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ABSTRACT

The reported research is motivated by the need to address a key issue affecting the Dropkinson
bar apparatus. This unresolved issue is the interference of the stress wave reflected from the
bar—beam boundary with the measurement of the stress—strain response of a material tested in
the apparatus. The purpose of the wave beam that is currently connected to the bar is to dissipate
the stress wave, but the portion of the wave reflected from the bar—beam boundary is still sig-
nificant. First, we focused on understanding which parameters affect the reflected wave’s arrival
time at a strain gauge. Specifically, we used finite-element numerical simulations with the Si-
erra/SM module to study the effects of vatious bar—beam connection fixities, alternative wave
beam materials, and alternative geometries of the Dropkinson bar system based on a monolithic
design. The conclusion of this study is that a partial reflection always occurs at the bar—beam
boundary (or, for a monolithic design, at a point where the bar geometry changes). Therefore,
given a fixed total length of the bar, it is impossible to increase the reflected wave’s arrival time
by any significant amount.

After reaching this conclusion, we focused instead on trying to minimize the energy of the re-
flected stress wave circulating up and down through the bar over a relatively long period of time
(10 ms). Once again, we used numerical simulations with the Sierra/SM module to investigate
the effects of various bar—beam connection fixities, alternative wave beam materials, and param-
eters of an asymmetric monolithic design of the bar-and-beam system. This study demonstrated
that various parameters can significantly affect the energy of the wave reflections, with the dif-
ference between best and worst configurations being about one order of magnitude in terms of
energy.

Based on the obtained results, we conclude with concrete takeaways for Dropkinson bar users
and propose potential directions for future research and optimization.
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ACRONYMS AND DEFINITIONS

Abbreviation

Definition

WRT

wave reflection time

SMD symmetric monolithic design
AMD asymmetric monolithic design
BTR beam top radius




1. INTRODUCTION

1.1.

Dropkinson bar system

The Hopkinson bar (also known as split-Hopkinson pressure bar or Kolsky bar) [1],[2], is an appa-
ratus for testing the dynamic stress—strain response of materials [3]. An apparatus used in Sandia uti-
lizes a vertically falling bar and is referred to as the “Dropkinson” bar [4],[5]. Figure 1-1 shows a
schematic of the Dropkinson bar test configuration along with the Sierra model [0], including the
bar, the wave beam, and the bar—beam connection. The model components include: Hopkinson bar,
wave beam, nut plate, nut, screws, and supports. Materials of the components are described in Table

1-1.
fapenion Side View
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Figure 1-1. Dropkinson bar. Right top: Schematic of test configuration. Left: Sierra model of stress
waves (frontal view). Right bottom: Sierra model of wave beam and bar—beam connection.

Table 1-1. Materials of the Dropkinson bar components.

Component(s)

Material

Hopkinson bar

Steel C300

Wave beam, nut plate, nut, screws

Steel AISI 4140

Supports

Aluminum 6061-T5
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1.2 Problem description and study scope

This research is based on data provided by the DE experimental partners in Org. 1528, including
Brett Sanborn, Bo Song, and Colin Loeffler. The key issue is that the stress wave reflected down
from the bar—beam boundary interferes with the measurement of the stress—strain response of a ma-
terial that is being tested in the Dropkinson bar apparatus. The purpose of the wave beam that is
currently connected to the Hopkinson bar is to dissipate the stress wave [7], but the portion of the
wave reflected from the bar—beam boundary is still significant.

At the onset of this study, we formulated the following objectives:

e Investigate signal as a function of design parameters
o Which parameters determine the stress wave reflection?

e Investigate contact condition
o Does an imperfect connection cause the stress wave reflection?

e Improve beam design
o Extend the measurement period by slowing down the stress wave reflection

In the first part of the performed research, we focused on understanding which parameters affect
the reflected wave’s arrival time at a strain gauge (located 1 ft above the bottom end of the bar). Spe-
cifically, we used finite-element numerical simulations with the Sierra/SM module [6] to study the
effects of various bar—beam connection fixities, alternative wave beam materials, and alternative ge-
ometries of the Dropkinson bar system based on a monolithic design. The conclusion of this study
was that a partial reflection always occurs at the bar—beam boundary (or, for a monolithic design, at
a point where the bar geometry changes), and therefore, given a fixed total length of the bar, it is im-
possible to increase the reflected wave’s arrival time by any significant amount.

In the second part of the performed research, we focused instead on trying to minimize the energy
of the reflected stress wave circulating up and down through the bar over a relatively long period of
time (10 ms). Once again, we used numerical simulations with the Sierra/SM module to investigate
the effects of various bar—beam connection fixities, alternative wave beam materials, and parameters
of an asymmetric monolithic design of the bar-and-beam system. The conclusion of this study is that
various parameters can significantly affect the energy of the reflected wave, with the difference be-
tween best and worst configurations being about one order of magnitude.
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2. MODEL PROPERTIES

2.1. Longitudinal vibrations in a thin bar

The wave equation for a displacement w = w(x, t) is

*w  0*w
—_— C _,
ot? 0x?
where ¢ is the velocity of the longitudinal wave (the same as the sound velocity): ¢ =+/E/p, E is

Young’s modulus and p is the density (the mass per unit volume) of the bar material. The general
solution of the wave equation has the form:

w(x, t) = wi(ct —x) + wy(ct + x).

The normal modes of vibration depend on boundary conditions at the bar ends. For a bar of length
L, if both ends are fixed, or if both ends are free, the mode frequencies are given by

c
fo= nﬁ, n=1223,..

and for a bar fixed at one end and free at the other,

c
fm = mﬂ, m=1,3,5, ....

2.2. Reflection and transmission at a boundary

When a wave crosses a boundary of two different materials, a portion of the wave is transmitted and
another portion is reflected. Consider a wave that propagates in material 1 and arrives at the bound-
ary with material 2. We denote the amplitudes of the incident, transmitted, and reflected waves as

Wi, W, and W, respectively. The relationship between these amplitudes is [8],[9]

27,
YT g g,
Zl _ZZ
Wz vz,

The quantity Z is known as the impedance (correspondingly, Z; and Z, are impedances for materials
1 and 2, respectively). In general, the impedance is the force divided by the velocity. The impedance
for longitudinal waves in an infinitely long bar is

Z = uc = pcA = ,/EpA,
where 4 = pA is the mass per unit length and A is the cross-sectional area of the bar.

It follows from the relationship between w; and w;. that the amplitude of the reflected wave is zero
if the impedances for the two materials are equal (Z; = Z;). Note that a reflection will occur at any
boundary where the impedance changes. This can be caused by a change of material properties (e.g.,
a boundary between materials with different E and/or p values) or by a change in geometry of a ho-
mogeneous object (e.g., a location where the cross-sectional area of the bar changes).

12



2.3. Properties of the Hopkinson bar

The Hopkinson bar is a cylinder of radius 0.5” (0.0127 m) and height 12 ft (3.6576 m). Due to these
dimensions, the thin bar model should provide a good approximation. The bar is made of Maraging
C300 steel. The bar properties are:

Density: p = 0.289 Ibs./cu.in. = 8.0 g/cm3 = 8000.0 kg/m’

Young’s modulus: E = 27.54 X 10° psi = 1.899 x 10! Pa = 189.9 GPa

Longitudinal wave speed (using the thin bar model): ¢ = 4872.1 m/s

Frequency of first longitudinal mode (using the thin bar model): f; = 666.024 Hz

Wave round-trip traveling time (using the thin bar model, for a strain gauge located 1 ft above
the bottom end of the bar): tgyy = 0.001376 s

Cross-sectional area: A = 0.7854 sq.in. = 5.067 cm? = 5.067 X 10™* m?

Impedance per unit area (using the thin bar model): z = % = 3.898 X 107 kg/(m”s)

Impedance (using the thin bar model): Z = 1.975 X 10* kg/s

13



3. SIMULATION APPROACH

First, we investigated whether it is possible to quantify the stress wave reflection time with structural
dynamics analysis in the Sierra/SD module [6]. Our first question was: does the stress wave reflec-
tion time correspond to the first longitudinal mode of the bar or the first (vertical-only) bending
mode of the wave beam?

We started by simulating the stress wave propagation in the Hopkinson bar without the wave beam
(see Error! Reference source not found.), using both Sierra/SD and Sietrra/SM modules. Consid-
ering the wave round-trip traveling time for a strain gauge located 1 ft above the bottom end of the
bar, we obtained the following results:

e Sierra/SD simulation:
o First non-rigid mode frequency is 81.3 Hz
o First longitudinal mode frequency is 739.9 Hz; wave round-trip traveling time is 1.35 ms
e Sierra/SM simulation:
o Wave round-trip traveling time is 1.36 ms
Based on these results, the Sierra/SD prediction (for the first longitudinal mode) and the Sierra/SM

prediction agree, and also they both agree with the wave round-trip traveling time observed in the
experiment.

First non-rigid mode First longitudinal mode
81.3 Hz 739.9 Hz

Figure 3-1. Sierra/SD simulation of stress wave propagation in Dropkinson bar without wave
beam: first non-rigid mode and first longitudinal mode.

Next, we simulated the stress wave propagation in the Hopkinson bar connected to the wave beam
(see Figure 3-2), using both Sierra/SD and Sierra/SM modules. Considering the wave round-trip
traveling time for a strain gauge located 1 ft above the bottom end of the bar, we obtained the fol-
lowing results:

14



e Sierra/SD simulation:
o First mode frequency is 36.9 Hz
o First bending mode frequency is 59.6 Hz; wave round-trip traveling time is 16.78 ms

e Sierra/SM simulation:
o Wave round-trip traveling time is 1.36 ms

Based on these results, the Sierra/SD prediction (for the first bending mode) and the Sierra/SM pre-
diction do not agree. The Sierra/SM result for the stress wave round-trip traveling time agrees with
the experiment and is not affected by the presence or absence of the wave beam (which indicates
that the reflection happens at the bar—beam boundaty). On the other hand, the Sierra/SD prediction
for the stress wave round-trip traveling time, derived from the wave beam’s bending mode, disagrees
with the experiment. Therefore, simulations with the Sierra/SD module cannot be teliably used to
compute the stress wave reflection time. In the remainder of this report, all results are obtained us-
ing dynamic simulations with the Sierra/SM module.

First mode First bending mode
36.9 Hz 59.6 Hz

Figure 3-2. Sierra/SD simulation of stress wave propagation in Dropkinson bar connected to wave
beam: first mode and first bending (vertical only) mode.
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4, INVESTIGATION OF WAVE REFLECTION TIME

4.1. Computation of the reflected wave’s round trip time

The time interval of interest is the round-trip traveling time of the reflected stress wave, measured at
a strain gauge located 1 ft above the bottom end of the bar. For the sake of simplicity, we will refer
to this time interval as the wave reflection time (WRT). It is defined as

twr = trws — tiwss €y
where tjys is the start time of the initial wave (i.e., the time at which the initial wave arrives at the

gauge) and tyg is the start time of the reflected wave (i.e., the time at which the reflected wave ar-
rives at the gauge). These times are computed by using the following threshold conditions:

® tiws is the first time when |fg1¢] = 0.5 Ibf for t < 0.5 ms
® . is the first time when |fg1c] = 0.5 Ibf for t = 0.5 ms
Here, ff) is the filtered stress force, obtained from the raw stress force f by applying a 5th-order

filter with a pass frequency of 10 kHz at data interpolated to a time step of 1.0e-8 s.

4.2, Comparing wave reflection times for a perfect connection

We begin by considering a number of scenarios in which the top end of the Hopkinson bar is per-
fectly connected to a spring made of the same material as the bar (i.e., with the same density p) and
with a spring constant k. Specific examples include the cases when the top end of the bat is free

(k = 0) or fixed (k — ), as shown in Figure 4-1.

Spring Free Fixed Extended | L' Wave Beam
k,p k = k = oo k,p same 0<k<o

c=.E/p L

f f f f f

General 2L 2L 2(L+L)
Case P P Ee—s—

Figure 4-1. Examples of perfect bar connections.
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We simulated the stress wave propagation for the free and fixed perfect connections of the bar, and
computed the respective WRTSs. The simulation results agree with the analytical prediction. The
WRT obtained for the bar connected to the wave beam is not significantly different and matches the
experimentally measured time (~ 1.3 ms), as shown in Figure 4-2. The conclusion is that the stress
wave partially reflects from the top end of the bar whether it is connected to the wave beam or not.

Force Signal at Strain Gage

40
Sierra/SM Simulation — Free Bar
30} — Fixed Bar
— Wave Beam
20

[
o

Force (Ibf.)
o

-10
—20}
tWR = 135 s— 138 ms
=30} toe = 1.376 ms
485 0.5 1.0 1.5 2.0

Time (ms)

Figure 4-2. Simulated stress wave propagation (raw force signal), for the free and fixed perfect
connections and for the bar connected to the wave beam.

43. Comparing wave reflection times for different bar—-beam connections

Next, we investigated whether changing the bar—beam connection quality details affects the WRT.
Specifically, we varied connection fixity at various locations (see the lower left panel of Figure 1-1),
which resulted in 18 different connection variants (labeled from 0 to 17), shown in Table 4-1. In Ta-
ble 4-1, T stands for “Tied” (welded or securely threaded) and F stands for “Frictional” (sliding).
Note that variant 0 is implemented in the current experiment, and therefore we use it as the default
one in the rest of the studies where the bar—beam connection is fixed.

Table 4-1. Variants of the bar-beam connection.

Compo- | o | 4 |23 4|5 6|7 8|9 10|11 |12[13 14|15 1617

nent
Bar/Nut \+ /v iy |t |t |T|TIT|E|lE|F |F |E |F |F |E |F |T
Plate
Bar/Nut | T|T | TI|ITI|F|FIF|E|T Tt T 1 [ |F[F [F [T
HE{ Plate/ 1+ v Vel lT|T|E|F|T|T|E |E [T |T |F |F |F |T

NutPlate/ |+ | e v g T |E|T|E|T|E|T |E|T |F |T |E |F |T
Beam

Bar/Beam |F |F |F |F |F |F |F |F |F |F |F |F |F |F |F |F | T |T
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We simulated the stress wave propagation for the 18 variants of the bar—beam connection, and com-
puted the respective WRTSs. The resulting filtered force signals are shown in Figure 4-3. We find that
the WRT wvalues for all 18 variants are very similar (see Table 5-1 below). The smallest observed
value of the WRT (1.356 ms) is obtained for variant 17 (TTTTT), and the largest observed value of
the WRT (1.389 ms) is obtained for variants 10 (FTFTF) and 11 (FTFFF). Therefore, we conclude
that changing connection details has only minor influence on the WRT. On the other hand, we note
that connection details have a significant effect on the reflected wave amplitude (see further discus-
sion in section 5.2).

Force Signal at Strain Gauge

8

6l ﬂ Initial
wave

4l

= 2 \

ke J

~ | J PO - S

g O \/

S -2 / ‘
-4} Reflected waves |
-6}

8.0 0.5 1.0 15 2.0

Time (ms)

Figure 4-3. Simulated stress wave propagation (filtered force signal), for 18 variants of the bar-
beam connection.

44, Comparing wave reflection times for different wave beam materials

Next, we investigated whether changing the properties of the wave beam matetial affects the WRT.!
Specifically, we simulated the stress wave propagation for 66 hypothetical wave beam materials with
varying values of the density p and Young’s modulus E' (up to two orders of magnitude larger or
smaller than those of AISI 4140). The resulting values of the sound velocity, ¢ = /E /p, varied
from 0.022 to 89 times that of AISI 4140. In all these simulations, the wave beam geometry was
fixed (see Figure 1-1) and the bar—beam connection was also fixed (variant 0 in Table 4-1).

The resulting raw force signals are shown in Figure 4-4, for four wave beam materials: AISI 4140
(the actual material) and three hypothetical materials. Each of the hypothetical materials is labeled by

the value of Cgactor, defined as the ratio of the sound velocity ¢ in the material to that in AISI 4140:

[ . . . .
Cfactor = 7 We see that the WRT values are very similar for all studied wave beam materials
4140

! This analysis was performed in order to draw preliminary conclusions about the sensitivity of the WRT to the beam
design. In this sense, changing the beam material serves as a proxy for changing the beam geometry, in that both affect
the frequency response and the impedance. If the WRT is sensitive to beam material changes, then beam geometry de-
sign (maintaining the original AISI 4140 material) could be also effective in modifying the WRT. If the WRT is insensi-
tive to beam material changes, then changes to the beam geometry will be unlikely to affect the WRT. From the numeri-
cal point of view, performing parameter studies on two material parameters is far more cost-efficient than analyzing a
parametrized wave beam geometry.
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(AISI 4140 and 66 hypothetical materials), despite a very significant variation in their properties.
Since the WRT is practically independent of the wave beam material, we conclude that it is almost
exclusively determined by the partial reflection of the stress wave from the bar—beam boundary.

Force Signal at Strain Gage

—— AISI 4140

—— c_factor = 0.022
c_factor = 0.983

—— c_factor = 89.44

Force (Ibf.)

. l
|l o)
D J } Il "“ ”‘.“[\'l“"n

‘I

-20

000 025 050 075 100 125 150 175 200

Time (ms)

Figure 4-4. Simulated stress wave propagation (raw force signal), for AISI 4140 and three hypo-
thetical wave beam materials.

To more carefully investigate the variation of the WRT, we also performed an additional set of simu-
lations for 660 hypothetical wave beam materials with Cgycror values ranging from 0.01 to 80. The

resulting dependence of the WRT on Cgactor 1s shown in Figure 4-5, where dots are color-coded by a
range of Zg,cor values, where Zgycror = ZL is the ratio of the impedance Z « ,/Ep for the hypo-

4140
thetical material to that for AISI 4140. We see that the WRT varies very insignificantly, between

1.356 and 1.363, with a larger impedance typically corresponding to a smaller tyg.
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Time of reflected wave for bar with wavebeam (comparison of multiple studies)
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Figure 4-5. WRT versus c;,, for 660 hypothetical wave beam materials.

4.5. Monolithic design of the Dropkinson bar

Based on the results of studies described in sections 4.2—4.4, we understood that the stress wave is
partially reflected from the bar—beam boundary. Therefore, we investigated whether it is possible to
eliminate or significantly reduce the reflection by using a monolithic design (i.e., no boundary be-
tween the bar and the beam). The proposed symmetric monolithic design (SMD) of the bar-and-
beam system is shown in Figure 4-6 and its parameters are described in Table 4-2. We assume that
the monolithic bar-and-beam system is made of Maraging C300 steel.
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Figure 4-6. Symmetric monolithic design (SMD) of the bar-and-beam system.

Table 4-2. Parameters of the symmetric monolithic design (SMD) of the bar-and-beam system.

Parameter Notation Description

r r radius of bar curvature
beam Lyeam beam thickness

support Loupp distance from r to support
overhang Loyer distance past support

We simulated the stress wave propagation for the SMD, for various values of four parameters: ° (1),
Lpeam (beam), Lg,pp (support), and Lgyer (0verhang). We discovered that the signal characteristics are
mostly affected by the r parameter. Figure 4-7 and Figure 4-8 show, respectively, raw and filtered
force signals for three representative simulations with small (r = 1.104”), medium (r = 41.490")
and large (r = 71.971") values of .

We see that the WRT changes, depending on the value of 1. Specifically, the WRT decreases as 1
increases. A logical explanation for this effect is that for a larger r the widening of the bar begins at a
lower point, and this change of the bar geometry (which leads to the associated change of the im-
pedance) causes a partial reflection of the stress wave, resulting in an earlier arrival time of the re-
flected wave at the strain gauge. Also, the amplitude of the reflected wave decreases as 7 increases.
This is likely due to the fact that for a larger 7 the change of the bar width (and, consequently, the
change of the impedance) is more gradual, and therefore the partial reflection is weaker.
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Force Signal (Raw) at Strain Gage

18 — run 1-14: r = 1.104, support = 64.025, overhang = 55.623, beam = 1.018
17 — run 1-3: r = 41.490, support = 11.621, overhang = 17.110, beam = 0.596
16 — run 4-5:r = 71.971, support = 63.518, overhang = 32.752, beam = 2.855
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13
12 twr = 1.35ms
1(])' tWR =1.0ms

9 twr = 0.7 ms

Reflected waves

Force (Ibf.)
N WA UON

o

/1 L'
-1

J ! “‘i ‘\‘,‘ A o '“' '“"\“ m‘"" i nV “* “"“H’:"“M'# a
: R

=6
-7t

0.0 01 02 03 04 05 06 07 08 09 1.0 11 12 13 14 15 16 L7 1.8 19 2.0
Time (ms)

Figure 4-7. Simulated stress wave propagation (raw force signal), for the SMD with three different
sets of parameters.

Force Signal (Filtered) at Strain Gage

4
— run 1-14: r = 1.104, support = 64.025, overhang = 55.623, beam = 1.018
— run 1-3: r = 41.490, support = 11.621, overhang = 17.110, beam = 0.596
— run4-5:r = 71.971, support = 63.518, overhang = 32.752, beam = 2.855

3 Initial wave

2

Reflected waves
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Figure 4-8. Simulated stress wave propagation (filtered force signal), for the SMD with three differ-
ent sets of parameters.

Figure 4-9 shows typical results for the filtered force signal for the SMD with r = 1”. While the

WRT is practically constant when 7 is fixed, the amplitude of the reflected wave varies significantly

depending on the value of Lyeam, with a larger Lpean, value resulting in a weaker reflection. Also, the

amplitude of the reflected wave changes its sign between Lpeam < 1” and Lyeam > 17
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Force Signal (Filtered) at Strain Gage
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Figure 4-9. Simulated stress wave propagation (filtered force signal), for the SMD with r = 1".

We performed additional simulations to investigate the WRT dependence on the beam, support, and
overhang parameters, for the SMD with 7 = 1”. These results are shown in Figure 4-10, where the
WRT is plotted against each of the three variable parameters. We see that the WRT varies very insig-
nificantly (between 1.356 ms and 1.386 ms), and the only trend is with respect to the Lpeam value.
The discontinuity in the WRT trend at Lyeam = 17 is likely related to the sign change of the reflected
wave amplitude at the same Lpean, value.

Reflected wave time vs. support, overhang, and beam parameters, with fixed r = 1.0
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Figure 4-10. WRT versus beam, support, and overhang parameters, for the SMD with r = 1".

We also petformed similar analyses for the SMD with r = 42” and r = 72". For r = 42", typical
filtered force signals are shown in Figure 4-11 and the WRT dependence on beam, support, and
overhang is shown in Figure 4-12. For r = 72", typical filtered force signals are shown in Figure
4-13 and the WRT dependence on beam, support, and overhang is shown in Figure 4-14. We find
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that, for medium to large 1 values, reflection of the stress wave is almost completely determined by
the 7 parameter. No significant variation with respect to other three parameters is observed.

Force Signal (Filtered) at Strain Gage

4
— run 6-33: r = 42.000, support = 26.602, overhang = 25.541, beam = 0.034
run 6-16: r = 42.000, support = 65.585, overhang = 69.500, beam = 0.995
— run 6-31: r = 42.000, support = 29.350, overhang = 66.104, beam = 1.997
3
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Figure 4-11. Simulated stress wave propagation (filtered force signal), for the SMD with r = 42".

Reflected wave time vs. support, overhang, and beam parameters, with fixed r = 42.0
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Figure 4-12. WRT versus beam, support, and overhang parameters, for the SMD with r = 42”.
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Force Signal (Filtered) at Strain Gage

— run 7-9: r = 72.000, support = 64.240, overhang = 11.561, beam = 0.043
run 7-12: r = 72.000, support = 69.725, overhang = 27.744, beam = 0.977
— run 7-10: r = 72.000, support = 1.527, overhang = 24.903, beam = 1.989
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Figure 4-13. Simulated stress wave propagation (filtered force signal), for the SMD with r = 72",

Reflected wave time vs. support, overhang, and beam parameters, with fixed r = 72.0
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Figure 4-14. WRT versus beam, support, and overhang parameters, for the SMD with r = 72".

As discussed above, we observed that the WRT decreases as the 1 value increases. We performed
additional simulations to investigate this dependence. These results are shown in Figure 4-15, where
the WRT is plotted against 1, with fixed values of other three parameters (Lpeam = 1", Lsupp = 36",
and Lyyer = 36”). We see that the trend of the WRT dependence on 1 closely follows the theoretical
prediction based on the propagation of the first longitudinal mode in the thin bar model, which
yields tywr = %, where L = 132” — r is the distance between the strain gauge and the point where

the bar’s widening begins. This observation confirms that the partial reflection of the stress wave oc-
curs at the area where the bar geometry begins to change (which leads to the associated change of
the impedance). Note that the difference between the simulation results and the theoretical predic-
tion slightly increases with 7, which is likely due to the fact that the thin bar model approximation
becomes less accurate as L decreases.
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5. INVESTIGATION OF REFLECTED WAVE ENERGY

Based on results presented in section 4, extending the WRT is virtually impossible due to the fact
that a partial reflection always occurs at the bar—beam boundary (or, for a monolithic design, at a
point where the bar geometry changes). Instead, we decided to focus on minimizing the energy of
the reflected wave, since a relatively weak reflected wave should not interfere much with the meas-
urement of the stress—strain response.

5.1. Computation of the energy ratio

For this study, we decided to investigate the quantity Eg, which is the ratio of energies between the
reflected wave (from its start time to 10 ms) and the initial wave:

Er = ftffz (t)dt/ tifwefz (H)dt. ()

Here, f is the raw stress force at the gauge, tjws and tjye are the start and end times of the initial
wave, tpys is the start time of the reflected wave, and tf = 10 ms is the final time. Threshold condi-
tions for finding tijws, tiwe, and tryg are

® tiws is the first time when |fg1¢] = 0.1 1bf for t < 0.5 ms
® tiwe is the last time when |fg1¢| = 0.1 1bf for t < 0.5 ms
® . is the first time when |fg1:] = 0.5 Ibf for t = 0.5 ms

As defined above, ff; is the filtered stress force, obtained from f by applying a 5th-order filter with
a pass frequency of 10 kHz at data interpolated to a time step of 1.0e-8 s.

We evaluate the integrals in Eq. (2) by using the Simpson method (which is about 4% more accurate
than simply summing over squared force values).

5.2. Comparing energy ratios for different bar-beam connections

Similarly to the analysis described in section 4.3, we investigated whether changing the bar—beam
connection quality details affects the energy ratio. Specifically, we simulated the stress wave propaga-
tion over the time interval of 10 ms for 18 different connection variants (labeled from 0 to 17),
shown in Table 4-1. In all these simulations, the wave beam geometry was fixed (see Figure 1-1) and
the wave beam material was also fixed (AISI 4140).

Energy ratios obtained from the simulations for all 18 connection variants are reported in Table 5-1.
We see that changing connection details can significantly affect the energy ratio. The smallest ob-
served Ep value (1.557) is obtained for variant 9 (FTTFF) and the second smallest value (1.639) for
variant 11 (FTFFF). The largest observed Eg values (from 4.223 to 4.286) are obtained for vatiants
12-15 (FFXXF). As described in section 4.3, T stands for “Tied” (welded or securely threaded) and
F stands for “Frictional” (sliding), while X means that it can be either T or F. Variants 12—15 are the
only ones for which all three connections to the bar (Bar/Nut Plate, Bar/Nut, and Bar/Beam) are
frictional. In these configurations, neatly no load transfer would occur between the bar and the wave
beam. This is confirmed by the very large Eg values for these variants, indicating that (almost) the
entire stress wave is reflected down from the top end of the bar and (almost) none of it is transmit-
ted to the wave beam to dissipate.
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Table 5-1. Wave reflection times and energy ratios for AISI 4140 steel and 18 variants of the bar—

beam connection.

Z:: = I?Iaa rtéNut Bar / Nut ::: platel g:;;late I"| Bar/Beam (:;‘”;‘) Ep
0 tied tied tied tied frictional 1.360 2.160
1 tied tied tied frictional frictional 1.361 1.746
2 tied tied frictional tied frictional 1.361 2.091
3 tied tied frictional frictional frictional 1.361 1.864
4 tied frictional tied tied frictional 1.361 1.956
5 tied frictional tied frictional frictional 1.361 1.663
6 tied frictional frictional tied frictional 1.361 1.947
7 tied frictional frictional frictional frictional 1.361 1.786
8 frictional tied tied tied frictional 1.386 2.214
9 frictional tied tied frictional frictional 1.386 1.557
10 frictional tied frictional tied frictional 1.389 1.959
11 frictional tied frictional frictional frictional 1.389 1.639
12 frictional frictional tied tied frictional 1.371 4.223
13 frictional frictional tied frictional frictional 1.371 4.286
14 frictional frictional frictional tied frictional 1.371 4.260
15 frictional frictional frictional frictional frictional 1.371 4.252
16 frictional frictional frictional frictional tied 1.363 1.872
17 tied tied tied tied tied 1.356 2.176

Figure 5-1 shows the filtered force signal for three connection vatiants: 9 (FT'TFF, Eg = 1.557, the
smallest energy ratio value), 0 (TTTTF, Eg = 2.160, the variant implemented in the current experi-
ment and the default one in the studies where the connection quality details are fixed), and 13
(FFTFF, Ex = 4.286, the largest energy ratio value). Figure 5-1 clearly demonstrates that the ampli-
tude of the reflected wave can be significantly influenced by the connection fixities. In particular, for
variant 13, the amplitude of the reflected wave when it traverses the gauge for the first time is equal
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to the amplitude of the initial wave, confirming that the entire stress wave is reflected down from
the top of the bar when all connections to the bar are frictional.

Filtered Force Signal at Strain Gage

—— study = 9, connections = F T T F F, energy ratio = 1.557
—— study = 0, connections =TT TTF, energy ratio = 2.160
—— study = 13, connections = F F T F F, energy ratio = 4.286

Force (Ibf.)
o

0 2 4 6 8 10
Time (ms)

Figure 5-1. Simulated stress wave propagation (filtered force signal) over 10 ms, for three connec-
tion variants.

5.3. Comparing energy ratios for different wave beam materials

Similarly to the analysis described in section 4.4, we investigated whether changing the properties of
the wave beam material affects the energy ratio (again, this analysis uses the wave beam material
change as a proxy for the wave beam geometry change). Specifically, we simulated the stress wave
propagation over the time interval of 10 ms for 660 hypothetical wave beam materials with varying
values of the density p and Young’s modulus E' (up to two orders of magnitude larger or smaller
than those of AISI 4140). Respective Cgactor values ranged from 0.01 to 80. In all these simulations,

the wave beam geometry was fixed (see Figure 1-1) and the bar—beam connection was also fixed
(variant O in Table 4-1).

The resulting energy ratio values for each of the hypothetical materials are plotted against Cgactor i
Figure 5-2, where dots are color-coded by a range of Zg,cror values. We see that Eg varies in a broad
range, from approximately 0.935 to approximately 4.3, depending on the material properties. The
energy ratio increases with Cgacror as the latter grows from about 0.1 to 10, but stays in a relatively
tight range (indicative of a saturation) for Cgaeror < 0.1 and Ceyeor > 10.

As seen from the color-coding in Figure 5-2, the spread between Ex values obtained for materials
with the same value of Cgycror can be explained by the difference in the respective values of Zgycor-
To better understand the non-trivial dependence of the energy ratio on the impedance, we plot Eg
against Zg,ctor in Figure 5-3, where dots ate color-coded by a range of Cycror values. We find that
best values of the energy ratio are obtained for Zg,cyor values in the range 0.5-0.8. Based on these
results, we conclude that the key property of the wave beam material that determines the energy of
the reflected wave is the sound velocity but the impedance also plays an important role.
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Energy ratio between reflected and initial waves

Figure 5-2. Energy ratio £, versus c;,.,, for 660 hypothetical wave beam materials, color-coded by

Energy ratio between reflected and initial waves

Figure 5-3. Energy ratio &, versus Z;,., for 660 hypothetical wave beam materials, color-coded by
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Examples of three typical filtered force signals for hypothetical materials with small, medium, and
large values of Cgactor are shown in Figure 5-4. We see that the reflected wave amplitude can be sig-
nificantly decreased by choosing a wave beam material with optimal Cgycpor and Zgacror values. Also,
as the reflected wave travels up and down the bar, it traverses through the gauge six times over 10
ms. This observation explains why the energy ratio values shown in Figure 5-2 and Figure 5-3 are
relatively large (and in many cases larger than one), even so only a small portion of the stress wave is
reflected from the bar—beam boundary.

Filtered Force Signal at Strain Gage

—— c_factor = 0.054, impedance_factor = 0.477, energy ratio = 0.935
—— c_factor = 1.017, impedance_factor = 0.251, energy ratio = 2.153
6 —— c_factor = 79.78, impedance_factor = 1.184, energy ratio = 4.269

Force (Ibf.)

o
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Figure 5-4. Simulated stress wave propagation (filtered force signal) over 10 ms, for three hypo-
thetical wave beam materials.

5.4. Varying both the bar-beam connection and the wave beam material

We also investigated how the energy ratio is influenced when we vary both the bar—beam connec-
tion quality details and the wave beam material. In simulations performed for this investigation, the
wave beam geometry was fixed (see Figure 1-1).

First, we studied how different connection variants perform for a particular hypothetical wave beam
material (that we refer to as Material X), which results in the smallest £ value (0.935) for connec-
tion variant 0. Properties of Material X are described in Table 5-2. The filtered force signal for Mate-
rial X and connection variant 0 is shown by the blue line in Figure 5-4.

Table 5-2. Properties of Material X and Material Y.

: p E c Z
Materlal log]_() - 10g10 ( ) Cfactor == Zfactor e
p4140 E4140 C4140 Z4140

X 0.946550978 —1.588835443 0.05398919 0.47737291

Y 1.215100035 —1.196544067 0.06225553 1.02159318

We simulated the stress wave propagation over the time interval of 10 ms for Material X and all 18
connection variants. The resulting energy ratios are reported in Table 5-3. We see that when AISI
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4140 is replaced by Material X, energy ratio values decrease for most connection variants, with a no-
table exception of variants 12-15, for which E values still remain very large (> 4.2). This observa-
tion confirms our conclusion that in cases where all three connections to the bar are frictional, the
presence of the wave beam plays no role due to the complete reflection of the stress wave from the
top of the bar. On the other hand, we see very significant improvements for connection vatiants 17
(TTTTT, Eg decreases from 2.176 to 0.773) and 4 (TFTTF, Eg decreases from 1.956 to 0.821). We
also see an improvement for connection variant 9, which achieves the smallest Eg value of 1.557 for
AISI 4140, but the respective Eg value of 0.958 for Material X is only the seventh smallest among
the 18 variants.

Table 5-3. Energy ratios for Material X and 18 variants of the bar-beam connection

Vari- Bar / Nut Bar / Nut Nut Plate / | Nut Plate / | Bar/ Ep for Er f_or
ant Plate Nut Beam Beam AISI 4140 | Material X
0 tied tied tied tied frictional 2.160 0.935

1 tied tied tied frictional frictional 1.746 1.125

2 tied tied frictional tied frictional 2.091 0.985

3 tied tied frictional frictional frictional 1.864 1.146

4 tied frictional tied tied frictional 1.956 0.821

5 tied frictional tied frictional frictional 1.663 0.970

6 tied frictional frictional tied frictional 1.947 0.949

7 tied frictional frictional frictional frictional 1.786 1.125

8 frictional tied tied tied frictional 2.214 0.864

9 frictional tied tied frictional frictional 1.557 0.958

10 frictional tied frictional tied frictional 1.959 0.984

11 frictional tied frictional frictional frictional 1.639 0.947
12 frictional frictional tied tied frictional 4.223 4.219
13 frictional frictional tied frictional frictional 4.286 4.258

14 frictional frictional frictional tied frictional 4.260 4.253
15 frictional frictional frictional frictional frictional 4.252 4.259
16 frictional frictional frictional frictional tied 1.872 1.857

17 tied tied tied tied tied 2.176 0.773
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Next, we investigated how connection variants with lowest energy ratios perform over a range of hy-
pothetical wave beam materials. In addition to connection variant 0 (TTTTF), whose performance
with respect to different wave beam materials is described in section 5.3, we considered three more
variants: 9 (FTTFF, smallest E value for AISI 4140), 17 (TTTTT, smallest Ep value for Material X),
and 4 (TFTTF, second smallest £ value for Material X). Specifically, for each of these three vari-
ants, we performed simulations for 300 hypothetical wave beam materials with varying values of the
density p (up to two orders of magnitude larger than that of AISI 4140) and Young’s modulus E (up
to two orders of magnitude smaller than that of AISI 4140).

Figure 5-5 shows the resulting energy ratios plotted against Cgacror (With Ceactor € [0.01, 1.0]),
where dots are color-coded by the connection variant. We observe that for hypothetical materials
with 0.25 < Cgaeror S 1.0 (., with properties relatively close to those of AISI 4140), Eg values are
smallest for connection variant 9. For hypothetical materials with Cgacror S 0.25, Ex values are
smallest for connection variant 17. The improvement in energy ratio saturates for Ceacor S 0.08.
The best overall E value we found in this investigation is 0.707, obtained for connection variant 17

and a hypothetical material that we refer to as Material Y. Properties of Material Y are described in
Table 5-2.

Energy ratio for bar with wavebeam (comparison of multiple studies)
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Figure 5-5. Energy ratio £, versus c;,,, for connection variants 0, 9, 17, 4 and various hypothet-
ical wave beam materials.

Figure 5-6 shows filtered force signals for the cases of connection variant 0 with Material X (the
blue line, the same as the blue line in Figure 5-4) and connection variant 17 with Material Y (the red
line). As said above, Material X results in the smallest £ value (0.935) for variant 0, and Material Y
results in the smallest E value (0.707) for variant 17 and, furthermore, among all combinations of
connection variants and hypothetical wave beam materials that we studied.
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8 Filtered Force Signal at Strain Gage

—— connection type = 0, c_factor = 0.054, impedance_factor = 0.477, energy ratio = 0.935
—— connection type = 17, c_factor = 0.062, impedance_factor = 1.022, energy ratio = 0.707

Force (Ibf.)

0 2 4 6 8 10
Time (ms)

Figure 5-6. Simulated stress wave propagation (filtered force signal) over 10 ms, for connection
variant 0 with Material X and connection variant 17 with Material Y.

5.5. Asymmetric monolithic design of the Dropkinson bar

Finally, we investigated whether it is possible to significantly reduce the energy of the reflected wave
by using a monolithic design of the bar-and-beam system. In this investigation we consider a modifi-
cation to the SMD described in section 4.5. Specifically, we propose an asymmetric monolithic de-
sign (AMD), which is shown in Figure 5-7 and whose parameters are described in Table 5-4. We as-
sume that the monolithic bar-and-beam system is made of Maraging C300 steel.

support overhang
beam_top_radius \ /

beam_Helta

r r
—
beam D b
” eam
144 profile
1”

bar qr
1”

profile

T 127) ||

—

* strain gage

Figure 5-7. Asymmetric monolithic design (AMD) of the bar-and-beam system.
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Table 5-4. Parameters of the asymmetric monolithic design (AMD) of the bar-and-beam system.

Parameter Notation Description

r r radius of bar curvature

beam Lyeam average beam thickness

support Lgypp distance from r to support

overhang Lover distance past support

beam delta Apear, difference in beam thickness between right
and left halves

beam left Ly = Lyeam — 0.58peam thickness of beam’s left half

beam right Ly = Lyeam + 0.50pcam thickness of beam’s right half

beam top radius Toto radius of curvatu!‘e for connection between

(BTR) ? beam'’s left and right halves

Figure 5-8 shows two views of the AMD model geometry for a specific combination of parameter
values: 7 = 19.1%, Lyeam =7 = 19.1", Lgypp = 32.178", Loyer = 85" — Lgypp = 52.8227,
Apeam = 0.94 17 = 17.954", 1y, = 10”. As will be shown in section 5.5.5, the AMD with these

parameter values results in a very small energy ratio value: € = 0.451.

Figure 5-8. Views of the AMD model geometry.

As seen from Figure 5-7 and Figure 5-8, the difference between SMD and AMD is that in the latter
case the beam’s left and right halves have a different thickness. This design was inspired by the ob-
servation that the sign of the reflected wave’s amplitude can depend on the beam thickness (cf. Fig-
ure 4-9). Therefore, the motivation for the AMD is to create a destructive interference between the
waves reflected down from the left and right parts of the top surface of the beam, thus directing a
significant portion of the reflected wave towards the arms of the beam where it is more likely to dis-
sipate.
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5.5.1. Dependence of energy ratio on beam delta

We investigated the dependence of the energy ratio on various AMD parameters. First, we per-
formed simulations in which we varied the value of Apeypy in the range from 0” to 1”. In one set of
simulations, we also varied the value of the beam top radius (BTR) to keep 7hop = Apeam, while val-
ues of the other parameter were fixed: 7 = 1", Lyeam = 1", Lsypp = 15", Loyer = 44”. The result-
ing energy ratios (blue dots) and WRTs (red dots) are plotted against Apeap, in Figure 5-9. We see
that the energy ratio oscillates as a function of Apeay, and has the global minimum at Apeay =

0.94”".

Asymmetric beam. Studies 1, 2, 2a, 2b, 3, 3l (r = 1, support = 15, overhang = 44, beam = 1, BTR = beam delta)
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Figure 5-9. Energy ratio £; and WRT ¢t versus A, for AMD with 1., = Ap..,, and fixed values
of other parameters.

We also performed additional sets of simulations with Apeay, varying in the range from 0” to 1” and
different fixed Ty, values (0.57,1”,10”, 25", 50”), while the other parameters had the same fixed
values as described above. The energy ratios obtained for all these sets of simulations are plotted
against Apeam in Figure 5-10, where dots are color-coded by the T, value. We once again see an

oscillating pattern for Eg as a function of Apeam, and the global minimum is still near the same value
of Apeam =~ 0.94”. The smallest values of Eg are obtained for Ty, = 10"
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Energy ratio for asymmetric beam geometry (comparison of multiple studies)
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Figure 5-10. Energy ratio £, versus A,,,, for AMD with various values of r,,,,, and fixed values of
other parameters.

5.5.2. Dependence of energy ratio on radius of bar curvature

Next, we performed simulations in which we varied the value of  while keeping 7o, = 10” fixed.
For the rest of AMD parameters, we considered four combinations of values:

(@) Lpeam = 1", Lsypp = 16" — 71, Loyer = 44", Apeam = 0.94"
(b) Lpeam = 1", Lsupp = 15", Loyer = 44", Apeam = 0.94"
(© Lpeam =7, Lsypp = 16" — 7, Loyer = 44", Dpeam = 0.94 1
(d) Lpeam =7, Lsypp = 157, Loyer = 44", Dpeam = 0.94 1

The energy ratios obtained for all these simulations are plotted against r in Figure 5-11, where dots
are color-coded by the combination of parameter values (black for combination (a), blue for combi-
nation (b), red for combination (c), and yellow for combination (d)). We see that the pair of combi-
nations (a) and (b), where Lpeam and Apeam have fixed values (Lpeam = 1” and Apeam = 0.94”)
petform best for small 7 values (r < 1”). On the other hand, the pair of combinations (c) and (d),
whete Lpeam and Apean increase linearly with 7 (Lpeam = 7 and Apgam = 0.94 1) perform best for
large 1 values. The WRTs obtained for the same four combinations of parameter values are plotted
against " in Figure 5-12. We see a familiar dependence of tyg on 1 (cf. Figure 4-15), with a “jump”
in the WRT value at 7 = 1”. Note that the WRT trends for the pait of combinations with Lpeam =
1” and the pair of combinations with Lyeam = 7 differ only for r < 1”.
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Energy ratio for asymmetric beam geometry (comparison of multiple studies)
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Figure 5-11. Energy ratio £, versus r for AMD with four parameter value combinations.
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We took a closer look at combination (d) that appears to result in the best performance (in terms of
minimizing the energy ratio) for 7 > 1”. The resulting energy ratios (blue dots) and WRTs (red
dots) are plotted against 1 in Figure 5-13. The overall trend for Ep is to improve (i.e., decrease) as 1
increases, but it also exhibits oscillations that result in multiple local minima at various values of 7.
To maintain reasonable parameter values with respect to manufacturing capabilities, we restricted

our investigation to 7 < 20”. Therefore, we will focus our attention on local minima atr = 15.1”
andr =~ 19.1".

Asymmetric beam. Studies 6b, 6d, 6f (support = 15, overhang = 44, beam = r, beam delta = 0.94*r, BTR = 10)
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Figure 5-13. Energy ratio £; and WRT t,,; versus r for AMD with r,,,,, = 10” and combination (d) of
other parameter values.

5.5.3. Dependence of energy ratio on beam top radius

From the analysis described in in section 5.5.1, we found that the BTR value of 7j,¢,, & 10" is opti-
mal when 7 = Lpeam = 1”. However, what is the optimal value of o, When 1 and Lypeam = 7 are
larger, in patticular, for the local minima at 7 = 15.1” and r = 19.1”? To answer this question, we
performed simulations with 7., varying between 0.5” and 50”. Figure 5-14 shows the resulting en-
ergy ratios (blue dots) and WRTs (red dots), plotted against T, for 7 = 19.1” and combination
(d) of other parameter values. We see that, for these parameter values, the energy ratio has a sharp
minimum at Ty, & 10”. Figure 5-15 shows the resulting energy ratios, plotted against Tyop, for
three different values of 7 (r = 1”7, r = 15.1”, and r = 19.1”) and combination (d) of othet param-
eter values. In the cases 7 = 1” and v = 15.1", the energy ratio does not have a sharp minimum at
Throp & 10” but its value at Ty,iop = 10” is still reasonably small (compared to other Eg values in the
set with the same value of 7).
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Asymmetric beam. Studies 4a, 4c (r = 19.1, support = 15, overhang = 44, beam = r, beam delta = 0.94%r)
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Figure 5-14. Energy ratio £; and WRT ¢, versus ry,, for AMD with r = 19.1” and combination (d)
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5.5.4. Dependence of energy ratio on beam delta and average beam thickness

for optimal value of radius of bar curvature

Based on the analysis in section 5.5.2 and section 5.5.3, we decided to use the parameter values r =
19.1" and 7yy¢op = 10” in order to minimize the energy ratio. Next, we want to verify that the

choices Apeam = 0.94 7 and Lypeam = T are optimal for r = 19.1". We set 7 = 19.1", 11,5, = 107,
L =15",L

supp over = 44", and performed two additional sets of simulations.

: : ; . A
In one set of simulations, we used Lpeam = 7 = 19.1” and varied the ratio @ between 0.1 and

Apeam

1.0. The resulting energy ratios (blue dots) and WRTs (red dots) are plotted against in Figure

5-16. These results confirm that the choice Apeay, = 0.94 1 is indeed optimal for 7 = 19.1".

Asymmetric beam. Studies 7, 7a (r = 19.1, support = 15, overhang = 44, beam =r, BTR = 10)
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Figure 5-16. Energy ratio £; and WRT ¢t,,; versus the ratio A, /r for AMD with r = 19.1” and
Totop = 107
In another set of simulations, we used Apeam = 0.94 1 and varied the value of Lyeam between 8”
and 30”. The resulting energy ratios (blue dots) and WRTs (red dots) ate plotted against Lpeam in
Figure 5-17. The energy ratio indeed has a local optimum at Lpeam = 19.1” (i.e., at the value equal

to 7). There also exist slightly better local minima at larger Lyeam values, but they correspond to a
beam which would be too thick for practical purposes.

We also performed the same type of analysis for r = 15.1”. The resulting enetgy ratios (blue dots)
and WRTSs (red dots) are plotted against Lpeam in Figure 5-18. We see that the energy ratio has mul-
tiple local minima at vatious values of Lpean, including the one at Lyeay = 15.17 (i.e., at the value

equal to 7). However, the result obtained for 7 = Lpeay, = 19.1” is more appealing.
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Asymmetric beam. Studies 8, 8a (r = 19.1, support = 15, overhang = 44, beam delta = 0.94*r, BTR = 10)
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Asymmetric beam. Studies 8b, 8c (r = 15.1, support = 15, overhang = 44, beam delta = 0.94*r, BTR = 10)
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5.5.5. Dependence of energy ratio on beam length

The total length of the beam in the monolithic design is 2(7‘ + Leypp + Lover) + 1”. In previous
analyses, we used the fixed values Lgypp, = 15" and Loyer = 44”. To investigate the dependence of
the energy ratio on Lgypp and on the total beam length, we performed four sets of simulations, in
each of which we varied Lgypp, between 5” and 50” while keeping the value of Lgypp + Loyer fixed.
The values of Lgypp + Lover in these four sets of simulations were 59", 72", 85”, and 98”. Values
of the other parameters were fixed: ¥ = 19.1”, Lyeam = 7 = 19.1”, Apeam = 0.94 r = 17.954”,
Thtop = 10”.

The resulting energy ratios are plotted against Lgypp, in Figure 5-19, where dots are color-coded by
the value of Lgypp + Lover- In general, the longer the beam, the smaller the energy ratio. This result
supports the idea that the AMD can facilitate directing a significant portion of the reflected stress
wave towards the arms of the beam. Additionally, we see that Eg oscillates as a function of Lgypp,

which indicates that the propagation of the stress wave in the beam depends not only on the total
beam length but also, to some degree, on the location of supports.

Since the increase of Lgypp + Loyer from 85” to 98” yields only a marginal improvement, we pro-
pose to consider using the minimum of the energy ratio Ep = 0.451 achieved at the parameter val-
ues Lgypp = 32.178", Loyer = 85" — Lgypp = 52.822” (corresponding to the lowest red triangle in
Figure 5-19). The AMD model geometry for this optimal combination of parameter values is shown
in Figure 5-8.

Energy ratio for asymmetric beam geometry (comparison of multiple studies)
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Figure 5-19. Energy ratio £, versus L,,, for AMD with four different values of Ly, + Loyer-
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5.5.6. Examples of stress wave propagation

To illustrate the stress wave propagation in the AMD, Figure 5-20 shows filtered force signals for
three combinations of AMD parameter values. The solid black line in Figure 5-20 corresponds to
the optimal combination of parameter values described in section 5.5.5 and illustrated in Figure 5-8:
7 =19.1", Lpeam =1 = 19.1", Lgypp = 32.178", Loyer = 85" — Lgypp = 52.822", Apeam =
0.94 1 = 17.954", 1xop, = 107, leading to Eg = 0.451. This is one of the best results we discov-
ered for the AMD. The dashed blue line corresponds to a combination of parameters leading to

Er = 1.042 (a medium quality result for the AMD), and the dash-dotted red line corresponds to a
combination of parameters leading to Eg = 1.630 (a poor quality result for the AMD). While the
AMD with the optimal combination of parameter values significantly reduces the amplitude of the
reflected wave, the reflection is still not negligible, so further improvements are needed.

Filtered Force Signal at Strain Gage
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Figure 5-20. Simulated stress wave propagation (filtered force signal) over 10 ms, for AMD with
three different sets of parameter values.
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6. SUMMARY AND CONCLUSIONS

In the first part of this work, we used finite-element numerical simulations to investigate the possi-
bility of delaying the arrival of the reflected wave at the strain gauge, in order to allow for a longer
measurement of the stress—strain response of materials tested in the Dropkinson bar apparatus. For
the current Dropkinson bar design with a wave beam attached to the bar, we focused on influencing
the WRT by changing the bar—beam connection quality details and properties of the wave beam ma-
terial. We concluded that either of these changes affects the WRT very insignificantly, due to a re-
flection that always occurs at the bar—beam boundary. We also studied how the WRT is affected by
varying the parameters of an alternative, monolithic design of the bar-and-beam system. In this case,
a partial reflection of the stress wave occurs at a point where the bar geometry changes (resulting in
the respective change of the impedance). Based on these observations, our final conclusion is that,
given a fixed total length of the bar, it is impossible to significantly extend the WRT.

In the second part of this work, we focused instead on trying to minimize the energy of the reflected
stress waves circulating up and down through the bar over a period of 10 ms. We found that the ra-
tio of energies between the reflected wave (from its start time to 10 ms) and the initial wave can vary
significantly depending on various system parameters.

First, we computed the energy ratio for each of the 18 variants of the bar—beam connection, charac-
terized by the use of either “Tied” (welded or securely threaded) or “Frictional” (sliding) connection
fixity at five joints (Bar/Nut Plate, Bar/Nut, Nut Plate/Nut, Nut Plate/Beam, and Bar/Beam). The
obtained results demonstrate that the energy of the reflected wave can be significantly influenced by
the connection fixities. In particular, four variants for which all three connections to the bar
(Bar/Nut Plate, Bar/Nut, and Bar/Beam) are frictional, exhibit very high energy ratio values (> 4.2),
due to almost complete reflection of the stress wave from the top end of the bar. This happens due
to the fact that in these configurations nearly no load transfer occurs between the bar and the wave
beam. On the other hand, some connection variants perform much better in reducing the reflection
of the stress wave at the bar—beam boundary. The smallest energy ratio value (1.557) is obtained for
variant 9 (FT'TFF) and the second smallest value (1.639) for variant 11 (FTFFF), thus providing an
improvement compared to the value of 2.160 obtained for variant 0 (TTTTF) implemented in the
current experimental setup.

Second, we computed the energy ratio for hundreds of alternative wave beam materials, with varying
values of the density and Young’s modulus (up to two orders of magnitude larger or smaller than
those of AISI 4140). For these hypothetical materials the value of Cgaeror (the ratio of the sound ve-
locity ¢ in the material to that in AISI 4140) varied in the range from 0.01 to 80. For connection var-
iant 0, we observed energy ratio values varying from approximately 0.935 to approximately 4.3, de-
pending on the material properties. The energy ratio increases with Cgacror as the latter grows from
about 0.1 to 10, but stays in a relatively tight range (indicative of a saturation) for Cgyctor < 0.1 and
Cfactor > 10. Additionally, a spread between energy ratio values obtained for materials with the
same value of Cgycror 15 explained by the difference in the respective values of Zgycor (the ratio of
the impedance Z in the material to that in AISI 4140). Based on these results, we concluded that the
key property of the wave beam material that determines the energy of the reflected wave is the
sound velocity but the impedance also plays an important role. When both the wave beam material

properties and the connection fixities are varied, the smallest energy ratio value (0.773) is obtained
for variant 17 (TTTTT) and the second smallest value (0.821) for variant 4 (TFTTF).

Finally, we investigated the dependence of the energy ratio on parameters of an asymmetric mono-
lithic design of the bar-and-beam system. Two key features of this design are (1) a gradual change of
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the bar width (accompanied by a proportionally gradual change of the impedance), resulting in a
very weak partial reflection, and (2) a different thickness of the beam’s left and right halves, which
can produce a destructive interference between the waves reflected down from the left and right
parts of the top surface of the beam and thereby direct a significant portion of the reflected wave
towards the beam’s arms. For an optimal combination of AMD parameter values, we found an en-
ergy ratio value of 0.451. Compared to the current Dropkinson bar design, this optimal value is by
about 42% smaller than the best value (0.773) obtained by varying both the wave beam material
properties and the connection fixities, by about 52% smaller than the best value (0.935) obtained by
varying only the connection fixities, and by almost an order of magnitude smaller than the value
(4.286) obtained for the worst connection variant.

Looking into the future, we can recommend a number of improvements based on the results of this
research. The simplest modification is to change the connection fixities from the currently used vari-
ant 0 (TTTTF) to variant 9 (FTTFF), which involves changing the Bar/Nut Plate and Nut
Plate/Beam connections from Tied to Frictional. This would result in 2 modest improvement of the
energy ratio from 2.160 to 1.557. A more complicated modification would involve fine-tuning the
geometry and material of the wave beam in such a way that the frequency response and effective im-
pedance approach the optimized values identified in this study, thereby minimizing the reflected
wave’s energy. The analysis of these wave beam characteristics was not performed in the present
study but could be the subject of a future work. Furthermore, a future investigation of possibilities
offered by a monolithic design of the bar-and-beam system can be useful in a longer perspective.
One possible direction for future research could include investigating a combination of a monolithic
design (resulting in a better deflection of the reflected wave to the beam’s arms) and a wave beam
attachment (resulting in a better dissipation of the deflected part of the wave). Another possibility is
a monolithic design with a periodic bar geometry, with the goal of producing a destructive interfer-
ence of multiple reflected waves at the strain gauge location.

To summarize, the primary takeaways for users of the existing Dropkinson bar configuration are:

1. With a limited bar length, it is difficult to appreciably extend the first wave reflection time,
even with the addition of the wave beam.

2. The wave beam is effective at reducing the reflected wave magnitudes, though they remain
significant.

3. In order to minimize reflected wave energy, the most important considerations of the bar-
beam connection are (1) ensuring that the Nut Plate & Nut are securely connected, and a (2)
loose/frictional connection between the Nut Plate & Wave Beam.

4. TItis likely possible to further reduce reflected wave energy with additional design optimiza-
tion of the wave beam, either as a separate component or monolithic with the Dropkinson

bat.

5. [Effective stiffness and impedance are critical quantities in the design of an effective wave
beam.
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