
SANDIA REPORT
SAND2020-10580

Printed March 2020
•

Sandia
National
Laboratories

Reification of latent microstructures: On
supervised, unsupervised, and
semi-supervised deep learning applications
for microstructures in materials informatics
Anh Tran, Theron Rodgers, Tim Wildey

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185

Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their
contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the
United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @ osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

mT - - 4k SOX
ltrirfirpagar NacApar $4,c‘rritrActrarinheradoc

2

ABSTRACT

Machine learning (ML), including deep learning (DL), has become increasingly popular in the
last few years due to its continually outstanding performance. In this context, we apply machine
learning techniques to "learC the microstructure using both supervised and unsupervised DL tech-
niques. In particular, we focus (1) on the localization problem bridging (micro)structure — (local-
ized) property using supervised DL and (2) on the microstructure reconstruction problem in latent
space using unsupervised DL.

The goal of supervised and semi-supervised DL is to replace crystal plasticity finite element
model (CPFEM) that maps from (micro)structure — (localized) property, and implicitly the (mi-
cro)structure — (homogenized) property relationships, while the goal of unsupervised DL is (1)
to represent high-dimensional microstructure images in a non-linear low-dimensional manifold,
and (2) to discover a way to interpolate microstructures via latent space associating with latent
microstructure variables. At the heart of this report is the applications of several common DL
architectures, including convolutional neural networks (CNN), autoencoder (AE), and generative
adversarial network (GAN), to multiple microstructure datasets, and the quest of neural architec-
ture search for optimal DL architectures.

3

CONTENTS

11 Introduction

12„ Microstructure datasetsl
2.1. Synthetic microstructures
12.2_SPPARKSLPottsadditivesmall2d]
2 3 SPPARKS/Potts weld

2.4. SPPARKS/Grain growth

2.5. UltraHigh Carbon Steel DataBase (UHCSDB) with image-inpainting

2 6 Localization datasetsl

3 Literature reviewsl

4. Solving localization problem via deep learning techniques

4.1.Whcrostnicturefiltei
4.2.Normalization
4 3 CPNet architectureJ
4 4 Prediction benchmark

4.5. Quantitative comparison

5. Autoencoder for synthetic 2D smooth microstructures

6. Autoencoder for synthetic 2D binary microstructures

9

9
9
10
12
15
17
17

17

18
20

20
21

22

23

27

28

7.AutoencoderforkMaGGInicrostmctures1 30

8 Autoencoder for kMC/additive dataset

9 Autoencoder for UHCSDB dataset 48x64

9.1.Datacuration
9.2. Random crop
9 3 Dataset
9 4 UHCSDB autoencoder 48x64
9 5 Reconstruction

33

35
35

40
41
42

42

IG.STANIorUHCSDlislataset 64x64 43

111 Discussion

12—Conchistoril

Appendices

Appendix A. Blake Advanced Testbed (CPU/SLURM scheduler)

Appendix B. White Advanced Testbed (GPU/LSF scheduler)

5

44

45

47

47

48

Appendix C. A primer on CNN
C.1. Conv(1d,2d,3d)
C.2. { AvgPool,MaxPool}(ld,2d,3d)
C.3. ConvTranspose(ld,2d,3d)
C.4. Training
C 5 Standard benchmark dataset

Appendix D. A pnmer on vanational autoencoders

49
49
49
49
49
50
50

50

Referencesl 50

LIST OF FIGURES

Figure 2-1. Synthetic microstructure generation. Photo courtesy of Fernandez-Zelaia et
al. [111] 10

Figure 2-2. Synthetic random microstructure by uniform sampling and Gaussian filter. Top
row: grayscal images. Bottom row: binary images.

Figure 2-3. SPPARKS Potts/additive microstructures.
Figure 2-4. SPPARKS Potts/weld additive manufacturing microstructures.
Figure 2-5. SPPARKS Potts/grain growth microstructures.
Figure 2-6. Inpainting UHCSDB microstructures.
Figure 4-1. CPNet scalability wrt strideGap in forward prediction for 1 SVE.
Figure - . PNet - strideGap = 7 for testing
Figure 4-3. CPNet - strideGap = 5 for testing
Figure 4-4. M_gaussian_3_7_5_vf_25_75_set2.Idx99
Figure 4-5. M_gaussian_5_5_3_vf_25_75_set2.Idx99
Figure 4-6. M_gaussian_7_7_7_vf_25_75_set2.Idx99
Figure 4-7. M_gaussian_7_5_3_vf_25_75_set2.1dx99
Figure 4-8. M_gaussian_5_1_3_vf_25_75.Idx42
Figure 4-9. M_gaussian_5_3_3_vf_25_75_set2.Idx99
Figure 4-10. M_gaussian_l_3_5_vf_25_75_set2.1dx94
Figure 4-11. M_gaussian_3_3_5_vf_25_75_Idx42
Figure 4-12. M_gaussian_5_1_7_vf_25_75_set2.1dx85.npy.png
Figure - . E DL architecture for synthetic 2D microstructures.

11
13
14
16
17
22
23
23
24
24
24
25
25
25
26
26
26
28

Figure 5-2. 8 reconstructions of 2D synthetic smooth microstructures from AE at different
epochs.

Figure 5-3. 64 samples of 2D synthetic smooth microstructures from AE at different epochs.
28
29

Figure 6-1. 8 reconstructions of 2D synthetic binary microstructures from AE at different
epochs.

Figure 6-2. 64 samples of 2D synthetic binary microstructures from AE at different epochs.
Figure 7-1. AE DL architecture for kMC/GG microstructure
Figure 7-2. 8 reconstructions of kMC/GG from AE at different epochs.
Figure 7-3. 64 samples of kIVIC/GG from AE at different epochs.

6

30
31
32
33
34

Figure 8-1. 8 reconstructions of kMC/additive from AE at different epochs.
Figure 8-2. 64 samples of kMC/additive from AE at different epochs.
figure 9-1. Magnification analysis for spheroidite.
Figure 9-2. 8 reconstructions of UHCSDB from AE at different epochs.
Figure 9-3. 2 samples of UHCSDB from AE at different epochs.
Figure 10-1. 6 collection of 64 samples of UHCSDB from GAN at different epochs.

LIST OF TABLES

7

36
37
39
43
43
44

1. INTRODUCTION

Machine learning (ML), including shallow learning and deep learning (DL), has shown a great
potential to overcome human experts from various subject matters, including playing chess [2],
shogi, go [3, 4] . As the fundamental block of DL, convolutional neural networks (CNN) are
engineered with novel algorithms to smartly and automatically extract features from complicated
image and object representations and deeply learn how to perform classification or regression.
Superior performance is a signature of DL in most applications. In this report, we aim to bring the
capability of DL towards materials science applications in two main tracks.

In the first track, which is supervised learning, we aim to develop the prototype of 3D-CNN called
CPNet. The overarching objective for CPNet is to learn and predict the materials response, e.g.
strain, obtained by crystal plasticity finite element model (CPFEM), of different materials and
subjected to various loading conditions. We realize that the this problem is highly complicated.
Therefore, within the scope of this report, we will limit to a fixed materials that is subjected to a
fixed loading condition.

In the second track, which is unsupervised learning, we aim to learn the unsupervised represen-
tation of microstructures. Along the line of this topic is the nonlinear dimensionality reduction
framework for microstructure generation and reconstruction problems. However, the implication
of unsupervised learning in microstructure is beyond microstructure generation and reconstruction
and could have lasting impacts in community perception of process-structure-property linkages.

2. MICROSTRUCTURE DATASETS

In this project, as in many other DL applications for materials science, one of the computational
bottlenecks is the lack of data to train. To mitigate this challenge, we utilize the large-scale com-
putational resource from Sandia and use Big Compute to meet the demand of Big Data [5]. We
consider five different microstructure datasets, where four of them consists of computational and
synthetic microstructures, and one of them consists of experimental microstructures. For each syn-
thetic dataset, except for the UHCSDB dataset, we generate 50,000 microstructures, where 40,000
are used for training and 10,000 are used for testing. Another potential candidate is the spinodal
decomposition microstructure dataset via phase-field simulation, which was not considered in this
study due to the prohibited computational cost to generate.

Section 2.1 describes the generation of synthetic microstructure images using Gaussian filter on
a uniformly random field. Sections 2.2, 2.3, and 2.4 applies different SPPARKS simulations to
generate microstructure images for welding with serpentine style, simple style, and grain growth.
Section 2.5 discusses the possibility of applying on real experimental microstructures.

2.1. Synthetic microstructures

In this dataset, we adopt the microstructure generation workflow from Fernandez-Zelaia et al. [1],
as shown in Figure 2-1, to generate synthetic microstructures with a slight modification. Figure

9

2-1

10

20

30

40

50

Random numbers (0,1)

10 20 30 40 50

10

20

30

40

50

Convolution

Binary Microstructure

10 20 30 40 50

Gaussian Filter

Thresholding

Filtered image

Thresholding from Histogram

Figure 2-1 Synthetic microstructure generation. Photo courtesy of Fernandez-Zelaia

et al. DI

describes the workflow for generating synthetic microstructures. First, a uniformly random num-
ber is sampled at each pixel of an image, where dimension is a user-defined variable. Then, a
Gaussian filter with periodic boundary condition, where the covariance matrix is also user-defined,
is applied to filter the microstructure image. Finally, a binary/discrete microstructure is created
by thresholding the "smooth" microstructure, where the threshold generally depends on the target
volume of fraction. Because a grayscal image is more meaningful and contains more information
than a binary image, we stop at the "smooth" microstructure image and does not apply any thresh-
old for segmenting the microstructure. The dimension of the microstructure images is 128 x 128
for experimental purposes.

Figure
Figure

2-2
2-2

(top row) shows the smooth grayscale microstructure image before thresholding, where
(bottom row) shows the binary microstructure after thresholding. It is easy to threshold

the microstructure, i.e. from a smooth microstructure to a binary microstructure, but it is very
challenging to go from a binary to a smooth microstructure.

2.2. SPPARKS/Potts additive small 2d

This dataset is generated by running the SPPARKS example 50,000 times using different seeds
on a 100 sites x 100 sites computational domain. The processing parameters are fixed. The final
output microstructure is then saved as a 512 pixel x 512 pixel .jpg image. Only the gray color
version is retained, since the color version does not provide any additional information. Figure
shows a sample of 9 different microstructures with different seeds.

10

2-3

Figure 2-2 Synthetic random microstructure by uniform sampling and Gaussian filter.
Top row: grayscal images. Bottom row: binary images.

SPPARKS potts/additive test file

seed 56789

app_style potts/additive 1000 30 40 7 8 40 60 12 12 0.1

I nspins = atoi(arg[1])

I nspins = atoi(arg[1]); #Number of spins

I spot_width = atoi(arg[2]); #Width of the melt pool

I melt_tail_length = atoi(arg[3]); #Length of tail from meltpool midpoint

I melt_depth = atoi(arg[4]); #How many lattice sites deep the melt pool is

I cap_height = atoi(arg[5]); #Height of the cap leading the meltpool

I HAZ = atoi(arg[6]); #Size of the HAZ surrounding the melt pool (must be larger than spot_width)
tail_HAZ = atoi(arg[7]); #Length of hot zone behind meltpool (must be larger than melt_tail_length)

depth_HAZ = atof(arg[8]); //Depth of the hot zone underneath the meltpool (must be larger than melt_depth)
I cap_HAZ = atoi(arg[8]); #Size of HAZ infront of the melt pool (must be larger than cap_height)
I exp_factor = atof(arg[9]); #Exponential parameter for mobility decay in haz M(d) = exp(-exp_factor d)

#Define simulation domain and initialize site variables

dimension 3
lattice sc/26n 1.0
region box block 0 100 0 100 0 1
region transverse block 0 100 50 75 0 1
region longitudinal block 50 75 0 100 0 1

boundary n n n

create_box box
create_sites box
set il range 1 1000
set dl value 0.0

#Define an additive scan pattern using a combination of pass, transverse_pass, cartesian_layer, and pattern

am_pass 1 dir X distance 100.0 speed 10
am_transverse_pass 1 distance 100.0 increment 25
am_cartesian_layer 1 start_position 0 0 pass_id 1 transverse_pass_id 1 serpentine 1
#am_cartesian_layer 2 start_position 0 0 pass_id 1 transverse_pass_id 1 serpentine 0
am_pattern 1 num_layers 1 layer_ids 1 z_start 0 z_increment 5

#Setup the solver type and parameters. Must use a .sweep” style solver

sector yes
sweep random mask no
temperature 0.0

#Specify output commands and styles.

diag_style energy

stats 1.0
#dump 1 text 5.0 dump.additive4.* id il dl

1 1

#If SPPARKS was not compiled with libjpeg, comment out the lines below.

dump top image 2 top.small2D.*.jpg site site orange 1 1000 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 2 size 512 512 sdiam 1.05

dump mobility_top image 2 mobility_top.small2D.*.jpg dl il view 0.0 0.0 shape cube size 512 512 sdiam 1.05 box no 1 zoom 2

binary images only

dump top image 2 top.small2D.*.jpg site site orange 1 1 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 2 size 512 512 sdiam 1.05

dump_modify top boundcolor black backcolor black pad 4
dump_modify mobility_top smap 0 1 cf 0.05 5 min blue 0.45 lightblue 0.65 yellow 0.75 orange max red

#dump transverse image 2 transverse.small2D.*.jpg site site crange 1 1000 center s 0.5 0.5 0.5 drange 1 1 view 90.0 -90.0 shape cube box no 1 zoom 1.5 size 512 512
#dump_modify transverse cwrap yes region transverse boundcolor black backcolor black pad 4

#dump longitudinal image 2 longitudinal.small2D.*.jpg site site orange 1 1000 drange 1 1 view 90.0 0.0 shape cube box no 1 zoom 1.5 size 512 512
#dump_modify longitudinal cwrap yes region longitudinal boundcolor black backcolor black pad 4

run 100

2.3. SPPARKS/Potts weld

In the same manner, the SPPARKS/Potts weld dataset is created. An initial computational domain
of 200 sites x 500 sites is considered. A Potts/weld model is then applied with teardrop shape for
the melting pool to create the microstructure. A final time-step is specified based on the velocity
of the melting pool to ensure that the microstructure has been finalized. The final microstructure
is then saved to a 1000 pixels x 400 pixels. To further reduce the size effect, we further crop
the image along the welding axis from 1000 pixels to 600 pixels and take off 200 pixels on the
left or the right of the microstructure image. Figure 2-4 shows a sample of 9 different welding
microstructures using SPPARKS.

seed 123456

app_potts_weld input parameters
POOL PARAMETERS

app_name num_spins yp alpha beta velocity haz
app_style potts/weld 3500000 0 0.75 0.50 12.0 50.0

width length

weld_shape_teardrop width 100.0 case III

Run with 'pulse weld'
0<=pulse_amplitude<=1 2<frequency
pulse 0.25 32

dimension 3

periodic x
not periodic y
not periodic z

boundary p n n
boundary n n n

NOTE: spk2vti writer does not currently support a lattice constant different from '1.0'
lattice sc/26n 1.0
region box block 0 200 0 500 0 1
create_box box
create_sites box

Initialize grains
read_sites site.init

Run without grain initialization from 'potts_init'
COMMENT out this line if using 'read_sites' above
set site range 1 3500000

sweep raster
sector yes

diag_style energy

Simulation temperature
temperature 0.25

12

(a) Sample 1 (b) Sample 2 (c) Sample 3

(d) Sample 4 (e) Sample 5 (f) Sample 6

(g) Sample 7 (h) Sample 8 (i) Sample 9

Figure 2-3 SPPARKS Potts/additive microstructures.

1 3

stats 1.0

Write 'dump' files; see 'dump' documentation

dump 1 text 52.0 steady_weld.dump
dump_modify 1 delay 52.0

diag_style cluster stats no delay 52.0 delt 52.0 filename steady_weld.cluster

Write 'image'; see 'dump' documentation
images written every 2 seconds

dump top image 2 top.*.jpg site site crange 1 3500000 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 2.0 size 1024 1024 sdiam 1.05
dump teardrop image 2 teardrop_*.jpg site site crange 1 1 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 5.0 size 1000 400 view 0.0 0.0 sdiam 1.05
dump_modify top cwrap yes boundcolor black backcolor black pad 4
dump_modify teardrop boundcolor black backcolor black pad 0

dump bottom image 2 bottom.*.jpg site site crange 1 3500000 drange 1 1 view 180.0 0.0 boundary site 1 shape cube box no 1 zoom 2.0 size 1024 1024 sdiam 1.05
dump_modify bottom cwrap yes boundcolor black backcolor black pad 4

run 52.0

##(1############# cropths.py
import numpy as np
import skimage
import skimage.io as io

img = skimage.io.imread('teardrop_26.jpg')

img.shape

crop = img[:, 200:800, :]
io.imsave('cropTeardrop_26.jpg', crop)

(a) Sample 1iptov4„041,.„404040swar,04,410,„,„.„,,,fammie.„4„,....•

(d) Sample 4
11140r4544104vottiarAnik .1.2N01,4,40414-ette.igN
-11it 11"11to 4,01114.4...VispotufeeAV w

jr \

(ippr

(g) Sample 7

(b) Sample 2

(e) Sample 5

lasrilui"115
40440411441.41114441111T"■111. •

11111
Awl11111

willIIMPROMOsiwn111.441166. -6,;(1;440.44.400*...

(h) Sample 8

Volart4V444,44X01410"liV"irlU* 4.."4...
IM64110

,A0.4.510041pOINME&ASOW* ,

W.." v. wilir4rval%11.w

(c) Sample 3

(f) Sample 6....,..4,,,....,,,„,„ „it...„...,„„tw ,..„. ,..,,
woe............ A41:740,401004:4-"...-"k •Nk=4,A.two,OA01.0warft4004,.714W

(i) Sample 9

Figure 2-4 SPPARKS Potts/weld additive manufacturing microstructures.

14

2.4. SPPARKS/Grain growth

The SPPARKS/Potts grain growth simulation is used to generate microstructures. A kT of 0.85
is used on a 128 sites x 128 sites computational domain. The grain growth simulation is per-
formed for 1500 Monte Carlo step and the final microstructure is obtained. Figure 2-5 shows 9
different microstructures obtained from the SPPARKS grain growth simulation. The final size of
microstructure image in this dataset is 256 pixels x 256 pixels.

SPPARKS 'potts' model for modeling 'grain' growth

let N-128, 256

let Q=2048

kT="0.85"

spk_flame.gnu -var kT $kT -var N $N -var Q $Q < grain_growth.in

variable N equal 128

variable Q equal 2048

variable kT equal 0.85

seed 56897

Use 'Potts' app to simulate grain growth;

Site 'spins' can assume values of its nearest neighbors.

app_style potts/neighonly ${41

2d lattice; Each site has 8 neighbors

dimension 2

lattice sq/8n 1.0

Define lattice extent called 'square';

region square block 0 $IN), 0 $(N1 -1.0 1.0

Define 'axis' aligned simulation domain on 'square'

create_box square

Creates sites on lattice defined above;

Also creates neighborhood list for each site

create_sites box

Initializes sites randomly with values between 1 and NI

set site range 1 $141

Simulation temperature; Units of energy

temperature $(kT1

KMC solver

solve_style tree

sectors are required to run 'tree' kmc in parallel

sector yes

Diagnostic style energy computes the total energy for all sites

diag_style energy

Print diagnostic information to screen 50 steps

stats 50.0

Write snapshot of site values

to 'grain_growth.dump' every 50 steps

dump 1 text 50.0 grain_growth.dump

Write 'cluster/grain' diagnostics

diag_style cluster stats no delt 50.0 filename grain_growth.cluster

Write 'image'; see 'dump' documentation

variable zoompactor equal 2.00

variable imageDim equal $INI*$(zoomFactorl # or 20$041*${zoomFactor}

dump grain_growth_image_Color image 1 grain_growth_Color.*.jpg site site grange I Sic)] drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom 1.95 size $(im

dump_modify grain_growth_image_Color boundcolor black backcolor white pad 1

dump grain_growth_image_Bnw image 1 grain_growth_Bnw.*.jpg site site crange 1 1 drange 1 1 view 0.0 0.0 boundary site 1 shape cube box no 1 zoom ${zoomFactor} size ${

dump_modify grain_growth_image_Bnw boundcolor black backcolor white pad 0

Run for 1400 *spparkso steps

run 1500.0

15

(a) Sample 1 (b) Sample 2 (c) Sample 3

(d) Sample 4 (e) Sample 5

(g) Sample 7 (h) Sample 8

(f) Sample 6

(i) Sample 9

Figure 2-5 SPPARKS Potts/grain growth microstructures.

16

2.5. UltraHigh Carbon Steel DataBase (UHCSDB) with image-inpainting

The dataset is created using the novel image inpainting method proposed by Tran and Tran [6] re-
cently applying on the high-fidelity microstructure UHCSDB dataset. Figure 2-6 shows 12 variants
of the same original microstructure (micrograph #13). Potentially, the image inpainting technique
can help mitigate the demand of Big Data to train DL architectures for microstructure.

(a) Recon. ms. 1

(e) Recon. ms. 5

(i) Recon. ms. 9

(b) Recon. ms. 2

(f) Recon. ms. 6

(j) Recon. ms. 10

(c) Recon. ms. 3

(g) Recon. ms. 7

(k) Recon. ms. 11

Figure 2-6 lnpainting UHCSDB microstructures.

2.6. Localization datasets

(d) Recon. ms. 4

(h) Recon. ms. 8

(I) Recon. ms. 12

Based on our established collaboration with Prof. Surya Kalidindi and Dr. Yuksel Yabansu, we
obtain the localization dataset for two-phase composite materials which has been used to vali-
date the Materials Knowledge System (MKS) framework. Other datasets are available on MATIN
platform [7] at Georgia Tech. The dataset focused in this study was initially proposed in [8] in
developing and validating the MKS framework, and subsequently expanded over years [9].

3. LITERATURE REVIEWS

Iyer et al. [111] and Chun et al. [n] utilized GAN to generate and reconstruct microstructure. Fok-
ina et al. [E12] employed StyleGAN to generate and reconstruct microstructure. From the creation of

17

GAN by Goodfellow et al. [131], further improvements have been made, chronologically as Radford
et al. [C1A], Liu et al. [13], Karras et al. [Hi], and Karras et al [T71]. For example, Bostanabad [113]
adopted VGG19 [E19] to reconstruct 3D microstructure from 2D images using transfer learning.
Iyer et at. [E111] employed an auxiliary classifier Wasserstein GAN with gradient penalty to generate
microstructure from UHCSDB, which is the same dataset considered in this work. Singh et al. [2:0]
used Wasserstein GAN to generate and reconstruct microstructure with binary phases. DeCost et
al. [21] applied VGG16 and t-SNE [2, 23] to visualize microstructure on their latent manifold
space. DeCost et al. [24] applied a pre-trained VGG16 [L19] for deep semantic segmentation in
the same UHCSDB dataset. Ling et al. [23] also used VGG16 to extract features for SEM images
between different datasets in the hope of generalization and interpretation. Li et al. [26] employed
an auto-encoder (AE) approach to generate microstructures. Chun et al. [11] employed GAN to
generate microstructures and showed that GAN is able to generate better quality images compared
to AE, which is a well-known problem in computer vision. Mosser et al. [2,7] proposed a GAN to
generate microstructure. Cang et al. [M, 29] employed deep belief network in reconstructing bi-
nary microstructure. Bostanabad et al. [M] proposed a tree-based ML technique for 2D stochastic
microstructure reconstruction based on classification trees.

Zichenko [31] proposed an isotropic algorithm for random close packing of equi-sized spheres with
periodic boundary conditions. Groeber et al. [K, Eg] proposed an automatic statistical frame-
work to characterize [EB] and to create statistically equivalent synthetic microstructures [34]. Full-
wood et al. [3-51, 36] proposed a phase-recovery algorithm based on two-point correlation statistics
to reconstruct the microstructure. Latief et al. [31] suggested a stochastic geometrical modeling
approach to generate a p-CT images of Fontainebleau sandstone. Staraselski et al. [13] demon-
strated the application of two-point correlation function in constructing 3D representative volume
element. Feng et al. [D] proposed a stochastic microstructure reconstruction for two-phase com-
posite materials based on nonlinear transformation of Gaussian random fields that matches the
marginal probability distribution function and the two-point correlation function. Chen et al. [1[1]
employed simulated annealing method to reconstruct 3D multiphase microstructure and demon-
strated with 2D and 3D reconstruction with three-phase sandstone. Xu et al. [HI, 42] proposed a
descriptor-based methodology using multiple microstructure descriptors as evaluation criteria to
reconstruct 3D microstructure. Chen et al. FM proposed a multiscale computational scheme to
stochastically reconstruct the 3D heterogeneous polycrystalline microstructure from a single 2D
electron back-scattered diffraction (EBSD) micrograph. Tran et al. [6] proposed a non-local patch-
based image inpainting to reconstruct microstructures at the experimental level. Li et al. [!!!, 45]
conducted a comparison study on the effects of multiple objectives in the microstructure recon-
struction problem.

4. SOLVING LOCALIZATION PROBLEM VIA DEEP LEARNING

TECHNIQUES

In this section, we utilize the supervised DL technique to learn the map from (micro)structure to
the (localized) property, which is the material response, i.e. strain, under the imposed loading
boundary condition. Before getting to the details, we note that brute-force application for directly

18

solving localization without subsampling does not work, because it could result in a computation-
ally intractable DNN to learn. We follow the approach in Yang et al. [MI] due to this reason.

Elastic prediction using MKS [47, !E:1] and its extension for plastic extension has been proposed
by Yabansu et al. [O, !M] de Oca Zapiain et al [49], respectively. The main idea is to construct a
reduced-order model based on two-point statistics and to carefully calibrate the coefficients. The
MKS is then used to predict the local materials response, such as strain field. Liu et al. [511, 51]
developed a physics-based microstructure descriptors approach to parameterize microstructures as
inputs and constructed the map using regression trees and support vector regressors. Recently,
DL techniques have been proposed to solve the localization problem [46] and the homogenization
problem [52, 53] subsequently. Generally speaking, the homogenization problem is much easier
to solve because the quantity of interest (QoI) is single-output, as opposed to multi-output in the
localization problem.

In this section, we implement and examine a variety of DL architectures in PyTorch that are capable
of solving localization problems using the same datasets. 6840 microstructures are used as the
training dataset, 1710 microstructures are used as the testing dataset, which constitute a dataset of
8550 microstructure with 80/20 split.

% linkTesting.sh
#!/bin/

M_gaussian 7 7 7 vf 25 75 set2.Idx0.npy # _set2_ range from .IdxO. to .Idx99.

M_gaussian 7 7 7 vf 25 75.Idx0.npy # no annotation (setl) range from .IdxO. to .Idx49.
train: 80%
test: 20%
_filterName=n_SplineFilterOrder2”
loop over (40,49) out of (0,49) for _set2_
for i in $(seq 40 49); do

for ii in 1 3 5 7; do
for jj in 1 3 5 7; do

for kk in 1 3 5 7; do
ln -sf ../microstructures/M_gaussian_8{ii}_$(jj)_8(kk]_vf_25_75.Idx$Iil.npY
ln -sf ../responses/Strain.Resp_M_gaussian_8(ii)_8(jj)_8{kk}_vf_25_70.Idx$(i).0PY
ln -sf ../responses/Stress.Resp_M_gaussian_8(ii)_$(jj)_8(kk}_vf_25_75.Idx$M.nPY
ln -sf ../_SplineFilterOrder2_Microstructures/_SplineFilterOrder2_M_gaussian_$fii)_${jj)_8(kk}_vf_2

done
done

done
done

remove broken links

find -L . -name . -o -type d -prune -o -type 1 -exec rm i) +

8_75.Idx$ii)..PY

% linkTraining.sh

#!/bin/
M_gaussian 7 7 7 vf 25 75 set2.Idx0.npy # _set2_ range from .Idx0. to .Idx99.
M_gaussian 7 7 7 vf 25 75.Idx0.npy # no annotation (_setl_) range from .IdxO. to .Idx49.
train: 80%
test: 20%
_filterName="_SplineFilterOrder2.
loop over (0,39) out of (0,49) for _set2_
for i in $(seq 0 39); do

for ii in 1 3 5 7; do
for jj in 1 3 5 7; do

for kk in 1 3 5 7; do
ln -sf ../microstructufes/M_gaussian_$iiil_8{33}_$(kk)_vf_25_75.Idx$fil.0PY
ln -sf ../responses/Strain.Resp_M_gaussian $(ii}_Sfjj)_8(kkl vf_25_75.Idx$1if.npy
ln -sf ../responses/Stress.Resp_M_gaussian_8{ii}_$[jj)_8{kk}_vf_25_75.Idx$M.npy

11 -sf ../rescaled_responses/RescaledStrain.Resp_M_gaussian_8(iil_8(jj)_8{kk}_vf_25_75.Idx$(i).npy
ln -sf ../rescaled_responses/RescaledStress.Resp_M_gaussian_8(iil_8(jj)_${kk}_vf_25_75.Idx$fi).npy

In -sf ../_SplineFilterOrder2_Microstructures/_SplineFilterOrder2_M_gaussian_8{ii}_$(jjl_81kk)_vf_25_75.Idx$M.npy
done

done
done

done
loop over (0,79) out of (0,99) for _set2_
for i in $(seq 0 79); do

for ii in 1 3 5 7; do
for jj in 1 3 5 7; do

for kk in 1 3 5 7; do
ln -sf ../microstructures/M_gaussian_$iiil_${33}_$fkkl_vf_25_75_set2.Idx$iil.nPY
ln -sf ../responses/Strain.Resp_M_gaussian_${ii}_8[331_8ikkl_vf_25_75_set2.Idx${il.0PY
ln -sf ../responses/Stress.Resp_M_gaussian_8{ii}_$[331_8(kkl_vf_25_75_set2.Idx$(1-1.8PY

ln -sf ../rescaled responses/RescaledStrain.Resp_M_gaussian_8(ii)_8(jj)_8{kk} vf 25 75_set2.Idx$fil

19

npy

ln -sf ../rescaled_responses/RescaledStress.Resp_M_gaussian_$fiiI_Sijj)_${kk}_vf_25_75_set2.Idx8fil
ln -sf ../_SplineFilterOrder2_Microstructures/_SplineFilterOrder2_M_gaussian_8(iil_$(jj)_$(kk)_vf_25_75_set2.Idx$1i)..PY

done
done

done
done
remove broken links
find -L . -name . -o -type d -prune -o -type 1 -exec rm () +

4.1. Microstructure filter

The role of the microstructure filter is to convert the representation of the microstructure from
discrete representation (which is binary in this case) to continuous representation. It is common
for engineers and materials scientists to encode the type of materials under discrete representa-
tion, e.g. hard phase as 0 and soft phase as 1. The microstructure filter effectively converts the

approximation problem of DL from f : 2d3 Rd3 , f (m) = r to f : Rd3 —> Rd', f (m) = r, where
m is the microstructure and r is the microstructure response. The first problem is NP-hard, as it is
analogous to combinatorial optimization problem, whereas the second problem is P-hard.

4.2. Normalization

% /ascldap/users/anhtran/scratch/dataset/matin/mveLocalifation/high_contrast_elastic/subsamples/_SplineFilterOrder2/train
import numpy as np
fileList = np.loadtxt('msFileList.txt', dtype=str)
n = len(fileList)
meanArr =
stdArr =

prefix = " # ", 'Stress.Resp_', 'Strain.Resp_'

for i in range(n):
ms = np.load(prefix + fileList[i])
meanArr += [ms.mean()]
stdArr += [ms.std()]
print('done %d' % i)

print(np.mean(np.array(stdArr))) # based on the law of large number
print(np.mean(np.array(meanArr))) # based on the law of large number

After filtering the microstructures, we estimate the mean and standard deviation of QoIs as fol-
lows.

• Ms: µ = 0.5506806080114989; a = 0.4831280930966276.

• Stress: µ = 0.038860694801369854;6 = 0.03840891767246447.

• Strain: p = 0.0009999999999876312; a = 0.0008990865991095956.

• BlurredMs: p = 0.814312086506682;6 = 0.5549198340004976.

Then, the inputs SVE and outputs SVE responses are normalized with their corresponding means
and standard deviations, respectively.
% rescaleStrainFile.py
import numpy as np
fileList = np.loadtxt('strainFileList.txt', dtype=str)
n = len(fileList)
for i in range(n):

strain = np.load(fileList[i])
rescaledStrain = (strain - 0.0009999999999876312) / 0.0008990865991095956
fileName = 'Rescaled' + fileList[i]
np.save(fileName, rescaledStrain, allow_pickle=True, fix_imports=True)
print('done %d' % i)

20

npy

The script to visualize microstructures and responses (E, a) in 3D is documented as below.
import numpy as np

import matplotlib.pyplot as plt

import os, glob

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

from mpl_toolkits.axes_gridl.colorbar import colorbar

currentPath = os.getcwd()

fileList = glob.glob(currentPath + '/microstructures/*npy')

i = np.random.randint(low-0, high-len(fileList))

for i in range(len(fileList)):

fileName = filetist[i]
fileName = fileName.split('/')[-1].replace('.npy', ")

fileName = 'M_gaussian 5 7 7 vf 25 75 set2.Idx10'

data = np.load('microstructures/' + fileName + '.npy')

data2 = np.load('responses/Stress.Resp_' + fileName + '.npy')

plot

plt.close('all')

fig = plt.figure()

axl = fig.gca(projection-'3d')

axl = fig.add_subplot(1,2,1, projection-'3d')

cmap = plt.get_cmap("gray")

norm = plt.Normalize(data.min(), 2 * data.max())

axl.voxels(np.ones_like(data), facecolors=cmap(norm(data)))
axl.set_title('microstructures')

axl.set_aspect('equal')

fig2 = plt.figure()

ax2 = fig2.gca(projection-'3d')

ax2 = fig.add_subplot(1,2,2, projection-'3d')

cmap = plt.get_cmap("jet")

norm = plt.Normalize(data2.min1), 0.25 * data2.max())

ax2.voxels(np.ones_like(data2), facecolors=cmap(norm(data2)))

ax2.set_aspect('equal')

ax2.set_title('Stress')

fig2.colorbar(ax2)

plt.savefig('visualization.%s.png' % fileName, quality=95)

plt.clf()

print('done %d' % i)

plt.shom()

4.3. CPNet architecture

Total number of params: 902,183

Total number of trainable params: 902,183

Layer (type) Output Shape Param #

Conv3d-1 [-1, 8, 11, 11, 11] 224

BatchNorm3d-2

ReLU-3

[-1, 8,

[-1, 8,

11,

11,

11,

11,

11]

11]

16

0

MaxPool3d-4 [-1, 8, 11, 11, 11] 0

Conv3d-5 [-1, 16, 6, 6, 6] 3,472

BatchNorm3d-6

ReLU-7

[-1,

[-1,

16,

16,

6, 6,

6, 6,

6]

6]

32

0

MaxPool3d-8 [-1, 16, 6, 6, 6] 0

Conv3d-9 [-1, 32, 6, 6, 6] 13,856

BatchNorm3d-10

ReLU-11

[-1,

[-1,

32,

32,

6, 6,

6, 6,

6]

6]

64

21

MaxPool3d-12

Conv3d-13

[-1,

[-1,

32,

64,

5,

3,

5, 5]

3, 3]

0

55,360

BatchNorm3d-14

ReLU-15

[-1,

[-1,

64,

64,

3,

3,

3, 3]

3, 3]

128

0

MaxPool3d-16

Linear-17

[-1, 64, 3,

[-1,

3, 3]

343]

0

593,047

ReLU-18

Linear-19

[-1,

[-1,

343]

343]

0

117,992

ReLU-20

Linear-21

[-1,

[-1,

343]

343]

0

117,992

Total number of params: 902,183

Total number of trainable params: 902,183

Non-trainable params: 0

4.4. Prediction benchmark

One of the computational trade-offs in CPNet is the number of hyper-parameters included in CPNet
versus the speed for forward prediction. In the forward prediction mode, a smaller scale materials
response of SVE strideGap x strideGap x strideGap is made as an output of the CPNet. This proce-
dure sweeps for the entire the SVE. Larger strideGap is associated with a dense fully convoluted
layer after feature extraction, thus significantly increasing the number of hyper-parameters of CP-
Net. Smaller strideGap reduces the number of hyper-parameters, but increases the computational
cost of the forward prediction, as demonstrated in Figure

103

17;

()E

To
o

to

Euo
102

4-1

6
strideGap

Figure 4-1 CPNet scalability wrt strideGap in forward prediction for 1 SVE.

22

Beside strideGap, batchSize also has a big impact on the training performance. In particular, one
expects:

• 1 epoch for batchSize = 16,

• 3-4 epochs for batchSize = 32,

• 7-8 epochs for batchSize = 64.

Figure 4-2and Figure 4-3 present the prediction with strideGap of 7 and 5, respectively.

Figure 4-2 CPNet - strideGap = 7 for testing.

Figure 4-3 CPNet - strideGap = 5 for testing.

Figures 4-4 to 4-7 show the performance of CPNet with various microstructures. The left column
shows the microstructures, which are the input of CPNet. The middle column shows the prediction
of localized strain. The right column shows the true localized strain by FEM.

4.5. Quantitative comparison

For a SVE of size 51 x 51 x 51, which has 132,651 data points to compare and compute the
R2 coefficients. However, for a testing dataset of 1720 SVEs, which totals up to 0.22 • 109 data

23

• e#

Figure 4-4 M_gaussian_3_7_5_vf_25_75_set2.1dx99

Figure 4-5 M_gaussian_5_5_3_vf_25_75_set2.1dx99

Figure 4-6 M_gaussian_7_7_7_vf_25_75_set2.1dx99

24

Figure 4-7 M_gaussian_7_5_3_vf_25_75_set2.1dx99

Figure 4-8 M_gaussian_5_1_3_vf_25_75.1dx42

Figure 4-9 M_gaussian_5_3_3_vf_25_75_set2.1dx99

25

Figure 4-10 M_gaussian_1_3_5_vf_25_75_set2.1dx94

Figure 4-11 M_gaussian_3_3_5_vf_25_75_1dx42

Figure 4-12 M_gaussian_5_1_7_vf_25_75_set2.1dx85.npy.png

26

points, there is a computational issue if all the data points are included. Thus, we have to resort
to some approximation technique for assessing the R2 coefficients. For the sake of simplicity, we
approximate this coefficient by Monte Carlo methods, where the number of SVEs considered is
much less than the number of SVEs included in the testing dataset.

Given n points to compare between the prediction and ground-truth, the R2 coefficient is the square
of Pearson's correlation coefficient, which is computed by

r1=1 (xi - (yi -
xy

- (1)
VE7=1 (xi x)2 A7=1 (yi ý)2

where n is the sample size, xi and yi are the prediction and ground-truth values, respectively, X and
ý denote sample means. It can be proved mathematically that the R2 coefficient does not change
under affine transformation. Therefore, we will compute this R2 coefficient without scaling the
prediction and ground-truth values altered during the pre-process of DL. In this implementation,
CPNet achieves about 0.65 < R2 < 0.70. One possible explanation is that the dataset is insufficient
to train a large CNN.

5. AUTOENCODER FOR SYNTHETIC 2D SMOOTH

MICROSTRUCTURES

The verbal description of hyper-parameters and architecture is described as follows via torchsum-
mary,

Total number of params: 8801
Total number of trainable params: 8801

Layer (type) Output Shape Param #

Conv2d-1 [-1, 16, 43, 43] 160
ReLU-2 [-1, 16, 43, 43] 0

MaxPool2d-3 [-1, 16, 21, 21] 0
Conv2d-4 [-1, 8, 11, 11] 1,160
ReLU-5 [-1, 8, 11, 11] 0

MaxPool2d-6 [-1, 8, 10, 10] 0
ConvTranspose2d-7 [-1, 16, 21, 21] 1,168

ReLU-8 [-1, 16, 21, 21] 0
ConvTranspose2d-9 [-1, 8, 65, 65] 6,280

ReLU-10 [-1, 8, 65, 65] 0
ConvTranspose2d-11 [-1, 1, 128, 128] 33

Tanh-12 [-1, 1, 128, 128] 0

Total params: 8,801
Trainable params: 8,801
Non-trainable params: 0

27

where the detailed architecture is shown in Figure 5-1 Figure 5-1 shows the architecture of the AE
used. Figure 5-3 presents 64 different samples of microstructures using the decoder of the AE. It
is shown that the AE is capable of producing synthetic 2D microstructures to a fair level of details.
However, it is also noted that the quality of images are not as good as the original ones.

Me,

Figure 5-1 AE DL architecture for synthetic 2D microstructures.

Figure 5-2 shows the evolution of DL microstructure reconstruction. As of epoch 160, it has
captured some patterns in the microstructure, but the DL reconstruction do not match very well
with the 2D smooth microstructures.

(a) Epoch 1

(d) Epoch 60

(g) Epoch 120

(b) Epoch 20

(e) Epoch 80

(h) Epoch 140

(c) Epoch 40

(f) Epoch 100

(i) Epoch 160

Figure 5-2 8 reconstructions of 2D synthetic smooth microstructures from AE at dif-

ferent epochs.

6. AUTOENCODER FOR SYNTHETIC 2D BINARY

MICROSTRUCTURES

The following table describes the DL architecture for AE developed for 2D binary microstructures,
which has 15,833 hyper-parameters. Conv2d and ConvTranspose2d layers are used extensively to
build the AE.

Total number of params: 15833
Total number of trainable params: 15833

Layer (type) Output Shape Param #

Conv2d-1 [-1, 16, 43, 43] 160
BatchNorm2d-2 [-1, 16, 43, 43] 32

28

(a) Epoch 1
-:.•

--
-...-

':"..--..,..-;"" .1_,, - -:-.

-...

C.;.

. '...-
- -

(

- ` ---- -r--
...."-= •

--i--:= — -'

-_ .
4 .1..,
....T.:---:::

"-..i... „.•.• _ -..!:_lrly% ,.. • 1.-4_.

i--',7 .,:- ''...:-

(d) Epoch 60

(g) Epoch 120

_754:C":

(b) Epoch 20

4 -

.

- .— - _

..---
. •
a.-

a,-

.c
_

•,- ..,._--

I-0
--,

-

.0-

..s

..t.:$
-,',..-..

—
...

.-•,e-
.

1,-.... e
•-•

...

-.. ,

.... -.._ ... -....:r t

- -.....

.31 1,

r --,__

7.,-:" "
4.

if .

i .

-- . -";
— Int.

(e) Epoch 80

(h) Epoch 140

"r.

-s-...

.1`.--

-.

(c) Epoch 40

..• i,';-
..... -.:

4t.-.,
..t. :-.-

a

_ ,

10:40

•,.
--

._
-

.

.

:14:-

(f) Epoch 100

.--.5,,-,.......•::-;
'.-:---i.';',..

,.r.4....."...
'... ..

4 '''S:4;
.' '

-,
--

., . ..-r... a "-
-,..

• ..:,

;...1,,
...T--•

i..•,-,.., ,2:- =
''i.12•-•
...-

2.... •

.
,.."."--

10...,
, .t, ,

,..11, •,•53.•;

•

;-".
. s.,-,... 4

I
.8.

-' -7 '-i.."
. -...-x... .

• -...,
"i...--t: •

'----_, -
"S-- ,

_
r.e "

-.0c
t.

r -

. .:.r _

(i) Epoch 160

Figure 5-3 64 samples of 2D synthetic smooth microstructures from AE at different

epochs.

29

ReLU-3 [-1, 16, 43, 43] 0

Maxpool2d-4 [-1, 16, 21, 21] 0

Conv2d-5 [-1, 32, 11, 11] 4,640

BatchNorm2d-6 [-1, 32, 11, 11] 64

ReLU-7 [-1, 32, 11, 11] 0

Maxpool2d-8 [-1, 32, 10, 10] 0

ConvTranspose2d-9 [-1, 16, 21, 21] 4,624

ReLU-10 [-1, 16, 21, 21] 0

ConvTranspose2d-11 [-1, 8, 65, 65] 6,280

ReLU-12 [-1, 8, 65, 65] 0

ConvTranspose2d-13 [-1 , 1, 128, 128] 33

Tanh-14 [-1 , 1, 128, 128] 0

Total params: 15,833

Trainable params: 15,833

Non-trainable params: 0

Figure 6-1 show 8 different binary microstructures using the aforementioned AE, which also
demonstrates that the AE has fully captured the information associated with the binary microstruc-
tures. The top rows (resulted from SPPARKS simulations) and the bottom rows (from AE) are
nearly identical, showing a good match between physics-based and DL reconstruction.

_ I A
(a) Epoch 1

(d) Epoch 120

(g) Epoch 240

(b) Epoch 40

(e) Epoch 160

(h) Epoch 260

(c) Epoch 80

(f) Epoch 200

(i) Epoch 320

Figure 6-1 8 reconstructions of 2D synthetic binary microstructures from AE at differ-

ent epochs.

7. AUTOENCODER FOR KMC/GG MICROSTRUCTURES

Typically, AE is composed of an encoder and a decoder. Both of which are CNN. On one hand,
the encoder is tasked with "compressing" information from a high-dimensional space to a low-
dimensional space which is usually referred to as the latent space, mainly through convolution
layers, activation layers, and pooling layers. More advanced layers are also used to enhance its

30

(a) Epoch 1
.. ""

."
le,

.....,
Ad,

..

.16- ..,

-

-."-:.f.,.•..,
- '

. '

?
-r• ..r.,..•

lr"(''
•

•,--1"A
...

e
....

- -4
6,

a

....,
r.,...a,

• X -.

,

'4,11'• r.x;:
..,- --,

. ,

•4'..,
4,4.-

....

a
- c
 .
, -

-V

v-r-
' T.....

'..."'...t
. ,.t.."'

...

3-..• I• .e...AI.

3r:1;.

„, -..
.;,.-.,
1, .---, .,,, ..,,.

.
•

u. il•

,
X.'s-,

*.•e•4

...'0.

..,...-..,'

..z

-._;'-

.... -4

.r“
...

.

:••,
A.

• •

-- '
. . .i.

el -es
, ,

' '
"S.', •,....

—"Z
,4,rt

ii. ...--.,

(d) Epoch 120

E. • .X .

a -:7- IS

Ig

%,--r:-

-NS

„,...,
E.P91't .

a•;;;Cs••• g.
Y.-, -...:.

'' •

_ . - . SSE
la

- .-

'-' A. .::.

Sr,'
...

-••••
-

4'
,.....
...,.

-..
:,..,., , ii
':', • '

, t- '4..2.
!A. 9$.,:s• •

i'."
'4!..r,

^
.

k" 4"-•Jo •• i1.
•

....

_
.......

,... .4-i•;:,.,

EN ,

(g) Epoch 240

(b) Epoch 40

-

-.117.'4.'1,, .
-

-4.

1,...--...,
.., .. •'.-1.
 *.fe •!.

SI.,...X

-.45.

.

 . !

....

..,'.
;11.-

1

'. II.
N.-, •

k

'''

-
,-.$

.

'

.,-..
4 -

.1. 7.5

•--4
rt..tt --,.. *kr-.

:S A
r=d4

Ir.. •
....-:"1-7

.7`..Zt•,--.- •?..
'...1•-•`:". ,-

.31..-mi, rs 1̀.....,17:•,,;;;:-
.....z.,.;,,...-.F..., .,,„
....„.___,...,..,.., ...,-„--R... ,.,, 3.

--_,.,
„.. ,_ - ...,:„.._

I. 13

%.:....,,
•

. ,,,
•••••

. ._„ _
,

4
....--v :•

4:..,
.. .•'•' •

(e) Epoch 160

-: --i
...:

,r, ..• .--, ni`
,-. sf4:,...-e-- :tsteg

-..;t t-r . , t ̂,,

:J.> • 41,do, .. -...-:.,st•; , %,....- •
•

4. i.:
...,

s:..t.,".

.,'”---q4l7,..,i.
4..,''',4......

's .." 1. '
• ,,,-1,.- .
-

A . ,

.:%."'

 '

..": '' "--
-,,'. C`.:

•

,

..' i I , ,s4.7..i.

71^:f"-e
' '''`'.

: -'4.r,.... -4, ...
..&' Zit'''

:.• •-":'•
74.

. -"-
..- . :

,... I,

'''
...."A

';;.,t.t.

 .. 1.- •.

,...4......

....• ',. -.,•:!Gr...
' 1+2.'.":4

%

, - ...,
' ' --..:

•

' .
..-

. :•=•

,..x:5-14-

•i'' 7.in 'Sr'
...

S
•

3c,..

...` •
.. vs
V

•7.'e.c.... i
!.'''''....._
A

..."' : kre .,-.3••••Z i
I ..C.,
 •

r-'4.

;.N-Ne......,
" v - -z7:ra ^ t.m-,.

-•,.
-e:' tt '

4
,-, P;',';:.;

 S',-..:
rt..

so: 1- . . .
,r4. OP -.; ,t.....,
, ...e --t-, • ..V

i., "....1 1. -1

•i•;•••,.,•
c...7.-.

0'1-4:-- ---̀
V7:g...p.A,::'i'.-

.,-
r-

Ir''
 . ,c,,r...1.srs

- -1Z;r;1.-3 :-
_ .,c-,711

.. ,..-...
"-.- ----

-g,:ii, 1S'''''
. %-75t ;a -.

_..4•I'
I.--;
..?.

/̀'4''

'-''' 1

(h) Epoch 260

(c) Epoch 80

(f) Epoch 200
ar ..7 -.4,- -'1.. iti

' 1., .„ ...„1 4-„..: _,....,
--- ,-...... T .'--.....„,_
maISMON. -.,,)
,.....-_,„

,.,,..:
...

.,..•. ,
... N .;,---,,,,, ...t__ ..._--,,,...,- -

 ,....,,,.......
,..,.

,...'
- •

...- ._
.7;;;',
... ,

_ .4..,.--_____,
''''' -'.2' • . :F•"; .1 •
,....-...* ,,:,•••• 1.k... ..

..,..'
1-

.......
.1•,.

•
'5,-4..
c

,,,,,.
'.:f ' ._'''''‘'' • ,.

•-...;,‘ 5- 4...vs,: ,..: . Lt., ..a,'...
. - a..‘ t4-•r .- , ,• ----., -

' ..',„>t.4,:

it:, __,_ ,

1,,4-7.t,,-
:e- -....-1-•-• .z.„. ,:-.1;:i.. t
„,„. ..,

, v t,

,..-".., 1,--.._. t- .1,

,

•

,...•--

• -...
,
"

'

.-

(i) Epoch 320

Figure 6-2 64 samples of 2D synthetic binary microstructures from AE at different

epochs.

31

performance. The decoder, on another hand, is used to "decompress" information from the latent
space back to the normal state.

By itself, the trained decoder is a generative deep learning model, in the sense that one can sample
from the latent space and generate objects. The objects in this case is the microstructures obtained
from SPPARKS. That being said, this approach allows one to generate and reconstruct microstruc-
tures if the dataset is sufficient. Fortunately, SPPARKS is well-known to be fairly computationally
cheap, thanks to careful parallel implementation on high-performance computing platforms. With
the computational power at Sandia, one can reliably generate a substantial dataset within a reason-
able time frame.

The architecture of the AE is described in Figure 7-1 We employed a straightforward implemen-
tation of AE, where Conv2d and Unconv2d layers are employed extensively.

Figure 7-1 AE DL architecture for kMC/GG microstructure.

The hyper-parameters are described using torchsummary

Total number of params: 8793

Total number of trainable params: 8793

Layer (type) Output Shape Param #

Conv2d-1 [-1, 16, 43, 43] 160

ReLU-2 [-1, 16, 43, 43] 0

MaxPool2d-3 [-1, 16, 21, 21] 0

Conv2d-4

ReLU-5

[-1, 8, 11, 11]

[-1, 8, 11, 11]

1,160

0

MaxPool2d-6 [-1, 8, 10, 10] 0

Conv2d-7 [-1, 4, 5, 5] 292

ReLU-8 [-1, 4, 5, 5] 0

MaxPool2d-9 [-1, 4, 4, 4] 0

ConvTranspose2d-10 [-1, 16, 9, 9] 592

ReLU-11 [-1, 16, 9, 9] 0

ConvTranspose2d-12

ReLU-13

[-1, 8, 29, 29]

[-1, 8, 29, 29]

6,280

0
ConvTranspose2d-14 [-1, 4, 57, 57] 292

ReLU-15 [-1, 4, 57, 57] 0

ConvTranspose2d-16 [-1, 1, 112, 112] 17

Tanh-17 [-1, 1, 112, 112] 0

Total params: 8,793

Trainable params: 8,793

Non-trainable params: 0

32

Figures 7-2 and 7-3 describe the reconstruction of microstructure images and samples at different
epochs, respectively. It is clear that the latent variables indeed do exist to describe the microstruc-
ture.

*11011610•144, L•tt.)10141,ilkite141441$10114.01.11eittil ilotpr• apb % vo• 0 IP

(a) Epoch 1
.

44.4
Atir4.,•,

ilk...
Pr.irk%•401....

Alp

11111**•••'441404P.
, tatokk.

lortir.**
soilkr.*
• s

IP, _ ..\-----,-<-,\ , , - __,,\,,,
.i.-

,'--,{..- .

(c) Epoch 40

46all ...460-411141

ette,
410)1010119\te

algb11

1.4r#
1141

 ,&

i f.4,,„*.•
-,-.41.

.1° re6 igh
ak

 4 4 9 1 1woAiK ,
ril I-16.ow..--,.., is; \), •

,, 1

,
T

,-;
"", ((40 ,,,-,,,' \ 0

-\'`

/,,A
(e) Epoch 80

04,
%Ow!its
1 lie

4.4.
. Aalp

Nt4

tik
Akaboase9Wwir.4Po •
.4110.

0,.
4040k.
• vr

",40
* 4*

IP 1111W
4 1
1001 4,

4•04„0.
welk0.0,pip to.*

1,-

-'). .

?„/

, "

'V/

- t
..

z" •

"'•-•
" N.

(,_ '"--

l'

;:cl,

9 .
). -?'"-?-c-

..-\

„cl. --- '
l)'

',

1.

(g) Epoch 120
sAgiii__Alkfia

OPWO

1.44,4,40diuffivit
, * -.-

1.4001
ilk
*

a if 1 kali* dik es,"VVIOtlitta. • 11111100%

,w
<,(---- -,.„_, ‹, 1 ..,1('_ - ..›-''-'

rAl

a -,, /

(i) Epoch 160

ihr4S
iinh 40‘../

117

It

•

.

%bit

AL
klilliM.
IPVIOr•"1W.S6.40411401011

6,....• Aft
4111),,,milleg,

' '

4N"

isitooniett__
lit

0

Ah&-.....
-7 . --C

-•

r __()
' \ I:kr, „_/'
..;:‘_;--,..;

--I-J.

-c7

/

)-. ,!

._,/ 'y--.-4'
- ' ,--,

(b) Epoch 20

PAPINFIA0111
111r"lif10
&

•

0

Ala& ...v

WP‘ Inliter

4.11,
4004110olp ,...

4,

A.

P.

INAtrite
• ViAtigrah.

1104.4111

—WPFIr lb - ir

(d) Epoch 60

irlreibyty
101•"*.•••• Ai 00

tr .41.
, 4Ik.

IF"
vi4P4kers
• -

Vitt
leit

,.
t,•'\,,,c., V

 /'
6,,, r \ — ,_.r , j',), ,

-
„4---,; . ,

• 7,

.;
7-1,)s-,

,--
(f) Epoch 100

SAAL AL.
*.a.rit 'P*46 •AMbe

tafillerMWS04
414141".44.4404011*

41.4‘.
• r

4 $/$

(h) Epoch 140

4004ePO•WAtibreli
tore*4 io,

...go

il AIit

dip

tpwra

.

11;0-4
s' 17#1144011Ptip

ti
4

SPIV41 llf...
•Pdr

,,{- --,,,). 1) ., .-,..

Hy -7-1-' -'' '

' > 7 T) ,---)--,, --,
(j) Epoch 180

Figure 7-2 8 reconstructions of kMC/GG from AE at different epochs.

Figure 7-3 shows 64 DL synthetic microstructures, sampled from the latent space, from the learned
decoder of the AE. Some reasonable microstructures are observed, but it does not reflect the phys-
ical intuition that the grain boundary should be connected together. This challenging question
remains unsolved for further future work.

8. AUTOENCODER FOR KMC/ADDITIVE DATASET

The DL architecture for AE, which is composed of 14,847 hyper-parameters, is shown in the
following table. Again, Conv2d and ConvTranspose2d layers are extensively used.

33

(a) Epoch 1

(d) Epoch 60

(g) Epoch 120

(b) Epoch 20

(e) Epoch 80

(h) Epoch 140

(c) Epoch 40

(f) Epoch 100

Figure 7-3 64 samples of kMC/GG from AE at different epochs.

34

(i) Epoch 160

Layer (type)

Conv2d-1

ReLU-2

MaxPool2d-3

Conv2d-4

ReLU-5

MaxPool2d-6

Output Shape

[-1, 4, 43, 43]

[-1, 4, 43, 43]

[-1, 4, 21, 21]

[-1, 8, 11, 11]

[-1, 8, 11, 11]

[-1, 8, 10, 10]

Param #

40

0

0

296

0

0

Conv2d-7

ReLU-8

[-1,

[-1,

16, 5, 5]

16, 5, 5]

1,168

0

MaxPool2d-9 [-1, 16, 4, 4] 0

Cony2d-10

ReLU-11

[-1,

[-1,

32, 3, 3]

32, 3, 3]

2,080

0

MaxPool2d-12 [-1, 32, 2, 2] 0

ConvTranspose2d-13

ReLU-14

[-1,

[-1,

16, 5, 5]

16, 5, 5]

4,624

0

ConvTranspose2d-15

ReLU-16

[-1,

[-1,

8, 17, 17]

8, 17, 17]

6,280

0

ConvTranspose2d-17

ReLU-18

[-1,

[-1,

4, 33, 33]

4, 33, 33]

292

0

ConvTranspose2d-19

ReLU-20

[-1,

[-1,

2, 64, 64]

2, 64, 64]

34

0

ConvTranspose2d-21

Tanh-22

[

[

-1, 1,

-1, 1,

128, 128]

128, 128]

33

0

Total params: 14,847

Trainable params: 14,847

Non-trainable params: 0

Figure 8-1 shows 8 different reconstructed microstructures at various epochs. At epoch 100, the AE
is able to reconstruct with fine details for kIVIC/additive dataset, where the top row (DL solutions)
is nearly identical with the bottom row (SPPARKS simulated microstructures). This fundamentally
proves the concept of extracting low-dimensional non-linear manifold by AE.

Figure 8-2 shows 64 random microstructures, where the latent space is sampled and the trained
decoder is used to reconstruct the microstructure. Again, this shows that the AE was able to learn,
but not with a fine details as simulations. This challenging problem is posed as future work.

9. AUTOENCODER FOR UHCSDB DATASET 48X64

9.1. Data curation

35

rfflieNT:A:4.7mivirirgzsmamitagelpilligglifff0
. bat

,0^,WoolAss:ft: MOW "'or
re,•-•Nia"a WW0,1140141111111141"4.V.010.7'irra A.11O..- 'aft. 410.,

Sh.11%,A*11111MeignaidlialliregallaitiltitliwAtIVO:124

110 11 11111111111111111111110
(a) Epoch 1

% waelliare,
.....A.mpirFailitAMAX*Ipir ,iiir,ximffillgraiiinS laralifigliaj,,,alit..4111112.3%014,"ie"*01$4.4w9.'411101441"-...11040ATID.7.411Wqatislik2141h.4,01•••,..e• tilt,V,ige'"wIlko"44"-111W-",SOW4.40 14111,U17MmAimprWOW="A!',1•-"IffrlisoN,,,...a10....,.rew..... ,.*. lotiftAtiglirA vior..11Wet:SZIVO.,21411jit"Vit

iiia0.104.110,1Pwiltii"....0,7— iw•doz•*Salbeia&A015:-.4eiVillift'eldkve4VoliiaNrirgEMWS
p.ntoo,w,wirafiroltSsilklAlfailakewillItiltOn at :'seam

...,to..44..r..441.0.0,1-
wimxt.RV*giii..1.441;.44.10.wir.A0.004021m.vitegask,ovoZ...0110,1. 144!1214820aveStioftOstOif.*.4211.42Mff...z.w.witiiivazarmvii,... 50... mai. o.•. a ,

(c) Epoch 30
maiPz irij.%/WW,PQ:=•- Wt.

r.CIN140:4144.1111:115P10

unlirpogNerairieePOPyrialajetrinGSVFO;a4ita

WWIRIV41.-1ANiVkantligatol°06040(gliPStdr•W•.
etrkrael,M1***40111Waag".W

*AtpePIng

r41,110SterigrigtitlVtir'ilTrtnitallyt047**1itaa0PASWMITAROP164116f

4tOtet40440
WWW411M,'"aiW15101.1404014.r4AAPX4AWANeetV0
POZ,14%*•41/01011414.140•WAPtaleaWarAilka.

*2ft:g=ANEWWM'Wqip-lkoafa/W-.-
WICW°41

VAAW,A.0.1...allia161.1' •

(e) Epoch 50

6.4"Arfilkir 04-Mkr"7*- '047 OFArAtT.,s,irgsm„- tori.
omsuar.M t; %Ws e#96

awn::

t,24/4114,15444fattraftria•l, OtedAsikYkw,wetAtigk."*.b.

VW4WrnipitafilinagaWW"4": 19-117°"71
littriaOttittralratingit-4.0101-.0.4siostbidlo. 0.0%.
eAtAhaekititoos.:zeg..xelk.ntele.7-AMP!s,..r.A,

(g) Epoch 70
40mm ,—wo.olpleaVESTZ,2 IZAPaere..r001047/410,11170:lewusileigt

li
ra.**SpAgl!"4.1010.,.."

1.6120*Pti
toto.raahlkw.rgiltsi

tlVer147*,10:

illAPS
VSAWW.AitA

,t-mAlagArgattowOMMV

14
01*A001*grelsAtrAWRI

MItyemirdittVemi

104/11frAfAX40%.#9,Vir"It
er

olloSAkVAM
retattaetrololat";ftrAtiblit

aftlichtslaja

(i) Epoch 90

mm.wavaggiewswmgossrossuin......,et-10-,,,„ ,,,,pw.A.AN.,..- ...,,,,zA,r-e,valweiet.1.."11V4,m:rb,.. "q.v. ,:atolk...,,,010W-AdrisivAbirlii, AK. Am, it .10910-STAVIIII,Foligimi00 0lit-Ame"..1A1641..."-.as22...t.e....V.Z...11Pittit..7.211.0.1011`,237.151:13117.aat....4..-,---.....*,--,..1*..-,..,HT.-_,..m.

i
8 Wax 7,41ritiAita re487aErtiotrIgfamii.... xArtit..16%.:46:90,15. roa!r. -.SA% qprrik.4449#.1
a ..N....,...ww094****.A.A....1.6....1.*.,..m.oc„.1....,,,...„...,ImioNge......,,,10...semitga,....s ...TR:zoo*mlif.7.42Anibmaltaimitamdar.masellub.pal-ft.:14-mt...

(b) Epoch 20

..zommaWraWg
ta*ktitriiWeirelWt1440.001

:41,030111,14111111:44.1411/141

ti

VIAIRIVAlkottei4.2401mIkkiliVilitkbAlibteg.f41'Wiliembr4e412114VIIISPihWAWd•
auwalpIPMSW,

-.;:rOmiliiii...Z7126.1.WINIVt•eoh$44:.iralAt:04,,,....Orwmar.
',IfigrgikelnafttittArriglitat,

111101tiklitt*Nilira*.tp•AN71111111M."16MONTIONWP'ftiet.41.4.1111raPir'916 Nb.1/=•W•e.ViNallfrita.40.1P.M.PA1041Altup,141,1EMallIZ! sheet

(d) Epoch 40
laz400"41401414

4;;;:::::::71:
, w,ms

*.111
.911100011.011010bwo.

pL,
4.,Www,...101541111 1r4.4. aft , IP.-

alv*A0illA'TOAVAIL-10441'140A4840641,Pla
111#11111$1114#11

11i1111411$111itattleitaW14644...101101.4,...e;..
sweasamim,;..g.fmeateolawAwArsig&IARk.m.

(f) Epoch 60
rpm •-kr,Wari0vlopme,7,116.pv%-pial

wAWWWQ.040
ailLW VW 0 111V

;mow
Saga,

iii,..dtotpuoviati.,1,.410,s
ime.s

rotiete4 sawmabli,4024,mti,
firokaww*41414,-,selow*Falw.pose.ofmagra*,figgstgairondeatm,...4•1106rtoosit agrOM-91T*Imas''oaol.wwYTA4-04640,41:1.1.04.140..."....01114elVoNaeri044*.411441N00o(VollW'240040.21.Aft

/0•111%.46111M.
..

(h) Epoch 80
- 111001

*Tieesile-mmilowipraPuTitat*lhative-NT".aa•Sailm4.411APAT-4014-447faer-4
4M0011.141024=.vtawirtay**A*144,00glemtlesSol014.1**WON

,,..., • „ r
-mp

tmal.414• 401
if
iVissallizauseitatogetalte..411341vo-.0"a";aPILA.04Pi-0114.44eTtitil 4P7:

m"4.4olliktalErevriatnatilAINVIN*01120414eiezeNiillsta.....- •7441,414,1iVaiMailif

(j) Epoch 100

Figure 8-1 8 reconstructions of kMC/additive from AE at different epochs.

36

t•j.— :
. ,

• 4

• Jr::

a

•••• tql
3.„ t

• "'A
•- Z...

. w _ .1, .: i .-. . . i ii•_ • _,..,, ,• ,..r..
•

i ' .
:..1-1 1,1- i 1-i '

4 r J. • .. 1 s- i .. * i 1 •
•r -'•• - ..fklw--••-174 • - f ...0

-__ .r . _ vA, r.. „, ii:
:,.._ 4 ..], 74. .1 '111! !rws...; 6 ::, . °A iwi."

(a) Epoch 1

(d) Epoch 60

(g) Epoch 120

(b) Epoch 20

(e) Epoch 80

(h) Epoch 140

(c) Epoch 40

(f) Epoch 100

(i) Epoch 160

Figure 8-2 64 samples of kMC/additive from AE at different epochs.

37

extractMetadata.sh
#!/bin/bash

for folderName in $(1s -ldv */); do
cd $folderName
rm -fv minorMetadata.csv minor-metadata.csv

for cropImgName in $(1s -lv *.png); do
micrographName=$(echo $cropImgName I cut -d. -f2)
grep "$ImicrographNamel\." ../uhcs-metadata.csv » minor-metadata.csv
micrographid-$(echo $micrographName I tr -dc '0-9')

lineNum-$(echo "$[micrographidl + 1" I bc -1)

sed -n ${1ineNum}p ../uhcs-metadata.csv » minor-metadata.csv

done

cd
echo "done $folderName"

done

But before performing these steps, we must rescale the micrograph to be on a same scale, because
otherwise, one pixels in one micrograph is not as the same as another. We approach this problem by
firstly cropping the annotation of the micrograph, which include the magnification, scale bar, and
other information relevant to the micrograph. Note that the metadata is also supported by another
separate file uhcs-metadata.csv, which contains identical information regarding the dataset. After
being cropped, all micrographs have the same dimension of 645 pixels x 484 pixels.

import numpy as np
import matplotlib.pyplot as plt
'uhcs-metadata.csv' or 'minor-metadata.csv'

metadata = np.1oadtxt('minor-metadata.csv', delimiter-',', dtype=str)
magnArr = metadata[:,9]

https://stackoverflow.com/questions/4289331/how-to-extract-numbers-from-a-string-in-python

magnArrInt = H
for j in range(len(magnArr)):

magn = ".joinUi for i in magnArr[j]
if magn != ":

magn = int(magn)
if isinstance(magn, int):

magnArrint += [magn]

if i.isdigit()1)

magnArrint = np.array(magnArrInt)
print('max magn = %d' % np.max(magnArrInt))
print('min magn = %d' % np.min(magnArrInt))
print('median magn = %d' % np.median(magnArrInt))

plt.hist(magnArrInt, bins='auto')
plt.xlabel('magnification', fontsize=24)
plt.ylabel('frequency', fontsize=24)

plt.title('magnification analysis', fontsize=30)
plt.show()

Second, using the magnification, we convert the image to roughly the same scale. We remove all
the data without labels, as there is no processing information associated with the microstructure.
This significantly reduces the number of usable micrographs to 1024. The wide range of mag-
nification from 35X to 63833X makes a selection for a uniform magnification challenging. To
demonstrate the idea, we choose the dataset spheroidite.* to work with, since it contains the most
micrographs.

#!/bin/bash
for type in martensite network pearlite+spheroidite pearlite+widmanstatten pearlite spheroidite+widmanstatten spheroidite; do

mkdir -p $itypel-unified/

done

for fN in $(1s -ldv *.*/); do
type=$(echo $fN I cut -d. -fl)

cp -rfv $fN/*.png $[tYPel-unified
done

The magnification range of this sub-dataset is from 246X to 19641X. The histogram of magnifi-
cation is shown in Figure 9-1. Based on the analysis in Figure 9-1, the median of 1964X is used
as the uniform scale for this sub-dataset spheroidite. The min and max magnification is 246 and

38

100

80

„T., 60

0-
2

40

20

0

magnification analysis

0 2500 5000 7500 10000 12500
magnification

15000 17500 20000

Figure 9-1 Magnification analysis for spheroidite.

1964, respectively. Also, we remove micrographs where the magnification is not available, e.g.
micrograph762.

import glob, os

import numpy as np

from PIL import Image

https://stackoverflow.com/questions/273946/how-do-i-resize-an-image-using-pil-and-maintain-its-aspect-ratio

metadata = np.loadtxt('minor-metadata.csv', dtype=str, delimiter=',')

imList = glob.glob("*.png')

targetMagn = 1964 # median

imName = 'cropped.micrograph1295.png'

for imName in imList)

print('imName = %s' % imName) # debug

micrographName = imName.split('.')[1] # micrograph1637

im = Image.open(imName)

width, height = im.size # 645, 484

aspectRatio = height/width

print('micrographName = %s' % micrographName)

rowIndex = np.where(metadata[:, 14] == micrographName + '.tif') # search for the row

print(rowIndex)

print(metadata[rowIndex, 14])

print(rowIndex)

print(len(rowIndex[0]))

if len(rowIndex[0]) == 0:

rowIndex = np.where(metadata[:, 14] == micrographName + '.png') # search for another extension instead

print('Searching for %s' % (micrographName + '.png'))

if len(rowIndex[0]) == 0:

rowIndex = np.where(metadata[:, 14] == micrographName + '.bmp') # search for another extension instead

print('Searching for %s' % (micrographName + '.bmp'))

rowlndex = int(rowIndex[0])

print('rowIndex = %d; imName = %s' % (rowIndex, imName))

magn = ".join([i for i in metadata[rowIndex, 9] if i.isdigit()])

if magn != ":

print(magn)

magn = int(magn)

principles: (1) enlarge img with small magn, (2) reduce img with large magn

scaleRatio = targetMagn / magn

targetWidth = int(width * scaleRatio)
targetHeight = int(height * scaleRatio)
scale image

rescaledIm = im.resize((targetWidth, targetHeight), Image.ANTIALIAS)

im.save('rescaled.' + micrographName + '.png')

print('done %s\n' % imName)

This step creates a folder named rescaled with 344 microstructure images for spheroidite with vari-
ous sizes correspond to various image quality. We also remove rescaled.micrograph{1207,1173}.png
due to their low quality and small size.

39

9.2. Random crop

From the 344 microstructure images with various sizes, we perform random crop, where the num-
ber of random crop is proportional to images' area. Recall that the standard image is of 1964X,
where width and height are 645 and 484 pixels, respectively. The smallest size of rescaled images
is (48, 64), whereas the largest size of the rescaled images is (1936, 2540). The median of rescaled
images is (484, 645). We take 48 x 64 as a unit patch for random crop operation. The number of
crop is calculated as

imageHeight x imageWidth
of crops = x ,

patchHeight x patchWidth
(2)

where r is a number of redundancy which should be chosen depending on the size of generated
dataset. If the dataset is too small, r should be increased, and vice versa. This allows us to
subsample 344 micrographs to a dataset with 56392 images, which is acceptable for DL.

44 randomCrop.py

import numpy as np

import os, glob

import skimage.io as io

defaultHeight = 48

defaultWidth = 64

4 run in .../dataset/uhcsdb/nistRepo/randomCropped-SameScale-croppedMicrographs/spheroidite-unified

4 make sure 'rescaled/' is available (as input folder)

4 and 'randomCrop/' is available (as output folder)

num0fPatch = 0

for imgName in glob.glob('./rescaled/*.png'):

img = io.imread(imgName)

width, height = img.shape

num0fCrops = np.floor(width * height / defaultWidth / defaultHeight * 1.5)

print('randomCrop %s: h hd, w = %d: num0fCrops = %d' % (imgName, height, width, num0fCrops))
num0fPatch += num0fCrops

print('Iotal number of patches: %d' % (num0fPatch))

We then randomly crop the images to more than 100,000 patches of 64 x 48 and subsequently
remove low contrast patches, as well as faulty patches, e.g. patches that after being saved does not
retain its size anymore.

randomCrop.py

import numpy as np

import os, glob

4 import skimage.io as io

import skimage

from PIL import Image

defaultHeight = 48

defaultWidth = 64

4 run in .../dataset/uhcsdb/nistRepo/randomCropped-SameScale-croppedMicrographs/spheroidite-unified

4 make sure 'rescaled/' is available (as input folder)

4 and 'randomCrop/' is available (as output folder)

logFile = open('randomCrop.log', 'w')

num0fPatch - 0

patchlD - 0

os.system('mkdir -p randomCrop/')

for imgName in glob.glob('irescaled/*.png'):

4 read images

img = skimage.io.imread(imgName) # sklearn

img = Image.open(imgName) # PIL

imgName = imgName.split('/')[-1]

imgName =

width, height = img.shape # sklearn

4 width, height = img.size # PIL

40

determine how many patches to save

redundantRatio = 1.5

num0fCrops = np.floor(width * height / defaultWidth / defaultHeight * redundantRatio)
num0fCrops = 1 # debug

num0fCrops = int(num0fCrops)

print('randomCrop %s: h = %d, w = %d: num0fCrops = %d' % (imgName, height, width, num0fCrops))

num0fPatch += num0fCrops

saveError - True

isNotLowContrast - True

while saveError and isNotLowContrast: # no save error AND not low contrast

for i in range(num0fCrops):

if height > defaultHeight and width > defaultWidth:

sH = np.random.randint(0, height - defaultHeight) # starting height

sW = np.random.randint(0, width - defaultWidth) # starting width

else:

sH = 0

sW = 0

crop images

cropImg = img[sH:sH+defaultHeight, sW:sW+defaultWidth] # sklearn

croplmg = img.crop((sH, 5W, 5H + defaultHeight, sW + defaultWidth)) # PIL

cropImgName = 'patch%d' % patchlD

check low contrast

isNotLowContrast - not skimage.exposure.is_low_contrast(cropImg)

print('isNotLowContrast = %r' % isNotLowContrast)

save images

try:

skimage.io.imsave('./randomCrop/%s.png' % cropImgName, cropImg, check_contrast=False) M sklearn

cropImg.save('./randomCrop/%s.png' % cropImgName) # PIL

saveError = False

patchlD += 1

except:

saveError = True

logFile.writerrandomCrop %s patch %s in i=%d/num0fCrops=%d: h = %d, w=%d at sH = %d, sW = %d\n' % (imgName, patchIn, i, num0fC

logFile.close()
print('Total number of patches: %d' % (num0fPatch))

0# removeFaultPatch.py

import numpy as np

import os, glob

import skimage.io as io

import skimage

from PIL import Image

defaultHeight = 48

defaultWidth = 64

targetFolder = 'spheroidite-unified-randomCrop'

imgList = glob.glob('%s/*.png' % targetFolder)

for imName in imgList:

im = Image.open(imName)

im = skimage.io.imread(imName)

w, h = im.size

h, w = im.shape

if w != defaultWidth or h != defaultHeight:

print('%s: h=%d, w=%d' % (imName, h, w))
os.system('rm -v %s' % imName)

else:

print('Pass %s: h=%d, w=%d.' % (imName, h, w))

9.3. Dataset

The dataset is split into 74581 patches for training and 21627 patches for testing. The dimension
of the patch is 64 pixels x 48 pixels.

41

ops, height, width,

9.4. UHCSDB autoencoder 48x64

Total number of params: 5855

Total number of trainable params: 5855

Layer (type) Output Shape Param #

Conv2d-1

ReLU-2

[-1,

[-1,

2,

2,

48,

48,

64]

64]

20

0

MaxPool2d-3 [-1, 2, 46, 62] 0

Conv2d-4

ReLU-5

[-1,

[-1,

4,

4,

46,

46,

62]

62]

76

0

MaxPool2d-6 [-1, 4, 44, 60] 0

Conv2d-7

ReLU-8

[-1,

[-1,

8,

8,

22,

22,

30]

30]

296

0

MaxPool2d-9 [-1, 8, 20, 28] 0

Conv2d-10

ReLU-11

[-1,

[-1,

8,

8,

10,

10,

14]

14]

584

0

MaxPool2d-12 [-1, 8, 8, 12] 0

ConvTranspose2d-13

ReLU-14

[-1,

[-1,

8,

8,

8,

8,

12]

12]

584

0

ConvTranspose2d-15

ReLU-16

[-1,

[-1,

8,

8,

10,

10,

14]

14]

1,608

0

ConvTranspose2d-17

ReLU-18

[-1,

[-1,

8,

8,

21,

21,

29]

29]

1,608

0

ConvTranspose2d-19

ReLU-20

[-1,

[-1,

4,

4,

43,

43,

59]

59]

804

0

ConvTranspose2d-21

ReLU-22

[-1,

[-1,

2,

2,

45,

45,

61]

61]

202

0

ConvTranspose2d-23

Tanh-24

[-1,

[-1,

1,

1,

48,

48,

64]

64]

73

0

Total params: 5,855

Trainable params: 5,855

Non-trainable params: 0

9.5. Reconstruction

Figure 9-2 shows 8 reconstructions of random microstructure images at different epochs. It is

observed that the AE proposed can capture some, but not to a great detail of the microstructure.

Perhaps a deeper architecture is suitable for this purpose. Figure 9-3 shows 2 samples at different

epochs using the same AE architecture. Even though the quality of the images in Figure 9-2 is rea-

sonably good and its training converges quickly, the decoder is incapable of generating reasonable

42

microstructures. This limitation of AE prompts us to another DL architecture, called GAN, which
is also explored in the section below.

(a) Epoch 1

.
"7111-77.4-1•

(c) Epoch 80
• elf

L.
J

e) Epoch 150

(g) Epoch 210

(i) Epoch 270

•

(b) Epoch 40

(d) Epoch 120

(f) Epoch 180

~-

(h) Epoch 240

(j) Epoch 300

Figure 9-2 8 reconstructions of UHCSDB from AE at different epochs.

(a) Epoch 270

,„...-____.--- ______49--..,t___..4.4-zeg----„,-..------.4„-,._tz...7--....4Qataz, MI-.1-,----„,.......,..—. _ __. _._._z__ _ A,-..-4. = -----z-_-
,ThWi..;`..I.,.'-&-e-- :---=::

--wte.e..--=-=k---
W_,'

-342 - ,-+- -----=--
'''f----

..
''..- '':'-----

-.2 ..:._-,,

._____IE_LEr- z.3,W4:-.

_"1:

A&,.._,-_
- ,-,
Q.._..,t i---k""

- .'.--.;--_,_---2.-'-

...-. -,-..1-.-.7....''' 71.......
;--:.:----..•-•_•''..--------- WI--... ,air4A`_________ ,

"Ac0QE!,"k--
--..*='!---''---.-."--

---'''- .-.--", _.......-,'",,, -
__-,...

Ar".:^.>- _,..' ''-ga-: ,-.,S1 .-Yfir:
- --.--- ---. - ...i-
-14glitiW*ki;U."----

ti -4.--
--.:

.,._„_____?=..::"-"Pek --'a. _ - i
War..- •%-

-'0,ii."-..,-4- -.:- . . - •' ' " -.1, A Z. ...- . 4 4.--. . .- W -,,,, _ _ _ _ _ori.W..%-='_a - ,- -

(b) Epoch 300

Figure 9-3 2 samples of UHCSDB from AE at different epochs.

10. GAN FOR UHCSDB DATASET 64X64

We subsample the previous UHCSDB dataset, this time with the patch size of 64 x 64. 90000
patches are used as the training dataset, whereas 38940 patches are used as the testing dataset.

43

DCGAN [M] is employed in this work. Figure
epochs.

(a) Epoch 1

(d) Epoch 60

10-1 shows the microstructure generated at different

(b) Epoch 20

(e) Epoch 80

(c) Epoch 40

(f) Epoch 100

Figure 10-1 6 collection of 64 samples of UHCSDB from GAN at different epochs.

The quality of generated microstructures has gradually improved over the training; by the epoch
100, it was capable of generating microstructures that looks aesthetically similar to the experi-
mental microstructure. However, DCGAN also suffers from mode collapse, as in the sense that it
generates many similar images. Training GAN is well-known to be a challenging problem, which
will require further work.

11. DISCUSSION

In this project, DL is implemented via PyTorch. Sandia Blake testbed is utilized for most of the
training. We perform experiments with various activation functions, loss functions, and architec-
tures, including AE and GAN for reconstructing microstructure.

The AE was successfully implemented for the synthetic 2D microstructure dataset. We found that
the MaxPool layer performs better than the AvgPool layer for this dataset, given the same DL
architecture and loss function. VAE has been shown to be very challenging to train, while AE
offers a fairly straightforward to implement. Perhaps one of the reasons is because the difference
in terms of loss functions: AE employs mean-square error (MSE).

44

We also observe that the utilization of BatchNorm layer also increases the training speed and
improves the efficiency of optimization in seeking optimal hyper-parameters. The traditional ap-
proach is Conv/ReLU/MaxPool can be transformed to Conv/BatchNorm/ReLU/MaxPool. There has
been some debates regarding the location of the BatchNorm layer, and the majority advocates its
location right after the convolution layer.

An important lesson learned from brute-force of DL application on CPFEM dataset is that the
input domain is simply too large to apply DL methods blindly. Yet, we fail to see it upfront.
Theoretically, there is no difference, but practically, the difference is huge (as the problem is nearly
computationally intractable). Dissecting the large dataset into smaller pieces based on localization
assumption may work better.

The reconstruction capability of VAE and GAN has been much a debate, even though in practice,
GAN has the advantage of generating more realistic samples. VAE is widely supported theoret-
ically, as there is a clear way to evaluate the quality of the model by the log-likelihood, either
estimated by importance sampling or lower-bounded. VAEs tend to generate more blurred sam-
ples compared to those from GANs, while GANs could suffer from mode collapse in multi-modal
density.

We also found that the quality of the reconstruction is (highly) dependent on the number of chan-
nels in the very first convolutional layer. 16 channels is sufficient for klVIC/GG dataset.

12. CONCLUSION

As DL is emerging, DL applications in materials science and other fields are generally a new topic
for research and development. DL has not matured yet. Recent years has observed a progressive
development of GAN with higher and higher resolution, so adapting to the new technology is
certainly a challenge. Much work remains to be done in materials science, both computationally
and experimentally.

In this report, we describe our recent and preliminary efforts to develop two tracks of DL in ma-
terials science, including both supervised and unsupervised DL. For supervised learning, we pro-
posed CPNet, which is a 3D-CNN DL architecture for solving CPFEM. Reasonable agreement
is observed, which paves ways for future research. For unsupervised learning, we generated 5-6
synthetic microstructure datasets from SPPARKS/kMC, and adopted UHCSDB dataset, which is
experimental.

Promising results are achieved. In supervised learning, a DL algorithm is achieved to predict
materials response with a limited dataset. In unsupervised learning, good microstructure generation
and reconstruction are achieved in some cases. Both topics are not mature; much work remains to
be done, but at least this report has proved beyond reasonable doubt that DL could have a lasting
impact to the perception of materials science community in general.

45

ACKNOWLEDGMENT

Anh Tran thank Joseph Bishop for mentoring this project and for his helpful and inspiring dis-
cussions, and Prof. Surya Kalidindi (Georgia Tech) and Dr. Yuksel Yabansu (Georgia Tech) for
sharing their CPFEM dataset. The support from the LDRD Exploratory Express, managed by Dr.
Hy Tran, is gratefully acknowledged.

46

APPENDIX A BLAKE ADVANCED TESTBED (CPU/SLURM SCHEDULER)

In this section, we describe the hardware and software installation on Blake testbed.

$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 96

On-line CPU(s) list: 0-95

Thread(s) per core: 2

Core(s) per socket: 24

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 85

Model name: Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz

Stepping: 4

CPU MHz: 2101.000

BogoMIPS: 4194.85

Virtualization: VT-x

Lld cache: 32K

Lli cache: 32K

L2 cache: 1024K

L3 cache: 33792K

NUMA node0 CPU(s): 0-23,48-71

NUMA nodel CPU(s): 24-47,72-95

$ module list

Currently Loaded Modulefiles:

1) cmake/3.12.3

2) zlib/1.2.11

3) binutils/2.30.0

4) gcc/7.2.0

5) numa/2.0.11 9) readline/8.0.0

6) papi/5.5.1 10) python/3.7.3

7) java/oracle/1.8.0 11) bzip2/1.0.6

8) openmpi/2.1.2/gcc/7.2.0 12) git/2.9.4

13) ncurses/6.0.0

Note that module python/3.7.3 must be used in order to run PyTorch. TPLs to be installed:

• torchsummary

• torchviz

• hiddenlayer

Visualizing the model (note that torch may have to be upgraded)

• via torchviz (link to GitHub)

from torchviz import make_dot

x = torch.randn(1, 1, imgDim, imgDim)

y = model(x)

make_dot(y, params=dict(list(model.named_parameters()))).render()

• via hiddenlayer (link to GitHub)

x = torch.zeros([1, 1, 128, 128])
import hiddenlayer as hl

g = hl.build_graph(model, x)

g = g.build_dot()

g.render('test', view=True, format-'png')

47

APPENDIX B WHITE ADVANCED TESTBED (GPU/LSF SCHEDULER)

The White hardware environment is comprised of three types of compute

node:

(1) POWER8 Tuleta Processors (5-core dual-NUMA-per socket, dual-socket)

with a single NVIDIA Kepler-K40 GPU per socket connect via PCIe. These

nodes are provided under the rhel7T queue.

(2) POWER8 Firestone Processors (8-core per socket, dual-socket) with

a single NVIDIA Kepler-K80 GPU per socket connected via PCIe. These nodes

are provided under the rhel7F queue.

(3) POWER8+ Firestone Processors (8-core per socket, dual-socket) with

two NVIDIA Pascal P100 GPUs per socket connected via NVLINK-1. These

nodes are provided under the rhel7G queue (because they are called

Garrison/Minsky blades by IBM).

The nodes are interconnected with Mellanox InfiniBand.

An official documentation on how to use LSF scheduler is referred
environment can be read here

1) cmake/3.12.3

2) zlib/1.2.8

3) binutils/2.30.0

4) gcc/7.2.0

5) cuda/9.2.88

6) papi/5.5.1

7) java/ibm/sdk/8.0.0

8) openmpi/2.1.2/gcc/7.2.0/cuda/9.2.8

9) readline/7.0.0

10) python/3.7.3

11) anacoonda3/4.8.2-python-3.7.6

Regarding conda and pytorch:

here How to set up Anaconda

cheat sheet

https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc0Oca/conda-cheatsheet.pdf

conda create -n whiteConda python=3.6 anaconda

conda activate whiteConda

conda install conda

conda update -n base -c defaults conda

conda config --append channels conda-forge

conda install numpy scipy matplotlib scikit-learn scikit-image keras ipython django pandas jupyter parameterized Theano mako mpi4py n

conda install tf tensorflow tf-gpu tensorflow-gpu

conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

which pip

NOTE: White testbed is power8, i.e. ppc641e, not supported officially from pytorch

conda install -c engility pytorch

conda install -c engility torchvision

conda deactivate

conda env remove --name whiteConda

conda init bash # conda init --help

conda install -n whiteConda pip

conda info

python3 -s # do not add user site-packages directory to sys.path

To see the Python path

48

python3

import sys

print(sys.path)

Regarding LSF scheduler:

https://hpc.11nl.gov/banks-jobs/running-jobs/lsf-commands

bsub

bqueues

bstatus

APPENDIX C A PRIMER ON CNN

Here, we implement our DL approach on PyTorch, where the documentations of neural layers are
hereJ

C.1 Conv(1 d,2d,3d)

(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

[Din + 2 x padding — dilation x (kernelSize — 1) — 1
Dont = + 1

stride

C.2 {Avg Pool,MaxPool}(1 d,2d,3d)

(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)

DOUt

[Din + 2 x padding — kernelSize
— stride

+

C.3 ConvTranspose(1 d,2d,3d)

(in_channels, out_channels, kernel_size, stride=1, padding-0, dilation=1, groups=1, bias=True, padding_mode='zeros')

(3)

(4)

Dont = (Din — 1) x stride — 2 x padding + dilation x (kernelSize — 1) + output_padding + 1 (5)

C.4 Training

Training methods, including Adadelta, Adagrad, Adam, AdamW, SparseAdam, Adamax, ASGD,
LBFGS, RMSprop, Rprop, and SGD, are documented ller0 for PyTorch.

49

C.5 Standard benchmark dataset

About 25 standard benchmarking datasets are available

C.6 Parallelization

Parallelization over CPU herel

Parallelization over GPU here here here here

here

, tutorial

. Source code is available on

here

APPENDIX D A PRIMER ON VARIATIONAL AUTOENCODERS

GitHub

Original paper by Diederik and Welling [5A]. Tutorials by Doersch [55] and Charte et al [51i].

REFERENCES

[1] P. Fernandez-Zelaia, Y. C. Yabansu, S. R. Kalidindi, A comparative study of the efficacy
of local/global and parametric/nonparametric machine learning methods for establishing
structure—property linkages in high-contrast 3D elastic composites, Integrating Materials and
Manufacturing Innovation 8 (2) (2019) 67-81.

[2] M. Campbell, A. J. Hoane Jr, F.-h. Hsu, Deep blue, Artificial intelligence 134 (1-2) (2002)
57-83.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of Go
with deep neural networks and tree search, nature 529 (7587) (2016) 484-489.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al., Mastering the game of Go without human knowledge,
nature 550 (7676) (2017) 354-359.

[5] C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, J. Kepner, A. McCabe,
P. Michaleas, J. Mullen, D. O'Gwynn, et al., Driving big data with big compute, in: 2012
IEEE Conference on High Performance Extreme Computing, IEEE, 2012, pp. 1-6.

[6] A. Tran, H. Tran, Data-driven high-fidelity 2D microstructure reconstruction via non-local
patch-based image inpainting, Acta Materialia 178 (2019) 207-218.

[7]S. R. Kalidindi, A. Khosravani, B. Yucel, A. Shanker, A. L. Blekh, Data Infrastructure Ele-
ments in Support of Accelerated Materials Innovation: ELA, PyMKS, and MATIN, Integrat-
ing Materials and Manufacturing Innovation 8 (4) (2019) 441-454.

50

[8] G. Landi, S. R. Niezgoda, S. R. Kalidindi, Multi-scale modeling of elastic response of three-
dimensional voxel-based microstructure datasets using novel DFT-based knowledge systems,
Acta Materialia 58 (7) (2010) 2716-2725.

[9] T. Fast, S. R. Kalidindi, Formulation and calibration of higher-order elastic localization rela-
tionships using the MKS approach, Acta Materialia 59 (11) (2011) 4595-4605.

[10] A. Iyer, B. Dey, A. Dasgupta, W. Chen, A. Chakraborty, A conditional generative
model for predicting material microstructures from processing methods, arXiv preprint
arXiv: 1910.02133.

[11] S. Chun, S. Roy, Y. T. Nguyen, J. B. Choi, H. Udaykumar, S. S. Baek, Deep learning for
synthetic microstructure generation in a materials-by-design framework for heterogeneous
energetic materials, arXiv preprint arXiv:2004.04814.

[12] D. Fokina, E. Muravleva, G. Ovchinnikov, I. Oseledets, Microstructure synthesis using style-
based generative adversarial networks, Physical Review E 101 (4) (2020) 043308.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
Y. Bengio, Generative adversarial nets, in: Advances in Neural Information Processing Sys-
tems, 2014, pp. 2672-2680.

[14] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolu-
tional generative adversarial networks, arXiv preprint arXiv:1511.06434.

[15] M.-Y. Liu, O. Tuzel, Coupled generative adversarial networks, in: Advances in neural infor-
mation processing systems, 2016, pp. 469-477.

[16] T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of gans for improved quality,
stability, and variation, arXiv preprint arXiv:1710.10196.

[17] T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial
networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 4401-4410.

[18] R. Bostanabad, Reconstruction of 3D microstructures from 2D images via transfer learning,
Computer-Aided Design 128 (2020) 102906.

[19] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recog-
nition, arXiv preprint arXiv:1409.1556.

[20] R. Singh, V. Shah, B. Pokuri, S. Sarkar, B. Ganapathysubramanian, C. Hegde, Physics-
aware deep generative models for creating synthetic microstructures, arXiv preprint
arXiv: 1811.09669.

[21] B. L. DeCost, T. Francis, E. A. Holm, Exploring the microstructure manifold: Image texture
representations applied to ultrahigh carbon steel microstructures, Acta Materialia 133 (2017)
30-40.

[22] L. van der Maaten, G. Hinton, Visualizing data using t-SNE, Journal of machine learning
research 9 (Nov) (2008) 2579-2605.

51

[23] L. van Der Maaten, Accelerating t-SNE using tree-based algorithms, The Journal of Machine
Learning Research 15 (1) (2014) 3221-3245.

[24] B. L. DeCost, B. Lei, T. Francis, E. A. Holm, High throughput quantitative metallography for
complex microstructures using deep learning: a case study in ultrahigh carbon steel, arXiv
preprint arXiv: 1805.08693.

[25] J. Ling, M. Hutchinson, E. Antono, B. DeCost, E. A. Holm, B. Meredig, Building data-driven
models with microstructural images: Generalization and interpretability, Materials Discovery
10 (2017) 19-28.

[26] X. Li, Y. Zhang, H. Zhao, C. Burkhart, L. C. Brinson, W. Chen, A transfer learning approach
for microstructure reconstruction and structure-property predictions, Scientific reports 8 (1)
(2018) 1-13.

[27] L. Mosser, O. Dubrule, M. J. Blunt, Reconstruction of three-dimensional porous media using
generative adversarial neural networks, Physical Review E 96 (4) (2017) 043309.

[28] R. Cang, M. Y. Ren, Deep network-based feature extraction and reconstruction of complex
material microstructures, in: ASME 2016 International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conference, American Society of
Mechanical Engineers, 2016, pp. VO2BTO3A008—VO2BTO3A008.

[29] R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao, M. Y. Ren, Microstructure representation and
reconstruction of heterogeneous materials via deep belief network for computational material
design, Journal of Mechanical Design 139 (7) (2017) 071404.

[30] R. Bostanabad, A. T. Bui, W. Xie, D. W. Apley, W. Chen, Stochastic microstructure charac-
terization and reconstruction via supervised learning, Acta Materialia 103 (2016) 89-102.

[31] A. Z. Zinchenko, Algorithm for random close packing of spheres with periodic boundary
conditions, Journal of Computational Physics 114 (2) (1994) 298-307.

[32] M. Groeber, M. Uchic, D. Dimiduk, Y. Bhandari, S. Ghosh, A framework for automated
3d microstructure analysis & representation, Journal of Computer-Aided Materials Design
14 (1) (2007) 63-74.

[33] M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk, A framework for automated analysis
and simulation of 3D polycrystalline microstructures. Part 1: Statistical characterization, Acta
Materialia 56 (6) (2008) 1257-1273.

[34] M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk, A framework for automated analysis
and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation,
Acta Materialia 56 (6) (2008) 1274-1287.

[35] D. T. Fullwood, S. R. Niezgoda, S. R. Kalidindi, Microstructure reconstructions from 2-point
statistics using phase-recovery algorithms, Acta Materialia 56 (5) (2008) 942-948.

[36] D. Fullwood, S. Kalidindi, S. Niezgoda, A. Fast, N. Hampson, Gradient-based microstruc-
ture reconstructions from distributions using fast fourier transforms, Materials Science and
Engineering: A 494 (1-2) (2008) 68-72.

52

[37] F. Latief, B. Biswal, U. Fauzi, R. Hilfer, Continuum reconstruction of the pore scale mi-
crostructure for fontainebleau sandstone, Physica A: Statistical Mechanics and its Applica-
tions 389 (8) (2010) 1607-1618.

[38] Y. Staraselski, A. Brahme, R. Mishra, K. Inal, Reconstruction of the 3D representative volume
element from the generalized two-point correlation function, Modelling and Simulation in
Materials Science and Engineering 23 (1) (2014) 015007.

[39] J. Feng, C. Li, S. Cen, D. Owen, Statistical reconstruction of two-phase random media, Com-
puters & Structures 137 (2014) 78-92.

[40] D. Chen, X. He, Q. Teng, Z. Xu, Z. Li, Reconstruction of multiphase microstructure based
on statistical descriptors, Physica A: Statistical Mechanics and its Applications 415 (2014)
240-250.

[41] H. Xu, D. A. Dikin, C. Burkhart, W. Chen, Descriptor-based methodology for statistical
characterization and 3d reconstruction of microstructural materials, Computational Materials
Science 85 (2014) 206-216.

[42] H. Xu, R. Liu, A. Choudhary, W. Chen, A machine learning-based design representation
method for designing heterogeneous microstructures, Journal of Mechanical Design 137 (5)
(2015) 051403.

[43] S. Chen, A. Kirubanandham, N. Chawla, Y. Jiao, Stochastic multi-scale reconstruction of
3d microstructure consisting of polycrystalline grains and second-phase particles from 2d
micrographs, Metallurgical and Materials Transactions A (2016) 1440-1450.

[44] D. Li, M. A. Tschopp, M. Khaleel, X. Sun, Comparison of reconstructed spatial microstruc-
ture images using different statistical descriptors, Computational Materials Science 51 (1)
(2012) 437-444.

[45] D. Li, X. Sun, M. Khaleel, Comparison of different upscaling methods for predicting thermal
conductivity of complex heterogeneous materials system: application on nuclear waste forms,
Metallurgical and Materials Transactions A 44 (1) (2013) 61-69.

[46] Z. Yang, Y. C. Yabansu, D. Jha, W.-k. Liao, A. N. Choudhary, S. R. Kalidindi,
A. Agrawal, Establishing structure-property localization linkages for elastic deformation of
three-dimensional high contrast composites using deep learning approaches, Acta Materialia
166 (2019) 335-345.

[47] Y. C. Yabansu, D. K. Patel, S. R. Kalidindi, Calibrated localization relationships for elastic
response of polycrystalline aggregates, Acta Materialia 81 (2014) 151-160.

[48] Y. C. Yabansu, S. R. Kalidindi, Representation and calibration of elastic localization kernels
for a broad class of cubic polycrystals, Acta Materialia 94 (2015) 26-35.

[49] D. M. de Oca Zapiain, E. Popova, S. R. Kalidindi, Prediction of microscale plastic strain
rate fields in two-phase composites subjected to an arbitrary macroscale strain rate using the
materials knowledge system framework, Acta Materialia 141 (2017) 230-240.

53

[50] R. Liu, Y. C. Yabansu, A. Agrawal, S. R. Kalidindi, A. N. Choudhary, Machine learning
approaches for elastic localization linkages in high-contrast composite materials, Integrating
Materials and Manufacturing Innovation 4 (1) (2015) 13.

[51] R. Liu, Y. C. Yabansu, Z. Yang, A. N. Choudhary, S. R. Kalidindi, A. Agrawal, Context
aware machine learning approaches for modeling elastic localization in three-dimensional
composite microstructures, Integrating Materials and Manufacturing Innovation 6 (2) (2017)
160-171.

[52] Z. Yang, Y. C. Yabansu, R. Al-Bahrani, W.-k. Liao, A. N. Choudhary, S. R. Kalidindi,
A. Agrawal, Deep learning approaches for mining structure-property linkages in high contrast
composites from simulation datasets, Computational Materials Science 151 (2018) 278-287.

[53] Z. Yang, R. Al-Bahrani, A. C. Reid, S. Papanikolaou, S. R. Kalidindi, W.-k. Liao, A. Choud-
hary, A. Agrawal, Deep learning based domain knowledge integration for small datasets:
Illustrative applications in materials informatics, in: 2019 International Joint Conference on
Neural Networks (IJCNN), IEEE, 2019, pp. 1-8.

[54] P. K. Diederik, M. Welling, Auto-encoding variational bayes, in: Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), Vol. 1, 2014.

[55] C. Doersch, Tutorial on variational autoencoders, arXiv preprint arXiv:1606.05908.

[56] D. Charte, F. Charte, S. Garcia, M. J. del Jesus, F. Herrera, A practical tutorial on autoen-
coders for nonlinear feature fusion: Taxonomy, models, software and guidelines, Information
Fusion 44 (2018) 78-96.

54

DISTRIBUTION

1 MS 1323 Anh Tran, 1463
1 MS 1318 Tim Wildey, 1463
1 MS 1323 Dan Z. Turner, 1463
1 MS 1411 Theron Rodgers, 1864
1 MS 1411 Hojun Lim, 1864
1 MS 0346 Joe Bishop, 1556
1 MS 1411 Veena Tikhare, 1864
1 MS 1327 Justin Newcomer, 1462
1 MS 1303 Brad Boyce, 1881
1 MS 0899 Technical Library, 9536 (electronic copy)

55

57

Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energys National
Nuclear Security Administration
under contract DE-NA0003525.

