3D is documented as below.

import numpy as np

import matplotlib.pyplot as plt

import os, glob

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

from mpl_toolkits.axes_gridl.colorbar import colorbar

currentPath = os.getcwd()
fileList = glob.glob(currentPath + ’'/microstructures/*npy’)
# i = np.random.randint (low=0, high=len(filelList))

for i in range(len(fileList)):
fileName = fileList[i]
fileName = fileName.split (’/’)[-1].replace('.npy’, ')

_I_~E_28_T5_geta JTdelpr

data = np.load(’'microstructures/’ + fileName + ’.npy’)
data2 = np.load('responses/Stress.Resp_’ + fileName + '.npy’)

# fileName = ’'M_gaussian_5_7

### plot

plt.close(’all’)

fig = plt.figure()
# axl = fig.gca(projection='3d’
axl = fig.add_subplot(1,2,1, projection='3d’

cmap = plt.get_cmap("gray")

norm = plt.Normalize(data.min(), 2 * data.max())

axl.voxels (np.ones_like (data), facecolors=cmap(norm(data)))
axl.set_title('microstructures’)

axl.set_aspect ('equal’)

*# fig2 = plt.f

# ax2 = fig

e()
(projection='3d")
ax2 = fig.add_subplot(1,2,2, projection='3d’

cmap = plt.get_cmap("jet")

norm = plt.Normalize (data2.min(), 0.25 * data2.max())
ax2.voxels (np.ones_like (data2), facecolors=cmap (norm(data2)))
ax2.set_aspect ('equal’)

ax2.set_title(’Stress’)

# fig2.colorbar (ax2)

plt.savefig(’visualization.%s.png’ % fileName, quality=95)
plt.clf ()
print ("done %d’ % i)

# plt.show()

4.3. CPNet architecture

Total number of params: 902,183
Total number of trainable params: 902,183

Layer (type) Output Shape Param #
Conv3d-1 [-1, 8, 11, 11, 11] 224
BatchNorm3d-2 [-1, 8, 11, 11, 11] 16
ReLU-3 [-1, 8, 11, 11, 11] 0
MaxPool3d-4 [-1, 8, 11, 11, 11] 0
Conv3d-5 [-1, 16, 6, 6, 6] 3,472
BatchNorm3d-6 [-1, 16, 6, 6, 6] 32
ReLU-7 [-1, 16, 6, 6, 6] 0
MaxPool3d-8 [-1, 16, 6, 6, 6] 0
Conv3d-9 [-1, 32, 6, 6, 6] 13,856
BatchNorm3d-10 [-1, 32, 6, 6, 6] 64
ReLU-11 [-1, 32, 6, 6, 6] 0




MaxPool3d-12 =1, 32, 5 5, 5] 0
Conv3d-13 [-1, 64, 3, 3, 3] 55,360
BatchNorm3d-14 [=1l; 64; 3; 3; 3] 128
ReLU-15 (-1, 64, 3, 3, 3] 0
MaxPool3d-16 [-1, 64, 3, 3, 3] 0
Linear-17 [-1, 343] 593,047
ReLU-18 [-1, 343] 0
Linear-19 [-1, 343] 117,992
ReLU-20 [-1, 343] 0
Linear-21 [-1, 343] 117,992

Total number of params: 902,183
Total number of trainable params: 902,183
Non-trainable params: 0

4.4. Prediction benchmark

One of the computational trade-offs in CPNet is the number of hyper-parameters included in CPNet
versus the speed for forward prediction. In the forward prediction mode, a smaller scale materials
response of SVE strideGap x strideGap x strideGap is made as an output of the CPNet. This proce-
dure sweeps for the entire the SVE. Larger strideGap is associated with a dense fully convoluted
layer after feature extraction, thus significantly increasing the number of hyper-parameters of CP-
Net. Smaller strideGap reduces the number of hyper-parameters, but increases the computational
cost of the forward prediction, as demonstrated in Figure 4-1|.

103

computational time (s)

10?

2 4 6 8
strideGap

Figure 4-1 CPNet scalability wrt strideGap in forward prediction for 1 SVE.
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Beside strideGap, batchSize also has a big impact on the training performance. In particular, one
expects:

e 1 epoch for batchSize = 16,
e 3-4 epochs for batchSize = 32,
e 7-8 epochs for batchSize = 64.

Figure 4-2 and Figure 4-3 present the prediction with strideGap of 7 and 5, respectively.

Figure 4-2 CPNet - strideGap = 7 for testing.

Figure 4-3 CPNet - strideGap = 5 for testing.

Figures 4-4 to show the performance of CPNet with various microstructures. The left column
shows the microstructures, which are the input of CPNet. The middle column shows the prediction
of localized strain. The right column shows the true localized strain by FEM.

4.5. Quantitative comparison

For a SVE of size 51 x 51 x 51, which has 132,651 data points to compare and compute the
R? coefficients. However, for a testing dataset of 1720 SVEs, which totals up to 0.22 - 10° data
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points, there is a computational issue if all the data points are included. Thus, we have to resort
to some approximation technique for assessing the R? coefficients. For the sake of simplicity, we
approximate this coefficient by Monte Carlo methods, where the number of SVEs considered is
much less than the number of SVEs included in the testing dataset.

Given n points to compare between the prediction and ground-truth, the R? coefficient is the square
of Pearson’s correlation coefficient, which is computed by

r Zl l(xl'_x>(yl' y)
- \/Zz (% —X) \/Zz 1 (i —

where 7 is the sample size, x; and y; are the prediction and ground—truth values, respectively, X and
y denote sample means. It can be proved mathematically that the R? coefficient does not change
under affine transformation. Therefore, we will compute this R? coefficient without scaling the
prediction and ground-truth values altered during the pre-process of DL. In this implementation,
CPNet achieves about 0.65 < R? < 0.70. One possible explanation is that the dataset is insufficient
to train a large CNN.

6]

5. AUTOENCODER FOR SYNTHETIC 2D SMOOTH
MICROSTRUCTURES

The verbal description of hyper-parameters and architecture is described as follows via torchsum-
mary,

Total number of params: 8801
Total number of trainable params: 8801

Layer (type) Output Shape Param #
Conv2d-1 [-1, 16, 43, 43] 160

ReLU-2 [-1, 16, 43, 43] 0
MaxPool2d-3 (-1, 16, 21, 21] 0
Convzd-4 [-1, 8, 11, 11] 1,160

ReLU-5 [-1, 8, 11, 11] 0
MaxPool2d-6 [-1, 8, 10, 10] 0
ConvTranspose2d-7 [-1, 16, 21, 21] 1,168
ReLU-8 [-1, 16, 21, 21] 0
ConvTransposez2d-9 [-1, 8, 65, 65] 6,280
ReLU-10 [-1, 8, 65, 65] 0
ConvTranspose2d-11 [-1, 1, 128, 128] 33
Tanh-12 [-1, 1, 128, 128] 0

Total params: 8,801
Trainable params: 8,801
Non-trainable params: 0
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where the detailed architecture is shown in Figure 5-1. Figure 5-1/ shows the architecture of the AE
used. Figure 5-3| presents 64 different samples of microstructures using the decoder of the AE. It
is shown that the AE is capable of producing synthetic 2D microstructures to a fair level of details.
However, it is also noted that the quality of images are not as good as the original ones.

Figure 5-1 AE DL architecture for synthetic 2D microstructures.

Figure 5-2 shows the evolution of DL microstructure reconstruction. As of epoch 160, it has
captured some patterns in the microstructure, but the DL reconstruction do not match very well
with the 2D smooth microstructures.

(a) Epoch 1 (b) Epoch 20 (c) Epoch 40

(d) Epoch 60 (e) Epoch 80 (f) Epoch 100

(g) Epoch 120 (h) Epoch 140 (i) Epoch 160

Figure 5-2 8 reconstructions of 2D synthetic smooth microstructures from AE at dif-
ferent epochs.

6. AUTOENCODER FOR SYNTHETIC 2D BINARY
MICROSTRUCTURES

The following table describes the DL architecture for AE developed for 2D binary microstructures,
which has 15,833 hyper-parameters. Conv2d and ConvTranspose2d layers are used extensively to
build the AE.

Total number of params: 15833
Total number of trainable params: 15833

Layer (type) Output Shape Param #
Conv2d-1 [-1, 16, 43, 43] 160
BatchNorm2d-2 [-1, 16, 43, 43] 32
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Figure 5-3 64 samples of 2D synthetic smooth microstructures from AE at different
epochs.
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ReLU-3 (-1, 16, 43, 43] 0

MaxPool2d-4 (-1, 16, 21, 21] 0
Conv2d-5 (-1, 32, 11, 11] 4,640
BatchNorm2d-6 (-1, 32, 11, 11] 64
ReLU-7 (-1, 32, 11, 11] 0

MaxPoo0l2d-8 (-1, 32, 10, 10] 0
ConvTranspose2d-9 [-1, 16, 21, 21] 4,624
ReLU-10 (-1, 16, 21, 21] 0
ConvTranspose2d-11 [-1, 8, 65, 65] 6,280
ReLU-12 [-1, 8, 65, 65] 0
ConvTransposez2d-13 (-1, 1, 128, 128] 33
Tanh-14 [-1, 1, 128, 128] 0

Total params: 15,833
Trainable params: 15,833
Non-trainable params: 0

Figure 6-1 show 8 different binary microstructures using the aforementioned AE, which also
demonstrates that the AE has fully captured the information associated with the binary microstruc-
tures. The top rows (resulted from SPPARKS simulations) and the bottom rows (from AE) are
nearly identical, showing a good match between physics-based and DL reconstruction.
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(9) Epoch 240 (h) Epoch 260 (i) Epoch 320

Figure 6-1 8 reconstructions of 2D synthetic binary microstructures from AE at differ-
ent epochs.

7. AUTOENCODER FOR KMC/GG MICROSTRUCTURES

Typically, AE is composed of an encoder and a decoder. Both of which are CNN. On one hand,
the encoder is tasked with “compressing” information from a high-dimensional space to a low-
dimensional space which is usually referred to as the latent space, mainly through convolution
layers, activation layers, and pooling layers. More advanced layers are also used to enhance its
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performance. The decoder, on another hand, is used to “decompress” information from the latent
space back to the normal state.

By itself, the trained decoder is a generative deep learning model, in the sense that one can sample
from the latent space and generate objects. The objects in this case is the microstructures obtained
from SPPARKS. That being said, this approach allows one to generate and reconstruct microstruc-
tures if the dataset is sufficient. Fortunately, SPPARKS is well-known to be fairly computationally
cheap, thanks to careful parallel implementation on high-performance computing platforms. With
the computational power at Sandia, one can reliably generate a substantial dataset within a reason-
able time frame.

The architecture of the AE is described in Figure 7-1. We employed a straightforward implemen-
tation of AE, where Conv2d and Unconv2d layers are employed extensively.

Figure 7-1 AE DL architecture for kMC/GG microstructure.

The hyper-parameters are described using torchsummary

Total number of params: 8793
Total number of trainable params: 8793

Layer (type) Output Shape Param #
Conv2d-1 [-1, 16, 43, 43] 160

ReLU-2 (-1, 16, 43, 43] 0

MaxPool2d-3 [-1, 16, 21, 21] 0
Conv2d-4 [-1, 8, 11, 11] 1,160

ReLU-5 (-1, 8, 11, 11] 0

MaxPool2d-6 [-1, 8, 10, 10] 0
Conv2d-17 (-1, 4, 5, 5] 292

ReLU-8 (-1, 4, 5, 5] 0

MaxPool2d-9 (-1, 4, 4, 4] 0
ConvTranspose2d-10 [-1, 16, 9, 9] 592
RelLU-11 [=1; 16, 9, 9] 0
ConvTranspose2d-12 (-1, 8, 29, 29] 6,280
RelLU-13 [-1, 8, 29, 29] 0
ConvTranspose2d-14 [-1, 4, 57, b7] 292
ReLU-15 [-1, 4, 57, 57] 0
ConvTranspose2d-16 [-1, 1, 112, 112] 17
Tanh-17 (-1, 1, 112, 112] 0

Total params: 8,793
Trainable params: 8,793
Non-trainable params: 0
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Figures [7-2 and [7-3| describe the reconstruction of microstructure images and samples at different
epochs, respectively. It is clear that the latent variables indeed do exist to describe the microstruc-
ture.

(é) Epoch 1 ‘ _ ‘ v _ (b) Eppch 20
(é) iEpoch 40 \ _ (d) Epogh 60
(e)‘(Epochret‘) _ _ ‘ (f) If_poch 10(’)‘
‘(g) Epoch 120 ‘ (h) Epoch 140
(i) Epoch 160 (i) Epoch 180

Figure 7-2 8 reconstructions of KMC/GG from AE at different epochs.

Figure [7-3| shows 64 DL synthetic microstructures, sampled from the latent space, from the learned
decoder of the AE. Some reasonable microstructures are observed, but it does not reflect the phys-
ical intuition that the grain boundary should be connected together. This challenging question
remains unsolved for further future work.

8. AUTOENCODER FOR KMC/ADDITIVE DATASET

The DL architecture for AE, which is composed of 14,847 hyper-parameters, is shown in the
following table. Again, Conv2d and ConvTranspose2d layers are extensively used.



(a) Epoch 1

(b) Epoch 20

(c) Epoch 40

(d) Epoch 60

(e) Epoch 80

KU

Epo

ch 1

(g) Epoch 120

(h) Epoch 140 (i) Epoch 160

Figure 7-3 64 samples of kMC/GG from AE at different epochs.
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Layer (type) Output Shape Param #

Conv2d-1 (-1, 4, 43, 43] 40

ReLU-2 (-1, 4, 43, 43] 0

MaxPool2d-3 (-1, 4, 21, 21] 0
Conv2d-4 [-1, 8, 11, 11] 296

ReLU-5 [-1, 8, 11, 11] 0

MaxPool2d-6 [-1, 8, 10, 10] 0
Conv2d-17 [-1, 16, 5, 5] 1,168

ReLU-8 -1, 16, 5, 5] 0

MaxPool2d-9 (-1, 16, 4, 4] 0
Conv2d-10 (-1, 32, 3, 3] 2,080

RelLU-11 (-1, 32, 3, 3] 0
MaxPool2d-12 -1, 32, 2, 2] 0
ConvTransposez2d-13 (-1, 16, 5, 5] 4,624
RelLU-14 [-1, 16, 5, 5] 0
ConvTranspose2d-15 (-1, 8, 17, 17] 6,280
RelLU-16 (-1, 8, 17, 17] 0
ConvTranspose2d-17 [-1, 4, 33, 33] 292
RelLU-18 [-1, 4, 33, 33] 0
ConvTranspose2d-19 [-1, 2, 64, 64] 34
ReLU-20 [-1, 2, 64, 64] 0
ConvTranspose2d-21 [-1, 1, 128, 128] 33
Tanh-22 (-1, 1, 128, 128] 0

Total params: 14,847
Trainable params: 14,847
Non-trainable params: 0

Figure 8-1/shows 8 different reconstructed microstructures at various epochs. At epoch 100, the AE
is able to reconstruct with fine details for kMC/additive dataset, where the top row (DL solutions)
is nearly identical with the bottom row (SPPARKS simulated microstructures). This fundamentally
proves the concept of extracting low-dimensional non-linear manifold by AE.

Figure 8-2 shows 64 random microstructures, where the latent space is sampled and the trained
decoder is used to reconstruct the microstructure. Again, this shows that the AE was able to learn,
but not with a fine details as simulations. This challenging problem is posed as future work.

9. AUTOENCODER FOR UHCSDB DATASET 48X64

9.1. Data curation
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Figure 8-1 8 reconstructions of kMC/additive from AE at different epochs.
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(a) Epoch 1 (b) Epoch 20 (c) Epoch 40

(d) Epoch 60 (e) Epoch 80 (f) Epoch 100

(g) Epoch 120 (h) Epoch 140 (i) Epoch 160

Figure 8-2 64 samples of kMC/additive from AE at different epochs.
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xtractMetadata.sh

in/bash

for folderName in $(ls -1dv */); do
cd $folderName
rm -fv minorMetadata.csv minor-metadata.csv

for cropImgName in $(ls -1v *.png); do
micrographName=$ (echo $cropImgName | cut -d
# grep "S{micrographName}\." ../uhcs-metadata.csv >> minor-metadata.csv
micrographid=$(echo $micrographName | tr -dc '0-9')
lineNum=$( echo "${micrographid} + 1" | bc -1
sed -n ${lineNum}p ../uhcs-metadata.csv >> minor-metadata.csv

done

g .

echo "done $folderName"

done

But before performing these steps, we must rescale the micrograph to be on a same scale, because
otherwise, one pixels in one micrograph is not as the same as another. We approach this problem by
firstly cropping the annotation of the micrograph, which include the magnification, scale bar, and
other information relevant to the micrograph. Note that the metadata is also supported by another
separate file uhcs-metadata.csv, which contains identical information regarding the dataset. After
being cropped, all micrographs have the same dimension of 645 pixels x 484 pixels.

import numpy as np
import matplotlib.pyplot as plt

# ’'uhcs-metadata.csy or ’'minor-metadata.csv

metadata = np.loadtxt ('minor-metadata.csv’, delimiter=',’, dtype=str

magnArr = metadatal[:,9]

# https://stackoverflow.com/questions/4289331/how-to-extract-numbers-from-a-string-in-python

magnArrInt = []
for j in range(len(magnArr)):

magn = ’'’.join([i for i in magnArr[j] if i.isdigit()])
if magn != '’
magn = int (magn)
if isinstance (magn, int):
magnArrInt += [magn]
magnArrInt = np.array (magnArrInt)
print (‘max magn = %d’ % np.max (magnArrInt))
print (‘min magn = %d’ % np.min(magnArrInt))
print (‘median magn = %d’ % np.median (magnArrInt))

plt.hist (magnArrInt, bins='auto’)

plt.xlabel (‘magnification’, fontsize=24)
plt.ylabel (' frequency’, fontsize=24
plt.title('magnification analysis’, fontsize=30)
plt.show ()

Second, using the magnification, we convert the image to roughly the same scale. We remove all
the data without labels, as there is no processing information associated with the microstructure.
This significantly reduces the number of usable micrographs to 1024. The wide range of mag-
nification from 35X to 63833X makes a selection for a uniform magnification challenging. To
demonstrate the idea, we choose the dataset spheroidite. to work with, since it contains the most
micrographs.

#!/bin/bash

for type in martensite network pearlite+spheroidite pearlite+widmanstatten pearlite spheroidite+widmanstatten spheroidite; do
mkdir -p ${type}-unified/

done

for fN in $(ls -1dv *.*/); do
type=$(echo $fN | cut -d. -fl
cp -rfv $fN/*.png ${type}-unified
done

The magnification range of this sub-dataset is from 246X to 19641X. The histogram of magnifi-
cation is shown in Figure O-1. Based on the analysis in Figure 9-1, the median of 1964X is used
as the uniform scale for this sub-dataset spheroidite. The min and max magnification is 246 and
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Figure 9-1 Magnification analysis for spheroidite.

1964, respectively. Also, we remove micrographs where the magnification is not available, e.g.
micrograph762.

import glob, os

import numpy as np

from PIL import Image

# https://stackoverflow.com/questions/273946/how-do-i-resize-an-image-using-pil-and-maintain-its-aspect-ratio
metadata = np.loadtxt ('minor-metadata.csv’, dtype=str, delimiter=’',")

imList = glob.glob(’*.png’)

targetMagn = 1964 # median

ed.mi 5
for imName in imList:

# imName = 'cr rographl1295.png

print (' imName = %s’ % imName) # debug

micrographName = imName.split(’.’)[1] # micrographl637
im = Image.open (imName)

width, height = im.size # 645, 484

aspectRatio = height/width

print ("micrographName = %s’ % micrographName)

rowIndex = np.where (metadata(:, 14] == micrographName + ’'.tif’) # search for the row
B v %)

¥ o ta[rowIndex, 14])

# print (r ndex)

# print (len(rowIndex[0]))

if len(rowIndex[0]) ==
rowIndex = np.where (metadata[:, 14] == micrographName + ’.png’) # sear
print (' Searching for %s’ % (micrographName + ’.png’))

if len(rowIndex[0]) ==
rowIndex = np.where (metadata([:, 14] == micrographName + ’'.bmp’) # search for another extension ins

print (' Searching for %s’ % (micrographName + '.bmp’))

for another extension ins

rowIndex = int (rowIndex[0])
print (' rowIndex = %d; imName = %s’ % (rowIndex, imName))
magn = ‘’.Jjoin([i for i in metadata[rowIndex, 9] if i.isdigit()])
if magn != '':
# print (magn)
magn = int (magn)
# principles: (1) enlarge img with small magn, (2) reduce img with large magn
scaleRatio = targetMagn / magn

targetWidth = int (width * scaleRatio)

targetHeight = int (height * scaleRatio)

# scale image

rescaledIm = im.resize ((targetWidth, targetHeight), Image.ANTIALIAS)
im.save (' rescaled.’ + micrographName + ’.png’)

print ("done %s\n’ % imName)

This step creates a folder named rescaled with 344 microstructure images for spheroidite with vari-
ous sizes correspond to various image quality. We also remove rescaled.micrograph{1207,1173}.png
due to their low quality and small size.
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9.2. Random crop

From the 344 microstructure images with various sizes, we perform random crop, where the num-
ber of random crop is proportional to images’ area. Recall that the standard image is of 1964X,
where width and height are 645 and 484 pixels, respectively. The smallest size of rescaled images
is (48, 64), whereas the largest size of the rescaled images is (1936, 2540). The median of rescaled
images is (484, 645). We take 48 x64 as a unit patch for random crop operation. The number of
crop is calculated as

2)

imageHeight x imageWidth
# of crops = - , X r| ;
patchHeight x patchWidth

where r is a number of redundancy which should be chosen depending on the size of generated
dataset. If the dataset is too small, r should be increased, and vice versa. This allows us to
subsample 344 micrographs to a dataset with 56392 images, which is acceptable for DL.

t#+ randomCrop.py

import numpy as np
import os, glob
import skimage.io as io

defaultHeight = 48
defaultWidth = 64
§ 0n M. sesdd ographs/spheroidite-unified
# make sure

# and ’'randomC

numOfPatch = 0
for imgName in glob.glob(’./rescaled/*.png’):
img = io.imread (imgName)
width, height = img.shape
numOfCrops = np.floor( width * height / defaultWidth / defaultHeight * 1.5)
print (' randomCrop %s: h = %d, w = %d: numOfCrops = %d’ % (imgName, height, width, numOfCrops)
numOfPatch += numOfCrops

print (' Total number of patches: %d’ % (numOfPatch))

We then randomly crop the images to more than 100,000 patches of 64x48 and subsequently
remove low contrast patches, as well as faulty patches, e.g. patches that after being saved does not
retain its size anymore.

## randomCrop.py

import numpy as np

import os, glob

# import skimage.io as io
import skimage

from PIL import Image

defaultHeight = 48
defaultWidth = 64
# run ir ppedMicrographs/spheroidite-unified

# make sur

# and ’rando

logFile = open(’randomCrop.log’, ’'w’)
numOfPatch = 0

patchID = 0

os.system('mkdir -p randomCrop/'

for imgName in glob.glob(’./rescaled/*.png’):

# read images
= skimage.io.imread (imgName) # sklearn
g = Image.open(imgName) # PIL

imgName = imgName.split(’//’")[-1]

imgName = imgName.split(’.’)[1]

width, height = img.shape # sklear

# width, height = img.size # PIL
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# determine how many patches to save
redundantRatio = 1.5
numOfCrops = np.floor( width * height / defaultWidth / defaultHeight * redundantRatio)

# numOfCrops = 1 # debug

numOfCrops = int (numOfCrops)
print (' randomCrop %s: h = %d, w = %$d: numOfCrops = %d’ % (imgName, height, width, numOfCrops)
numOfPatch += numOfCrops

saveError = True
isNotLowContrast = True
while saveError and isNotLowContrast: # no save error AND not low contrast
for i in range (numOfCrops):
if height > defaultHeight and width > defaultWidth:
sH = np.random.randint (0, height - defaultHeight) # starting height
sW = np.random.randint (0, width - defaultWidth) # starting width

0
0

# crop images
cropImg = img[sH:sH+defaultHeight, sW:sW+defaultWidth] # sklearn

# cropImg = img.crop((sH, sW, sH + defaul ight, sW + defaultwidth)) # PIL
cropImgName = ’patch%d’ % patchID
# rast
# ntrast = not
# otLowContrast
# save 1images
try:
skimage.io.imsave (’./randomCrop/%s.png’ % cropImgName, croplImg, check_contrast=False) # sklearn
# cropImg.save(’./randomCrop/%s.png’ % cropImgName) # PIL
saveError = False
patchID += 1
except:
saveError = True

logFile.write (' randomCrop %s patch %s in i=%d/numOfCrops=%d: h = %d, w=%d at sH = %d, sW = %d\n’ % (imgName, patchID, i, numOfC

logFile.close ()
print (' Total number of patches: %d’ % (numOfPatch))

import numpy as np
import os, glob

# import skimage.io as io
import skimage

from PIL import Image

defaultHeight = 48
defaultWidth = 64

targetFolder = ’spheroidite-unified-randomCrop’
B

imgList = glob.glob(’%s/*.png’ % targetFolder
for imName in imgList:

# im = Image.open (imName)

im = skimage.io.imread (imName)

# w, h = im.size

h, w = im.shape

if w != defaultWidth or h != defaultHeight:

print ("%$s: h=%d, w=%d’ % (imName, h, w))
os.system('rm -v %s’ % imName)
else:

print ('Pass %s: h=%d, w=%d.’ % (imName, h, w))

9.3. Dataset

The dataset is split into 74581 patches for training and 21627 patches for testing. The dimension
of the patch is 64 pixelsx48 pixels.
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9.4. UHCSDB autoencoder 48x64

Total number of params: 5855
Total number of trainable params: 5855

Layer (type) Output Shape Param #
Conv2d-1 [-1, 2, 48, 64] 20

ReLU-2 (-1, 2, 48, 64] 0

MaxPool2d-3 [-1, 2, 46, 62] 0
Conv2d-4 [-1, 4, 46, 62] 76

ReLU-5 [-1, 4, 46, 62] 0

MaxPool2d-6 (-1, 4, 44, 60] 0
Conv2d-17 [-1, 8, 22, 30] 296

ReLU-8 [-1, 8, 22, 30] 0

MaxPool2d-9 (-1, 8, 20, 28] 0
Conv2d-10 [-1, 8, 10, 14] 584

RelLU-11 [-1, 8, 10, 14] 0
MaxPool2d-12 -1, 8, 8, 12] 0
ConvTransposez2d-13 (-1, 8, 8, 12] 584
RelLU-14 (-1, 8, 8, 12] 0
ConvTranspose2d-15 (-1, 8, 10, 14] 1,608
ReLU-16 [-1, 8, 10, 14] 0
ConvTranspose2d-17 [=1l; 8; 21; 29] 1,608
RelLU-18 [-1, 8, 21, 29] 0
ConvTransposez2d-19 [-1, 4, 43, 59] 804
ReLU-20 [-1, 4, 43, 59] 0
ConvTranspose2d-21 [-1, 2, 45, 61] 202
RelLU-22 (-1, 2, 45, 61] 0
ConvTransposez2d-23 (-1, 1, 48, 64] 73
Tanh-24 [-1, 1, 48, 64] 0

Total params: 5,855
Trainable params: 5,855
Non-trainable params: 0

9.5. Reconstruction

Figure shows 8 reconstructions of random microstructure images at different epochs. It is
observed that the AE proposed can capture some, but not to a great detail of the microstructure.
Perhaps a deeper architecture is suitable for this purpose. Figure 9-3 shows 2 samples at different
epochs using the same AE architecture. Even though the quality of the images in Figure 9-2 is rea-
sonably good and its training converges quickly, the decoder is incapable of generating reasonable
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microstructures. This limitation of AE prompts us to another DL architecture, called GAN, which
is also explored in the section below.

180
A

(i) Epoch 270 (j) Epoch 300

Figure 9-2 8 reconstructions of UHCSDB from AE at different epochs.

(a) Epoch 270 (b) Epoch 300

Figure 9-3 2 samples of UHCSDB from AE at different epochs.

10. GAN FOR UHCSDB DATASET 64X64

We subsample the previous UHCSDB dataset, this time with the patch size of 64x64. 90000
patches are used as the training dataset, whereas 38940 patches are used as the testing dataset.
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DCGAN [14] is employed in this work. Figure [10-1 shows the microstructure generated at different
epochs.

(d) Epoch 60 (e) Epoch 80 (f) Epoch 100

Figure 10-1 6 collection of 64 samples of UHCSDB from GAN at different epochs.

The quality of generated microstructures has gradually improved over the training; by the epoch
100, it was capable of generating microstructures that looks aesthetically similar to the experi-
mental microstructure. However, DCGAN also suffers from mode collapse, as in the sense that it
generates many similar images. Training GAN is well-known to be a challenging problem, which
will require further work.

11. DISCUSSION

In this project, DL is implemented via PyTorch. Sandia Blake testbed is utilized for most of the
training. We perform experiments with various activation functions, loss functions, and architec-
tures, including AE and GAN for reconstructing microstructure.

The AE was successfully implemented for the synthetic 2D microstructure dataset. We found that
the MaxPool layer performs better than the AvgPool layer for this dataset, given the same DL
architecture and loss function. VAE has been shown to be very challenging to train, while AE
offers a fairly straightforward to implement. Perhaps one of the reasons is because the difference
in terms of loss functions: AE employs mean-square error (MSE).
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We also observe that the utilization of BatchNorm layer also increases the training speed and
improves the efficiency of optimization in seeking optimal hyper-parameters. The traditional ap-
proach is Conv/ReLU/MaxPool can be transformed to Conv/BatchNorm/ReLU/MaxPool. There has
been some debates regarding the location of the BatchNorm layer, and the majority advocates its
location right after the convolution layer.

An important lesson learned from brute-force of DL application on CPFEM dataset is that the
input domain is simply too large to apply DL methods blindly. Yet, we fail to see it upfront.
Theoretically, there is no difference, but practically, the difference is huge (as the problem is nearly
computationally intractable). Dissecting the large dataset into smaller pieces based on localization
assumption may work better.

The reconstruction capability of VAE and GAN has been much a debate, even though in practice,
GAN has the advantage of generating more realistic samples. VAE is widely supported theoret-
ically, as there is a clear way to evaluate the quality of the model by the log-likelihood, either
estimated by importance sampling or lower-bounded. VAEs tend to generate more blurred sam-
ples compared to those from GANs, while GANs could suffer from mode collapse in multi-modal
density.

We also found that the quality of the reconstruction is (highly) dependent on the number of chan-
nels in the very first convolutional layer. 16 channels is sufficient for kKMC/GG dataset.

12. CONCLUSION

As DL is emerging, DL applications in materials science and other fields are generally a new topic
for research and development. DL has not matured yet. Recent years has observed a progressive
development of GAN with higher and higher resolution, so adapting to the new technology is
certainly a challenge. Much work remains to be done in materials science, both computationally
and experimentally.

In this report, we describe our recent and preliminary efforts to develop two tracks of DL in ma-
terials science, including both supervised and unsupervised DL. For supervised learning, we pro-
posed CPNet, which is a 3D-CNN DL architecture for solving CPFEM. Reasonable agreement
is observed, which paves ways for future research. For unsupervised learning, we generated 5-6
synthetic microstructure datasets from SPPARKS/KMC, and adopted UHCSDB dataset, which is
experimental.

Promising results are achieved. In supervised learning, a DL algorithm is achieved to predict
materials response with a limited dataset. In unsupervised learning, good microstructure generation
and reconstruction are achieved in some cases. Both topics are not mature; much work remains to
be done, but at least this report has proved beyond reasonable doubt that DL could have a lasting
impact to the perception of materials science community in general.

45



ACKNOWLEDGMENT

Anh Tran thank Joseph Bishop for mentoring this project and for his helpful and inspiring dis-
cussions, and Prof. Surya Kalidindi (Georgia Tech) and Dr. Yuksel Yabansu (Georgia Tech) for
sharing their CPFEM dataset. The support from the LDRD Exploratory Express, managed by Dr.
Hy Tran, is gratefully acknowledged.

46



APPENDIX A BLAKE ADVANCED TESTBED (CPU/SLURM SCHEDULER)

In this section, we describe the hardware and software installation on Blake testbed.

$ lscpu

Architecture:

CPU op-mode (s) :
Byte Order:

CPU(s):

On-line CPU(s) list:
Thread(s) per core:
Core(s) per socket:
Socket (s) :

NUMA node (s) :
Vendor ID:

CPU family:

Model:

Model name:
Stepping:

CPU MHz:

BogoMIPS:
Virtualization:
L1ld cache:

Lli cache:

L2 cache:

L3 cache:

NUMA node0 CPU(s):
NUMA nodel CPU(s):

$ module list

x86_64

32-bit, 64-bit
Little Endian
96

0-95

2

24

2

2
GenuinelIntel
6

85

Intel (R) Xeon(R) Platinum 8160 CPU @ 2.10GHz
4

2101.000
4194.85

VT-x

32K

32K

1024K

33792K
0-23,48-71
24-417,72-95

Currently Loaded Modulefiles:

1) cmake/3.12.3

2) 21lib/1.2.11

3) binutils/2.30.0
4) gecc/7.2.0

5) numa/2.0.11

6) papi/5.5.1 1
7) java/oracle/1.8.0 1
8) openmpi/2.1.2/gcc/7.2.0 1

bzip2/1.0.6
git/2.9.4

9) readline/8.0.0
0) python/3.7.3
1
2

13) ncurses/6.0.0

Note that module python/3.7.3 must be used in order to run PyTorch. TPLs to be installed:

e torchsummary

e torchviz

e hiddenlayer

Visualizing the model (note that torch may have to be upgraded)

e via torchviz (link to GitHub)

from torchviz import make_dot
x = torch.randn(l, 1, imgDim, imgDim)

y = model (x)
make_dot (y, params=dict (list (model.named_parameters()))).render()

e via hiddenlayer (link to GitHub)

x = torch.zeros([1, 1, 128, 128])

import hiddenlayer as hl

g = hl.build_graph(model, x)

g = g.build_dot ()

g.render ('test’, view=True, format='png’)
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APPENDIX B WHITE ADVANCED TESTBED (GPU/LSF SCHEDULER)

The White hardware environment is comprised of three types of compute
node:

(1) POWER8 Tuleta Processors (5-core dual-NUMA-per socket, dual-socket)
with a single NVIDIA Kepler-K40 GPU per socket connect via PCIe. These
nodes are provided under the rhel7T queue.

(2) POWER8 Firestone Processors (8-core per socket, dual-socket) with
a single NVIDIA Kepler-K80 GPU per socket connected via PCIe. These nodes
are provided under the rhel7F queue.

(3) POWER8+ Firestone Processors (8-core per socket, dual-socket) with
two NVIDIA Pascal P100 GPUs per socket connected via NVLINK-1. These
nodes are provided under the rhel7G queue (because they are called
Garrison/Minsky blades by IBM).

The nodes are interconnected with Mellanox InfiniBand.

An official documentation on how to use LSF scheduler is referred here. How to set up Anaconda
environment can be read here.

) cmake/3.12.3

) zlib/1.2.8

) binutils/2.30.0

) gee/7.2.0

) cuda/9.2.88

) papi/5.5.1

) Jjava/ibm/sdk/8.0.0
) openmpi/2.1.2/gcc/7.2.0/cuda/9.2.8
)  readline/7.0.0

0) python/3.7.3

1) anacoonda3/4.8.2-python-3.7.6

Regarding conda and pytorch:

# cheat sheet

# https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267¢40c689%e0bc00ca/conda-cheatsheet.pdf

conda create -n whiteConda python=3.6 anaconda

conda activate whiteConda

conda install conda

conda update -n base -c defaults conda

# conda config --append channels conda-forge

conda install numpy scipy matplotlib scikit-learn scikit-image keras ipython django pandas jupyter parameterized Theano mako mpidpy n

# conda install tf tensorflow tf-gpu tensorflow-gpu

# conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

which pip

# NOTE: White testbed is power8, i.e. ppcé6b4le, not supported officially from pytorch
conda install -c engility pytorch

conda install -c engility torchvision

# conda deactivate
# conda env remove --name whiteConda

conda init bash # conda init --help
conda install -n whiteConda pip
conda info

python3 -s # do not add user site-packages directory to sys.path

# To see the Python path
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python3
import sys
print (sys.path)

Regarding LSF scheduler:

# https://hpc.llnl.gov/banks-jobs/running-jobs/lsf-commands
bsub

bqueues

bstatus

APPENDIX C A PRIMER ON CNN

Here, we implement our DL approach on PyTorch, where the documentations of neural layers are
here.

C.1 Conv(1d,2d,3d)

(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros’)

Din 42 x padding — dilation x (kernelSize —1) — 1
Doutzl it 2% pedcing — Fallon ¥{ ) +1J 3)
stride
C.2 {AvgPool,MaxPool}(1d,2d,3d)
(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
Doy = Din +2 % paddipg — kernelSize . @
stride

C3 ConvTranspose(1d,2d,3d)

(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros’)

Doyt = (Djp — 1) x stride — 2 x padding + dilation x (kernelSize — 1) + output_padding+1 (5)

C4 Training

Training methods, including Adadelta, Adagrad, Adam, AdamW, SparseAdam, Adamax, ASGD,
LBFGS, RMSprop, Rprop, and SGD, are documented here for PyTorch.
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C.5 Standard benchmark dataset

About 25 standard benchmarking datasets are available here. Source code is available on GitHub.

C.6 Parallelization

Parallelization over CPU here

Parallelization over GPU here, here, here, here, tutorial here

APPENDIX D A PRIMER ON VARIATIONAL AUTOENCODERS

Original paper by Diederik and Welling [54]. Tutorials by Doersch [55] and Charte et al [56].
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