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ABSTRACT

Generative Adversarial Networks (GANs) have been used as a deep learning approach to solving
physics and engineering problems. Using deep learning for these problems is attractive in that
reasonably accurate models can be inferred from only raw data, eliminating the need to define the
exact physical equations governing a problem. We expand on previous work [Farimani et al.
2017] using GANs to generate steady-state solutions to the two-dimensional heat equation. Using
a basic conditional GAN (cGAN), we generate accurate solutions for rectangular domains
conditioned on four edge boundary conditions (MAE<0.5%). For finding steady-state solutions
over arbitrary two-dimensional domains (not constrained to rectangles), we use a cGAN designed
for image-to-image translation. We train this GAN on various types of geometric domains
(circles, squares, triangles, shapes with one circular or rectangular hole), achieving accurate
results on test data made up of geometries similar to those in training (MAE<1%). For both of
these GANs, we experiment with different loss function terms, showing that a term using the
gradients of solution images significantly improves the basic cGAN but not the image-to-image
GAN. Lastly, we show that the image-to-image GAN performs poorly when applied to
two-dimensional geometries that vary in structure from training data (MAE<8% for shapes with
multiple holes or different shaped holes). This demonstrates the cGAN's lack of generalizability.
While the cGAN is an accurate and computationally efficient method when trained and tested on
similarly structured data, it is a much less reliable method when applied to data that is slightly
different in structure from the training data.
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1. INTRODUCTION

Advances in deep learning have led to data-driven approaches for solving problems within the
fields of physics and engineering [1] [2]. Deep neural networks are capable of recognizing input
features and learning mappings to output representations based solely on raw data. This makes
data-driven approaches advantageous in that they have the potential to infer approximate solutions
to physical problems that may have complex or unknown causal models [3]. In addition, aspects
of these deep learning models — such as their computational efficiency and ability to generalize
to different problem domains — make them useful for physical problems in which the causal
model is already well known.

A useful application of deep learning models to physical problems is for modeling transport
phenomena. [3] shows that deep learning models can be used as surrogate models for solving two
transport problems that are conventionally approached with numerical methods. While these
numerical methods are well known and fairly simple, [3] shows an approach using conditional
generative adversarial networks (cGANs) that has advantages in computational efficiency and
adaptability between different physical problems, while still maintaining good accuracy. The
cGAN architecture used to generate solutions in [3] works for both steady-state heat transfer and
fluid flow problems. This shows that even if the underlying partial differential equations differ
between problems, the cGAN architecture is able to successfully infer solutions for whichever
problem it is trained on. This adaptability makes it highly attractive as a potential model for other
physical problems.

Although the cGAN architecture can be trained to solve various types of problems, we show that
it has difficulty generalizing to data that has a slightly different structure from the training data.
We experiment with a cGAN trained on example solutions of the steady-state heat transfer
problem and show that while the cGAN performs well on new data with similar structure to
training data (i.e. similar types of shapes), it is significantly less reliable for inferring solutions to
geometries that are slightly more complex than those in the training data. If not resolved, this
presents a major disadvantage of applying cGANs to scientific problems, where the accuracy of
solutions is critical.

We also experiment with different loss functions for the generator network. All GANs are
characterized by a similar binary cross entropy (BCE) loss function [4], but adding more terms to
the loss function can further aid the GAN in solving specific problems. [2] showed that when
using GANs for image generation, using the BCE loss in addition to the L 1 loss between
generated images and ground-truth solution images gives improved results. We experiment with
this loss function term, as well as other additional terms that could improve training for the heat
transfer problem specifically. In doing so, we attempt to increase the smoothness and decrease the
noise of generated steady-state solutions.
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2. METHOD

2.1. Generative Adversarial Networks

A generative adversarial network (GAN) is a learning model made up of two different networks:
a generator and a discriminator. The generator G learns a mapping from a random input x in latent
space to an output y that matches some data distribution of interest: G : x y [4]. The
discriminator D is trained to distinguish between real and generated samples. In this way, the
discriminator and generator compete against each other: the generator's goal is to get better at
"faking" the discriminator, while the discriminator's goal is to identify fake generated samples.

For our experiments we use a conditional GAN (cGAN), where the output y is conditioned on
some input z, resulting in a mapping G : (x, z) —> y [5]. The objective loss function for the cGAN
can be expressed as:

LBCE(G,D) = E[log(D(z,y))] + E[log(1 — D(z,G(x,z))] (1)

Where D(z,y) is the probability that sample y came from the data distribution (rather than the
generator) given condition z, and G(x, z) is a fake generated sample conditioned on z. The
discriminator is trained to maximize this function, while the generator is trained to minimize it.
Training reaches a theoretical equilibrium when the discriminator gives both real and fake
samples a fifty percent probability of being real.

2.2. Additional Loss Terms

Previous work has shown that using an L 1 or L2 loss term in addition to the binary cross entropy
(BCE) loss term improves results and decreases blurring [6] [2]. In training the generator, we
calculate the L 1 norm of the mean absolute error (MAE), which is given by:

LMAE = Ilyz — G(x,z)111 (2)

where y, is a real data sarnple conditioned on z, and G(x, z) is a generated sample conditioned on

z.

In previous work applying GANs to the heat transfer problem, only the BCE and MAE loss terms
were used [3]. We experiment with two additional terms. The first additional term we use
calculates loss based on the gradients of the generated solution and the ground-truth solution. By
calculating the L 1 loss between these gradients, we attempt to generate smooth results with less
sharp changes in the generated temperature field. We calculate the gradients with a sobel
operator [7], which runs two 3x3 kernels convolutionally across the image; Sx for calculating the
gradient in the x direction, and Sy for calculating the gradient in the y direction. The gradient
magnitude S is calculated as1:

1The sobel operator typically takes the square root of this magnitude. We leave out the square root, as its derivative
is undefined at zero and can cause problems in backpropogation.
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S = Sz -FS; (3)

The L 1 distance between the sobel gradient of real data samples Sreal and generated data samples
Sgen is then calculated as:

LGRAD Sreal Sgen111

The last term we experiment with is a total variation term for denoising [8]. For total variation,
we want to minimize the sum of the absolute gradients over the entire generated image. We
average the total variation in both the x and y direction, resulting in the following loss term:

EL[(G(x,z)i+i -G(x,z),)+(G(x,z);_ki -G(x,z)i)]LTV 2n

The final joint loss function is:

L = LBCE +21/4,11,MAE X2LGRAD + X3LTV

We vary each lambda to see how each loss term affects the performance of the GAN.

3. GAN ARCHITECTURE

(4)

(5)

(6)

We experiment with two different GAN architectures for solving the heat transfer problem: a
basic conditional deep convolutional gan (cDCGAN) and a more specialized cDCGAN used for
image-to-image translation, known as the pix2pix GAN.

3.1. Basic cDCGAN Architecture

We adapt the basic cDCGAN from [9]. The generator G for this GAN is given two inputs: a
vector x of random noise and a condition vector z. The generator then passes x through a series of
convolutional layers, each paired with a batch normalization (BN) layer [10] and a rectified linear
unit (ReLU) activation function [11]. The final output is put through a tanh function, resulting in
an output image. The discriminator D is also given two inputs: a condition vector and the image
that the discriminator classifies. The discriminator is a binary classification network that processes
its inputs through a series of deep convolutional layers with BN and leaky ReLU (LReLU)
activations [12], and the final output is put through a sigmoid activation function. This output is
the scalar probability that the input image is a real solution, as opposed to a generated one.
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3.2. Pix2Pix GAN Architecture

The second architecture we use is the pix2pix GAN for image-to-image translation, adapted
from [2]2. This GAN architecture can be applied to various image-to-image applications without
the need for extensive parameter tuning. Previous work demonstrates the success of this GAN in
diverse applications such as stylistic transfer, image colorization, background removal, and
more [2]. This architecture has been used in previous work with the heat transfer problem [3], and
provides an advantage over the basic cDCGAN in that the boundary conditions are input as an
image, as opposed to just four edge values. This allows us to define boundary conditions for
arbitrary two-dimensional geometries, whereas the basic cDCGAN only allowed us to define a
rectangular geometry. Furthermore, the basic cDCGAN maps both a noise vector and a condition
vector to a solution image, whereas the pix2pix GAN directly maps the image containing
boundary conditions to a solution image (no input noise vector).

3.2.1. U-Net Generator

The generator network for the pix2pix GAN uses an encoder-decoder architecture. The input
image goes through a series of downsampling convolutional layers, until it reaches a bottleneck
and is upsampled to its original size. Any information from the input image that is needed to
construct the output representation must pass through the bottle neck. In image-to-image
translation problems, it is useful to maintain low-level information, such as the structure of edges.
Because of this, previous work proposes using skip connections that pass information between
equivalently sized layers of the encoder-decoder architecture, allowing low-level information to
pass by the bottleneck [2]. This is known as a U-Net encoder-decoder [13].

3.2.2. Patch-GAN Discriminator

The discriminator for the pix2pix GAN uses a patch-GAN architecture [2], which only penalizes
structure on a local scale. The discriminator runs an NxN patch convolutionally across the image
array, classifying each patch as real or fake. The classification outputs for each patch are then
averaged, giving the final output of the discriminator D.

4. EXPERIMENTS

4.1. Data

Two different datasets were generated, one for each of the two GAN architectures. Both datasets
contain input/solution pairs, where the input is an encoding of boundary conditions and the

2The pix2pix GAN (including both the U-Net and Patch-GAN) parameters and architecture are the same as those
given by [2].
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solution is the corresponding temperature of the steady-state solution to the two-dimensional heat
equation:

2 a2u a2u

± = (7)
ax2 ay2 at2

The input vector for the basic cDCGAN encodes four boundary conditions, where each boundary
condition is generated randomly from the continuous uniform distribution on the range
0 °C-100 °C. Each boundary condition corresponds to one edge of a 32x32 rectangular surface
and is generated independently of the other edges. The corresponding steady-state solution in
each pair is represented as a 1-channel 32x32 image, where the entire image is the domain over
which we solve for the solution. 10,000 samples are generated in this way and are split 90/10 into
train/test sets. A representative data sample is plotted in figure 4-1.

The data for the pix2pix GAN differs from the data for the basic cDCGAN in that it represents the
heat transfer problem for various two-dimensional geometries (including some partially-filled
geometric domains), rather than just a 32x32 rectangular surface. The input is encoded as a
2-channel 256x256 image: the first channel represents the boundary conditions on the border of
the geometric domain of interest, and the second channel represents the interior region of that
geometric domain with a boolean mask. The boundary conditions are generated randomly from
the continous uniform distribution on the range 0 °C-100 °C, similar to the cDCGAN. The area of
the input image outside of the domain of interest is set to 0. The training set consists of squares,
rectangles, triangles, and circles. Variants of these geometries with fully filled domains, domains
with a single circular hole, and slotted domains (single rectangular hole) make up the 11
geometries in the training set. 1,000 samples of each of these 11 geometries are generated, with a
90/10 train/test split. 4 additional geometries — squares with 4 holes, squares with one hexagonal
hole, right triangles with one hole, and general triangles with one hole — are generated only for
the test set, with 100 samples each. In total, there are 9,900 training samples and 1,500 test
samples. A representative data sample is plotted in figure 4-2.

Solutions for all sample pairs are generated by the finite element method (FEM) with MATLAB's
PDE Toolbox [14].

4.2. Experiments with Basic cDCGAN

We run experiments training the GAN from section 3.1 in PyTorch [15]. The GAN is trained on
data described in section 4.1. We run trials using four different combinations of the loss functions
from section 2:

Lt ot al = LBCE (8)

Ltotal — LBCE + kl LMAE (9)

Ltotal = LBCE + Ad. LMAE + kLGRAD (10)

Ltot al — LBCE + X1 LMAE + 21,2LGRAD + X3 LTV (11)

We run each experiment for 200 epochs, using a training batch size of 256. The model from the
epoch with the lowest mean absolute error (MAE) between the GAN-generated solution and the
ground-truth solution is used to evaluate performance for each of the loss functions.
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Figure 4-1 Data Sample for Basic cDCGAN: Sample boundary conditions/solution pair

generated for training basic cDCGAN. Solution generated by FEM. Units in °C.
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Figure 4-2 Data Sample for Pix2pix GAN: Sample input/solution pair generated for training
pix2pix GAN. Boundary conditions are the first channel of the input, the geometric domain

mask is the second channel of the input. Third image is solution generated by FEM. Units
in °C.
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4.3. Experiments with Pix2Pix GAN

We use the pix2pix GAN from section 3.2 as an image-to-image approach for solving the heat
transfer problem for various geometries. The GAN is trained on data described in section 4.1. We
experiment with different loss functions, using equations 9,10, and the following equation:

Ltotal LBCE + LMAE +X3-LTV (12)

We run each experiment for 200 epochs in PyTorch, using a training batch size of 32. The model
from the epoch with the lowest MAE between the GAN-generated solution and the ground-truth
solution is used to evaluate performance for each of the loss functions. In addition to evaluating
the different loss functions, we evaluate the performance of the pix2pix GAN on some geometries
that are not used in training. These geometries are described in section 4.1. This is to analyze how
the GAN generalizes to data with a slightly different structure from training data.

5. RESULTS

We use a test set as described in section 4.1 to evaluate the performance of the basic cDCGAN on
32x32 rectangular surfaces. The basic cDCGAN achieves realistic results for solving the heat
equation on this data. A representative generated solution from the test set is shown in figure 5-2.
For data with a range of 100 °C, equations 8, 9, 10, and 11 achieve MAEs of 1.182 °C, 0.941 °C,
0.386 °C, and 0.603 °C, respectively. This gives the loss function expressed in equation 10 the
best performance, with an MAE of 0.386 °C. This shows an improvement from the loss function
(equation 9) used in previous works [3] [2] by adding the L1 loss between the gradients of the
GAN-generated solutions and ground-truth solutions. Using the total variation of generated
solutions, however, does not improve the loss function.

We evaluate results of the pix2pix GAN on a test set of unseen data consisting of various
two-dimensional geometries, as described in section 4.1. To evaluate the generalizability of the
pix2pix GAN, the test set includes four different geometries that aren't present in the training data
(squares with 4 holes, squares with one hexagonal hole, right triangles with one hole, and general
triangles with one hole). For data with a range of 100 °C, equations 9, 10, and 12 achieve mean
absolute errors (MAEs) of 1.228 °C, 1.502 °C, and 1.244 °C, respectively. This gives the loss
function expressed in equation 9 the best performance, with an MAE of 1.228 °C. This loss
function is the loss function used in previous works for pix2pix problems [2] and the heat transfer
problem [3]. Although adding a term involving the generated solutions' gradients helps the basic
cDCGAN, it does not show any improvement for the pix2pix GAN. Like the basic cDCGAN,
using total variation (equation 12) also does not provide improvement.

The pix2pix GAN is able to generalize well to unseen data, but only if the unseen data is made up
of geometric structures similar to those in the training data. It doesn't not generalize well to
geometries that are slightly more complex than those in the training data. The GAN achieves an
MAE of 7.150 °C on squares with a hexagonal hole and an MAE of 2.255 °C on squares with four
holes, which are both significantly higher than the MAE over the whole test dataset. Without
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Figure 5-1 Evaluation of Different Loss Functions For Basic cDCGAN: Performance of

the GAN on test data. Three different loss functions (equations • 8, 9, and 10) are shown.

Loss function with total variation term (equation 11) ommitted from visualization, as the total

variation term did not have much effect on results.
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Figure 5-2 Solutions Generated with Basic cDCGAN: Solution generated using loss function 10. Units in °C.

those two shapes, the GAN achieves an MAE of 0.693 °C, which is similar to previous work [3].
The other geometry included only in the test data is a triangle with a hole, which had an MAE of
0.645 °C, making it better than the average MAE over the entire test set. Although triangles with
a hole were not in the training data, the training data included both triangles and other shapes that
had a circular hole. Their higher similarity to training geometries could explain why the GAN
performed better on triangles with a hole than on squares with a hexagonal hole and squares with
four holes, even though they were all excluded from training data.

Overall, the pix2pix experiments show successful results on training geometries, but difficulty
generalizing to data that is even just slightly more complex than the training data. This is
highlighted in figure 5-5, where the MAEs of different test samples are plotted. Some
representative solutions generated from test data are shown in figures 5-3 and 5-4.
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Figure 5-3 Solutions Generated with Pix2Pix GAN: Geometries from top to bottom row:

slotted rectangle (in train and test data), triangle with hole (only in test data), square with

four holes (only in test data), and square with a hexagonal hole (only in test data). Units in
°C.

15

- 100

- 80

- 60

- 40

- 20

- 100

- 80

- 60

- 40

0

- 100

- 80

- 60

- 40

2 0

0

- 100

- 80

- 60

- 40

_L 0



10

8

6

4

2

0

Figure 5-4 Absolute Error (Per Pixel) of Pix2Pix Solutions: Absolute error between

pix2pix generated solutions and ground-truth solutions for the samples plotted in figure 5-3.

Units in °C. Last plot (square with hexagonal hole) is an example of where the GAN failed

to generalize to unseen geometries, resulting in high error.

• z•

4001141Age

. ' •

• ;

• 
••••••-:

•• • •
• •••• • ••.' ••:* • -

‘Teiliaiiirt*AgOga •  4 • !

0 200 400 600 800 1000 1200 1400
Sample ID

Figure 5-5 Pix2Pix Gan Performance on Test Set Geometries: Mean Absolute Error for
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6. CONCLUSION

In this report we have used two different GANs (a basic cDCGAN and a pix2pix GAN) as
surrogate models for finding solutions to the heat equation over two-dimensional surfaces. We
have evaluated the performance of these GANs when trained with different loss functions. For the
basic CDCGAN, we have shown that using the L1 loss between the gradients of generated
solutions and the gradients of ground-truth solutions improves training. For the pix2pix GAN, the
additional loss function terms we tested didn't offer any improvement on the typical pix2pix loss
function. We also showed that both GANs were able to generalize well to test data, as long as the
test data was similar in structure to the training dataset. When evaluated on geometric surfaces
that are slightly more complex than those in the training data, however, the pix2pix GAN suffered
from high error. This exposes a weakness in using GANs as surrogate physics and engineering
models. While the GAN is appealing in its ability to learn a reasonably accurate solution mapping
from only raw data, this mapping is unreliable and has limited use if it can't generalize well to
new data. Until generalizability is improved, the GAN will remain a less reliable method than
others for accurately solving physics and engineering problems.
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