
SANDIA REPORT 
SAND2020-10548 
Printed September 2020 

Applying Compression-Based 
Metrics to Seismic Data in Support 
of Global Nuclear Explosion 
Monitoring 
Laura E. Matzen, Christina L. Ting, Richard V. Field, James D. Morrow, Ronald Brogan, 
Christopher J. Young, Angela Zhou, Michael C. Trumbo & Jamie L. Coram 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 
87185 and Livermore, 
California 94550 



 

2 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National 
Technology & Engineering Solutions of Sandia, LLC. 
 
NOTICE:  
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither 
the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency 
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily 
state or reflect those of the United States Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN 37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@osti.gov 
 Online ordering: http://www.osti.gov/scitech 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5301 Shawnee Rd 
 Alexandria, VA 22312 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.gov 
 Online order: https://classic.ntis.gov/help/order-methods/ 
 
 

 

  

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/


 

3 

ABSTRACT 

The analysis of seismic data for evidence of possible nuclear explosion testing is a critical global 
security mission that relies heavily on human expertise to identify and mark seismic signals 
embedded in background noise. To assist analysts in making these determinations, we adapted two 
compression distance metrics for use with seismic data. First, we demonstrated that the Normalized 
Compression Distance (NCD) metric can be adapted for use with waveform data and can identify 
the arrival times of seismic signals. Then we tested an approximation for the NCD called Sliding 
Information Distance (SLID), which can be computed much faster than NCD. We assessed the 
accuracy of the SLID output by comparing it to both the Akaike Information Criterion (AIC) and 
the judgments of expert seismic analysts. Our results indicate that SLID effectively identifies arrival 
times and provides analysts with useful information that can aid their analysis process.  
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ACRONYMS AND DEFINITIONS 

 

Abbreviation Definition 

AIC Akaike information criterion 

NCD Normalized compression distance 

NID Normalized information distance 

SLID Sliding information distance 
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1. INTRODUCTION 

Seismic analysis is an important component in global nuclear treaty monitoring. Analysts comb 
through seismic data collected by the International Monitoring System (IMS) global seismic sensor 
network to help verify compliance with the Comprehensive Nuclear Test-Ban Treaty (CTBT). They 
make “picks” to indicate the times at which seismic signals (i.e., transient vibrations) from events of 
monitoring interest reached different sensors around the world. It is important for the timing of the 
picks at each sensor to be as accurate as possible in order to detect and characterize the 
corresponding events. The timing information taken from multiple seismic stations is used to 
calculate the latitude, longitude, and depth of the event that produced the seismic signals. In turn, 
the location information helps determine whether the event was most likely to be an earthquake or a 
man-made event such as a nuclear test. 
 
Seismic analysis in support of nuclear treaty monitoring is a very important task that can also be very 
challenging. The analysis process for CTBT monitoring begins with data collected from the 170 
seismic stations that are part of the IMS. These data are sent to the International Data Centre (IDC) 
at the headquarters of the Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty 
Organization (CTBTO), where they go through an automated station processing stage that produces 
a list of the seismic signals identified at each station. These lists form the input for three rounds of 
automated network processing, which associates the signals with one another across the whole 
network to identify seismic events. The result is the Standard Event Lists (SELs). The third iteration 
(SEL3) is reviewed by human analysts who clean up the automatic detections to produce the 
Reviewed Event Bulletin (REB).1 On average the analysts reject about 40% of the automatically built 
events and manually identify new events that were missed by the automated processing. These new 
events make up an average of 20% of the events in the REB. 
 
The seismic analysts’ work is both tedious and stressful. Each waveform is “touched” by multiple 
analysts who have different subjective preferences about how to place picks. The data are often 
noisy, with overlapping events and background noise that make it difficult to pinpoint event arrival 
times. Yet the pressure to produce a reviewed event catalog as quickly as possible is unrelenting and 
the stakes are high; ideally, all of the potentially numerous seismic signals on each sensor in the 
datasets must be accounted for, to rule out the possibility that any one of them was caused by a 
nuclear test. 
 
In the project described in this report, our goal was to develop a new approach to analyzing seismic 
waveforms for signals, with the intention of providing analysts with information that will make a 
difficult job a little bit easier. We developed new methods for applying compression-based metrics 
to seismic waveforms in order to detect boundaries, indicating the arrival of a seismic signal at a 
particular station. Our approach was inspired by previous research on using compression-based 
metrics as a measure of analytic completeness in text analysis. By applying these same metrics to 
waveforms using a moving window approach, we were able to identify event arrival times with 
accuracy that was equal to or better than the current state-of-the-art algorithms that are used for 
automatic event detection. In addition, we demonstrated that providing visual representations of the 
compression scores to analysts provides useful cues that can help them with making their own picks. 
 

 
1 See https://www.ctbto.org/press-centre/news-stories/2001/data-processing-at-the-international-data-centre/ for 
more details about this process. 

https://www.ctbto.org/press-centre/news-stories/2001/data-processing-at-the-international-data-centre/
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In the sections that follow, we will describe the two compression-based metrics that were used in 
our research: Normalized Compression Distance (NCD) and Sliding Information Distance (SLID). 
We will outline the moving window technique that was developed to apply these metrics to 
waveforms and describe the results obtained from applying these metrics to two datasets of seismic 
events. The output of the compression-based metrics was compared to picks made by an expert 
seismic analyst as well as the output from the Akaike Information Criterion (AIC), the algorithm 
that is currently used for refining the timing of automatic picks before analyst review. We also 
demonstrate that an uncertainty quantification (UQ) approach applied to SLID may be used to rank 
the confidence in our event predictions, thereby providing a ranking for which to present the SLID 
output to analysts. Finally, we will discuss the design and results of a user study in which different 
visual representations of the SLID output was presented to seismic analysts to aid in picking signals 
from waveforms. 
 

1.1. Background on Compression Metrics 

Compression-based metrics such as the normalized compression distance (NCD) involve applying a 
compression algorithm for assessing the similarity of any two items (cf. Li et al., 2004; Vitányi et al, 
2009). Compression algorithms reduce the number of bits to encode an item by assigning fewer bits 
to more common patterns2. The same principle can be applied to compare two items and this 
property forms the foundation of compression-based metrics. Specifically, two items belonging to 
the same class will have more similar patterns and better compression than two items belonging to 
different classes.  
 
There has been extensive prior research at Sandia in applying compression-based metrics such as 
NCD in a variety of applications. For example, one prior study used NCD to distinguish between 
truthful and deceptive documents (Ting, Fisher & Bauer, 2017). The basic assumption is that 
truthful documents should share similar patterns and deceptive documents should share similar 
patterns distinct from truthful documents. The NCD is used to assess similarity.  
 
Building on these principles, other research at Sandia has successfully applied NCD as a metric of 
the analytic process in a variety of contexts. McNamara and colleagues (2016) demonstrated that 
NCD could be used as a measure of analytic progress for large sets of text documents. In that study, 
participants were given a task that mimicked an intelligence analysis task. They were given a large set 
of documents (200 total) with meaningless file names and were asked to categorize them and to 
describe any noteworthy discoveries they made in the process of analyzing the documents. The 
noteworthy information in the documents was about Alexander Litvinenko’s death, but this 
information was buried beneath a pile of unrelated or tangentially related information. They 
hypothesized that the value of NCD would decrease as participants organized the documents into 
topical groups. The documents about similar topics should contain similar words, so increasing the 
organization of the information and grouping documents according to their topics should reduce the 
entropy within each group and therefore decrease the value of NCD. The study confirmed that 
NCD scores decreased as participants organized the documents into coherent categories. An 
example is shown in Figure 1, which shows the number of categories that this participant created 
over time and the mean NCD score for the dataset. As the number of categories increased and the 

 
2 For example, if one sees a q in a sequence of English text, the likelihood that the next character is a u is so high that it 
is almost not necessary to include the u. Therefore, it is advantageous to use fewer bits to represent qu than to represent 
something like q-. 
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categories were refined to contain sets of documents that were more similar to one another, the 
mean NCD score for the dataset decreased. 
 
This work, which demonstrated that NCD could track with analytic progress inspired the current 
project. Much of the work of seismic analysis stems from refining automatically built events. The 
analysts reject extraneous picks and signals that were most likely produced by a different event. They 
adjust pick times and add picks when necessary, with the goal of building an event that combines 
data from multiple seismic stations and produces an estimate of the location and magnitude of the 
seismic event that is as accurate as possible. Conceptually, sorting seismic signals from different 
stations into coherent events is similar to organizing a pile of text documents into coherent 
categories. We hypothesized that NCD could provide a measure of whether changes in the seismic 
analysis, such as moving picks, were helping or hindering the goal of building a coherent event. 

 

Figure 1. The relationship between analytic progress and the mean NCD score for a set of text 
documents. 

Our first step was to determine whether compression metrics such as NCD could be adapted to 
detect transitions from one state to another in seismic waveforms (i.e., the arrival of seismic signals). 
As described below, a common approach for detecting changes in sequential data is to move a 
sliding window along the data and compare adjacent windows. In the case of NCD, the NCD scores 
should peak when the two sections being compared are maximally different from one another. In 
other words, the maximum NCD value should correspond with the event arrival time. If that 
maximum value corresponds closely to the picks made by an algorithm or analyst, it indicates that 
the pick is well-supported by the information contained in the waveform and that there is no need 
for further adjustment of that pick. Similarly, when applied across multiple waveforms from multiple 
seismic stations, the NCD peaks for seismic signals generated by the same event should align with 
the expected arrival times based on the distance between the event and the station. In cases where 
the NCD peak does not align with the expected arrival time, it is likely that the corresponding signal 
originated elsewhere and does not fit with the event being analyzed. 
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In the sections below, we will discuss how NCD was calculated for seismic waveforms and how the 
results compared to the current state-of-the-art algorithm, AIC, as well as expert judgements of 
signal arrival times. To put the bottom line up front, we found that there is a clear NCD peak for 
the majority of the waveforms analyzed and that it corresponds very closely to the picks made by 
AIC and by an expert analyst. In addition, plotting the NCD values over time provided useful 
information about when expert judgments were needed or when a different filter on the waveform 
would provide better information to analysts. The primary drawback of NCD is that it is fairly slow 
to calculate, which could be problematic for real-time analysis. To address this drawback, we tested 
another variant of the compression-based metrics called the sliding information distance (SLID). We 
found that SLID and NCD produced similar results, but the SLID calculations were much faster. 
The speed of the SLID calculations enabled us to calculate SLID multiple times for each waveform 
with varying parameters. This approach provides a quantification of the uncertainty in the data by 
assessing a large parameter space. 
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2. APPLYING THE NORMALIZED COMPRESSION DISTANCE TO 
SEISMIC WAVEFORMS 

Let 𝑧 = {𝑧0, 𝑧1, … } be a time series representing a seismic waveform. Identifying seismic events in 𝑧 
requires significant latency and domain knowledge of the underlying data. To reduce the time and 
expertise cost, change-point (i.e., event) detection methods can be applied to automatically determine 

events in 𝑧.  
 
General change-point detection methods often involve sliding adjacent windows over sequential 
data (here the seismic waveform), collecting statistics of the underlying data within each window, 
and computing a distance function that operates on the statistics to determine large distances 
between adjacent windows (Aminikhanghahi & Cook, 2017). Large distances that manifest as peaks 
are then flagged as events in the seismic waveform.  

2.1. Calculating the Normalized Compression Distance 

One approach to change-point detection is to use a distance function based on the normalized 

information distance (NID). The NID between any two items, 𝑥 and 𝑦, represents ``the minimal 

quantity of information sufficient to translate between 𝑥 and 𝑦, generating either item effectively 

from the other'' (Vitányi et al., 2009). In our application, 𝑥 and 𝑦 refer to adjacent windows in the 
seismic waveform, as represented by the shaded boxes in Figure 2. 
 

 
Figure 2. A seismic waveform where x is represented by the blue shaded region and y is 

represented by the green shaded region. 

 
The NID is defined by 

𝑁𝐼𝐷(𝑥, 𝑦) =  
max{𝐾(𝑥|𝑦), 𝐾(𝑦|𝑥)}

max{ 𝐾(𝑥), 𝐾(𝑦)}
, 

  

and takes values in [0,1]. In this expression, 𝐾(𝑥) denotes the Kolmogorov complexity of 𝑥 and is 
defined as the length of the shortest possible description of the sequence in some fixed universal 

description language (Li & Vitányi, 1997). Similarly, 𝐾(𝑥|𝑦) ≤ 𝐾(𝑥) represents the length of the 

shortest possible description of 𝑥 when 𝑦 is provided as auxiliary information. For general 𝑥 the 
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complexity 𝐾(𝑥) is not a computable function, so that approximations for the NID are needed in 
practice. Accordingly, there has been extensive work on approximating the NID, most of which are 
based on the normalized compression distance (NCD) (Li et al., 2004).  
 
The NCD is defined by 

𝑁𝐶𝐷(𝑥, 𝑦) =  
|C(xy)| − min {|𝐶(𝑥)|, |𝐶(𝑦)|}

max{ |𝐶(𝑥)|, |𝐶(𝑦)|}
, 

 

where |𝐶(𝑥)| denotes the compressed size of 𝑥 after applying a compression algorithm 𝐶, and 𝑥𝑦 

denotes the concatenation of items 𝑥 and 𝑦. Approaches using the NCD have proven successful in a 
variety of machine learning applications. Examples include authorship attribution (Stamatatos, 
2009), image registration (Bardera et al., 2006), evolutionary history inference (Li et al., 2004), and 
cybersecurity (Wehner, 2007).  
 

2.2. Applying NCD to Seismic Waveforms 

While NCD has been shown to be useful in a variety of domains, it had not previously been applied 
to seismic waveform data. To test our approach, we first created synthetic seismic waveforms to 
provide “ground truth” for evaluating the NCD results. The synthetic signal has the form: 
 

𝑠(𝑡) = A exp (−
5(𝑡 − 𝑡0)

𝑇
) cos(2(𝑡 − 𝑡0)) sin(ω(t − 𝑡0) + ϕ) , 𝑡 ≥ 𝑡0 

 

It begins at 𝑡 = 𝑡0 and so has a maximum amplitude of A, oscillates as a cosine with frequency 𝜔 >
0, and exponentially decays at a rate proportional to parameter 𝑇 > 0. Two such signals were added 

together, with a smaller amplitude signal shifted to the middle of the time array (𝑡0 = 15), as shown 
in the top panel of Figure 3. This represents a common scenario in seismic analysis, where signals of 
interest may appear close in time to larger, unrelated signals. Then, to simulate the background noise 
present in seismic data, iid Gaussian noise with zero mean and standard deviation equal to 0.1*A 
was added to this signal, as shown in the bottom panel of Figure 3. 
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Figure 3. The superposition of two synthetic seismic waveforms (top) and the synthetic waveform 

with iid Gaussian noise added (bottom).  

2.2.1. Computing an NCD Value 

Given a time series of real-valued data, we would like to compute a series of NCD values for this 
series.  The first thing we need to do is tokenize the data – discretize it using 256 tokens (8 bits)3. 
The next step is to move a sliding window along the data. The NCD is computed on a window by 
subdividing the window into a left-half and right-half. Each window position yields a single NCD 
value that represents the comparison between the two halves. To the extent these halves are very 
statistically similar in terms of their values, the NCD score will be low – indicating a “small” distance 
between them. Note that even if the two halves are identical, the NCD score will not be zero, just 
“small”. Likewise, if the two halves are very statistically dissimilar, then the NCD score will typically 
be 1 or higher, but there is no absolute maximum value.  
 
There were several key issues that needed to be considered in developing this approach. The first is 
the impact of discretizing all of the data at once versus discretizing at each window location. 
Discretizing all of the data before applying the moving window is simpler and saves computation 
time, but it could cause us to miss smaller (in amplitude) seismic signals when there are larger, 
unrelated events in the same data segment. Discretizing within each window could improve the 
dynamic range of the calculation, particularly when the range or values varies widely along the time 
series. A second important issue is the width of the windows. If the window is too small, there is not 
enough data from which to estimate the statistics. If the window is too large, computation time 

 
3 Other numbers of tokens are possible, but we find that 256 works well in practice. 
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increases and different features in the signal may become conflated. Finally, we must consider how 
much to slide the window between calculations. Moving the window too much could make it 
difficult to locate the peak NCD value for the waveform, but moving it too little slows down the 
analysis considerably because NCD is calculated many more times4. These three key issues are 
discussed in more detail in the following three sections. 

2.2.2. Discretizing Data for NCD Calculation 

We require the real-valued sequence of values that makes up a seismic waveform to be discretized to 
tokens (0-255) in order to compute NCD score for a window. There are two basic ways to approach 
this. The standard approach is to discretize all of the data in the series at one time, and then slide the 
window along, computing an NCD value for the midpoint of each window position. One potential 
disadvantage of this approach arises if the signal has most of its variation in values in a small part of 
the signal. In this case, much of the signal might be represented by only a few token values. A 
second approach is to discretize at each window location. This may maximize the signal-to-noise 
ratio (SNR) because a maximal number of token values is used to represent the signal within the 
window.  The disadvantage is additional computation at each window location. 
 
To assess the utility of each approach, we calculated NCD scores for a series of synthetic seismic 
waveforms with different levels of background noise. Like most real seismic waveforms, the 
synthetic waveforms were sampled at 100 Hz. The waveforms were either discretized all at once, or 
window-by-window. NCD scores were calculated using a window width of 8 seconds (800 samples) 
and a window step size of 0.8s (80 samples). The resulting NCD scores were scaled from 0-1 to 
make comparison easier. These comparisons indicated that discretizing the waveform window-by-
window produced greater dynamic range and better SNR. The per-window NCD values were 
generally either higher or lower than the NCD values computed using the entire signal discretization 
(see Figure 4 for examples). However, the locations of the maximum NCD peaks were nearly 
identical for both methods. As the waveforms grew noisier, the per-window discretization did not 
provide a substantial benefit above and beyond the whole-waveform discretization. Given the extra 
computation required to discretize each window separately, we determined that there was not a 
significant advantage to using the per-window approach. n the remainder of this report, we 
discretize the entire waveform in our analyses. Figure 4 shows examples of the per-window and 
whole-waveform discretization approaches for synthetic signals with varying noise levels as well as a 
real seismic signal. 
 

 
4 We note that SLID (described in the following Section) is computationally efficient and eliminates this last issue so that 
we simply move the window every time step. 
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Figure 4. The top section shows a real seismic signal above the scaled NCD values that were 

calculated using either the entire waveform (blue line) or per-window discretization (orange line). 
For both discretization methods, the maximum NCD value corresponds to the event arrival time 
(indicated with red lines). The bottom section shows these same calculations for four synthetic 

seismic signals with increasing levels of background noise. The NCD peaks align for both 
methods, and both fail to detect the signal of interest when the noise level gets too high. 
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2.2.3. Effects of Different Window Sizes 

Window size is a very important parameter for the NCD calculations. The window must be wide 
enough to capture representative data but narrow enough to effectively identify transition points in 
the waveforms. Importantly, the window width should account for the frequency content in the 
signal. If the window is too short with respect to the frequency content, the resulting NCD values 
will oscillate in a way that could hinder detection of an event transition. The sampling rate of the 
data is also important. We need to have enough samples in each half of the window to generate 
reasonable statistics. Since most seismic data is sampled at 100 Hz, a 2-second window is likely to be 
too short, as it would only have 100 samples in each half of the window. A 12-second window 
would have 600 samples in each half, which would allow us to generate robust statistics, but risks 
conflating separate seismic signals by including them in the same window. 
 
To assess the impact of window size on the NCD results, we calculated NCD values for our 
synthetic waveform and for real seismic waveforms using different window widths. The window was 
shifted by 100 samples for each calculation. An example of the results of this analysis is shown in 
Figure 5 for window sizes of 2, 4, 8, and 12 seconds. When the window width is larger, the NCD 
scores reach a higher absolute peak. As expected, there is less noise for the larger windows because 
there is more overlap between one window and the next. The vertical green lines in the figure 
represent the earliest, most likely, and latest possible arrival times for the seismic signal, as 
determined by an expert analyst. The 12-second, 8-second, and 4-second windows all produced a 
maximum NCD value that fell within the range indicated by the expert analyst. The 2-second 
window produced several peaks with similar heights, with the maximum value occurring about 10 
seconds later than the actual signal onset. This analysis indicated that a window width should 
generally be 4 seconds or more to produce a stable result for seismic data that is sampled at 100 Hz. 
 
Another consideration in choosing the window width is the computation time. We analyzed the 
median time it took to calculate NCD values when different window sizes were applied to the same 
seismic waveform. We found that there was a linear relationship between window width and 
computation time, as shown in Figure 6. From a computational point of view, this favors using a 
window that is as narrow as possible. Interestingly, we also observed that the windows with the 
longest computation times were also the windows that had the maximum NCD scores. In fact, we 
could use calculation time as a proxy for the actual NCD score when identifying the seismic arrival 
times. This could be an interesting area for future research on compression metrics. 

2.2.4. Optimizing the Movement of the Window 

The final key issue required for applying NCD to waveforms was the movement of the window 
between calculations. At a minimum, the window could move by one sample for each new NCD 
calculation. However, most seismic data is sampled at 100Hz. If we choose a window width of 8 
seconds, that is 800 samples. If we only move the window one bin at a time, that only changes one 
value out of 400 in each half of the window and produces a very similar NCD calculation. The NCD 
calculation is fairly time consuming (averaging 0.1-0.3 seconds per window for a window with 800 
samples), so it is important to move the window in an efficient way. However, taking steps that are 
too large can make it more difficult to accurately locate the NCD peak value. It may be offset from 
the arrival time of the seismic signal in the data if the NCD calculations are too coarse. 
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Figure 5. NCD scores calculated for the same seismic waveform using different window sizes. The 

vertical green lines represent the earliest, most likely, and latest possible arrival times for the 
seismic signal, as determined by an expert seismic analyst. 

 
 
Based on analyses of a large dataset of seismic waveforms at differing window sizes and step sizes, 
we determined that moving the window so that 5% of the values in each half are updated provided a 
reasonable tradeoff between computational effort and the granularity of the analysis. For a window 
width of 800 samples, this would entail sliding the window by 40 samples between calculations. For 
seismic data sampled at 100 Hz, this produces an NCD value every 0.4 seconds. We also 
experimented with using a coarse-to-fine approach, where we made one pass through the waveform 
with large steps between windows, then computed a more fine-grained analysis with smaller steps 
around the time of the peak NCD value. However, our subsequent shift to using SLID instead of 
NCD (described in more detail below) made this coarse-to-fine approach unnecessary. 
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Figure 6. The median time to compute NCD for window widths of 200-1200 samples for one 

waveform (top) and for multiple waveforms from the same seismic event, recorded from different 
stations (bottom). This plot shows the signals from the 20 stations closest to the seismic event. 

 

2.3. Using NCD to Identify Signal Arrival Times in Seismic Data 

Having developed a method for applying NCD to seismic waveforms, our next step was to test how 
well it could identify signal arrival times across a diverse dataset. The accuracy of NCD was assessed 
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by comparing its predictions to manual “picks” made by a subject matter expert (SME). We used a 
dataset that was developed by Ronald (Chip) Brogan, a seismic analyst with over 27 years of 
experience with waveform data analysis in support of nuclear treaty monitoring. The dataset 
contained waveforms from 16 seismic events, which included earthquakes, mining activity, and 
nuclear tests. For each seismic event, waveforms showing the arrival of a seismic signal generated by 
the event were selected from two or more seismic stations. A total of 100 event/station 
combinations were selected, using data from 43 seismic stations. The majority of those stations are 
part of the University of Utah network5. The stations and a few of the events used in the dataset are 
shown in Figure 7. A table showing the combinations of seismic events and stations is shown in 
Appendix A. 
 

 
Figure 7. A world map (left) and a more detailed map of the area around Utah in the United States 

(right). The seismic stations used in this dataset are shown as gray triangles. A subset of the 
seismic events is shown as white circles, with lines drawn to indicate how the vibrations caused 

by each event travel to various stations. 

 
For each event/station combination, the waveform showing the signal arrival could be filtered in 
various ways to make the signal more or less difficult to discern. The filters commonly used for 
seismic analysis are as follows: 

1) Unfiltered 
2) 0.8 Hz high-pass filter 
3) 1-3 Hz bandpass filter 
4) 2-4 Hz bandpass filer 
5) 3-6 Hz bandpass filter 
6) 4-8 Hz bandpass filter 

 

 
5 https://quake.utah.edu/monitoring-research/station-map The seismic stations included in this dataset were CHS, 
CTU, CWU, DAU, DBD, DCM, DUG, ELU, EMU, FLU, FSU, HLJ, HONU, HTU, ICU, IMU, LCMT, LEVU, 
LHUT, MLI, MMU, MSU, NAIU, NLU, NMU, OWUT, PNSU, PSUT, PTU, RBU, RCJ, RDMU, ROA, SNO, SRU, 
TCRU, TMU, WBC, WCU and WVUT from the University of Utah network, plus the stations MDJ and INCN from 
the Global Seismograph Network 
(https://earthquake.usgs.gov/monitoring/operations/network.php?virtual_network=GSN)  and station PD31 from the 
International Miscellaneous Stations Network (https://www.fdsn.org/networks/detail/IM/). 

https://quake.utah.edu/monitoring-research/station-map
https://earthquake.usgs.gov/monitoring/operations/network.php?virtual_network=GSN
https://www.fdsn.org/networks/detail/IM/
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Most, but not all, of the event/station combinations had waveforms available for all six filter bands, 
giving us a total of 536 waveforms in the dataset. For each of these waveforms, the SME made picks 
indicating the earliest, most likely, and latest possible signal arrival times. The picks were made 
independently for each filter type. 
 
NCD was calculated for all of the waveforms in the dataset using a window size of 8 seconds. The 
window was shifted by 0.1 second between windows to account for the fact that some of the 
waveforms in the dataset had different sampling rates than others. The majority of the waveforms 
were sampled at 100 Hz, so the 0.1 second shift represented 10 samples. The NCD scores were 
normalized to a range of 0-1 for each waveform. 
 
As a first pass, we determined how many waveforms contained a well-defined NCD peak by 
manually inspecting the NCD plots. A total of 423 of the waveforms (78.9%) had a clear NCD peak. 
The remaining waveforms fell into two groups: those that produced noisy NCD plots with many 
peaks of comparable magnitude, and those where the NCD value ramped up over time. Sometimes 
there was a peak that stood out within this slope, but other times there was not. Note that these 
ramping NCD peaks often corresponded to seismic signals that ramped up over time, making it 
difficult to determine the precise transition from pre- to post-event arrival. 
  
To assess the performance of NCD quantitatively, the time at which the peak NCD value occurred 
was compared to the pick made by AIC, the current state-of-the-art algorithm for automatic event 
detections. Note that AIC picks are based on the minimum AIC value, while NCD picks are based 
on the maximum NCD value. NCD was also compared to the SME’s “best” pick and the range of 
possible arrival times, as indicated by the SME’s earliest and latest picks. We made these 
comparisons in two ways. First, we calculated the difference between the peak NCD score and the 
metric of interest for all 536 waveforms. Next, because some of the filters are better than others, we 
selected the filter band for which NCD performed best for each of the 100 events in the dataset. 
Then we compared the best-case scenario for each event to AIC and the expert picks for that same 
waveform. 

2.3.1. Comparing NCD to AIC 

When selecting the best filter for each of the 100 events, the difference between NCD and AIC was 
quite small. The results are shown in Figure 8. For 88 events, the difference between the predictions 
of the seismic signal arrival time using the two approaches was less than or equal to 0.1 seconds. The 
difference was less than 0.2 seconds for all but six of the events.  
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Figure 8. The smallest NCD-AIC difference for each of the 100 events in the dataset. 

 
For the six events that had large differences between NCD and AIC, only one had data available for 
all six filters, so there was less to work with when choosing the best filter. The waveforms from 
these six events were very noisy and produced noisy results for both AIC and NCD. An example is 
shown in Figure 9. The NCD plot is shown in blue with a dashed blue line marking the maximum 
NCD score. The AIC plot it shown in orange with a line marking the minimum AIC score. 

 
Figure 9. This example shows one of the largest NCD-AIC differences. Note that the waveform is 

very noisy, so the AIC and NCD plots are both noisy as well. 
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The vast majority of the events showed little to no time difference between the maximum NCD 
value and the minimum AIC value. Figure 10 shows a representative example. In cases where the 
signal arrival time is clear, both algorithms tend to have a sharp peak occurring at the same time. 
 

 
Figure 10. An example with no time difference between the NCD and AIC peaks. 

2.3.2. Comparing NCD to the Best Expert Pick 

Figure 11 shows the differences between the expert analyst’s pick for the best (most likely) arrival 
time and the NCD peak for each event, using the filter for which that difference was smallest. These 
differences were somewhat larger than the differences we observed between NCD and AIC. There 
was also a bias where more of the events had a positive difference. This indicates that the NCD peak 
often occurred slightly later than the expert’s pick for the best arrival time. However, the difference 
was still less than 1 second for all but three of the events and was less than 0.1 seconds for 49 of the 
100 events. 
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Figure 11. The smallest NCD-Best Pick difference for each of the 100 events in the dataset. 

 

Figure 12 shows an example where the NCD peak aligns closely with the analyst’s best pick, which is 
indicated with a green line. Figure 12 shows an example of one of the largest differences. In this 
case, the expert’s pick is much earlier than the NCD peak. The NCD peak aligns with the point at 
which the amplitude of the signal begins to change. However, the SME picked an earlier time point 
as the most likely arrival time. The SME’s process for making picks is to identify the amplitude 
change in the signal and then “look to the left” for a change in frequency. This strategy, plus 
knowledge that is external to the signal itself (such as knowledge about common patterns at 
particular seismic stations), led the SME to make a pick that is different than what an algorithm such 
as NCD can determine from the signal alone. However, note that NCD was somewhat sensitive to 
the change identified by the SME, as indicated by the local maximum that is visible in the NCD plot 
in Figure 13. 
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Figure 12. An example with a close alignment between the NCD peak and the analyst’s best 
estimate of the signal arrival time. 

 

 

Figure 13. An example where the NCD peak is late relative to the analyst’s best pick. 

 

2.3.3. Comparing NCD to the Range of Possible Arrival Times 

Figure 14 shows the differences between the NCD peak and the expert analyst’s arrival band. The 
arrival band represents the analyst’s assessment of the earliest possible and latest possible arrival 
times. 75% of the NCD peaks fell within the arrival band and 87% had an error of less than 0.1 
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seconds. Once again, we observed a slight bias for the NCD peak to occur slightly later than the 
expert picks, but this difference was quite small. 

 

Figure 14. The smallest NCD-Arrival Band difference for each of the 100 events in the dataset. 

 
Figure 15 shows an example where the NCD peak falls just inside of the arrival band, which is 
represented by the shaded green region. Note that the NCD peak is slightly later than the analyst’s 
pick for the best arrival time, which is represented by the lime green line. However, it still falls 
before the analyst’s estimate for the latest possible arrival time. Figure 16 shows one of the largest 
errors. In this case, the NCD peak occurs much later than the arrival band. Note, however, that 
there is a local maximum in the NCD plot that falls within the arrival band. 
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Figure 15. An example where the NCD peak falls just inside the arrival band. 

 

 

Figure 16. An example where the NCD peak is considerably later than the arrival band. 

 

2.3.4. Summary of Findings 

Overall, our results indicate that the maximum NCD score for a seismic waveform provides a good 
estimate of the arrival time of the seismic signal. The NCD results corresponded closely to the AIC 
results. The NCD peak often fell slightly later than the expert analyst’s picks. There are two possible 
reasons for this slight bias. One is the moving window implementation of NCD, which could cause 
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the peak to fall late relative to the signal arrival if the steps being used between windows are 
relatively large. Another reason for this bias could be the fact that NCD, as implemented here, does 
not directly consider changes in the frequency content of the waveforms. It is primarily sensitive to 
changes in amplitude. The expert analyst explained that he looks for changes in amplitude in the 
signal, then works backwards looking for changes in frequency. His goal is to find the earliest 
possible indicator of the event arrival. This strategy is likely to lead to earlier picks than NCD 
because it is deliberately searching for the earliest possible change, moving backwards in time from 
the transition point that produces the highest NCD scores. In future work, it would be useful to 
explore ways to incorporate frequency information into NCD and other compression metrics.  

In many cases where the maximum NCD peak was late relative to the expert picks, we observed that 
there was a secondary peak in the NCD plot that corresponded more closely to the best pick. 
Examples of this pattern can be seen in Figures 13 and 16 as well as in Figure 17, below. In Figure 
17, the earlier NCD peak is marked with a light blue line and falls much closer to the expert analyst’s 
pick. 

 

Figure 17. An example where the earlier NCD peak is closer to the expert’s pick. 

 

Based on this pattern, we developed a method for detecting and marking secondary peaks in the 
NCD plots. We focused on secondary peaks that occur earlier than the primary peak, due to the 
tendency for the primary peak to occur slightly later than the expert picks. For the purposes of our 
research, we marked earlier peaks if there was a local maximum that was at least 80% as tall as the 
primary peak occurring within the 5 seconds of the primary peak. The impact of including these 
earlier peaks in the analysis is outlined in the following section. 

2.3.5. Is NCD or AIC Closer to the Expert Analyst’s Picks? 

Although the NCD and AIC results were typically very similar, it is useful to know which algorithm 
produces results that are most similar to expert judgments. To assess this, we calculated the 
difference between AIC’s pick (the time of the minimum AIC value) and the expert analyst’s best 
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pick for all 536 waveforms. Then we did the same for NCD, defining NCD’s pick as the time of the 
maximum NCD value. When there was an earlier NCD peak that met the criteria outlined in the 
previous section, we compared the times for both the primary peak and the earlier peak to the 
expert’s best pick. Of the 536 waveforms, there were 114 that had an earlier peak that met our 
criteria. For 61 of those waveforms, the earlier NCD peak was closer to the expert’s best pick than 
the primary peak. For each waveform, the algorithm that produced a pick that was closer to the 
expert analyst’s best pick was deemed the winner. 

Across all 536 waveforms, NCD won 365 times while AIC won 170 times. For one waveform, the 
differences were exactly equal. In some cases, both algorithms produce picks that are less than 0.1 
seconds from the expert’s pick. Since winning is not particularly meaningful when both results are 
extremely close to the expert’s pick, we opted to exclude those 74 waveforms from the analysis. 
When those small errors were excluded, NCD won 324 times and AIC won 135 times. 

This analysis showed that NCD can provide better automatic picks than AIC, in the sense that they 
are often closer to the picks made by an expert analyst. These results also indicate that the shape of 
the NCD plot itself can provide useful information. For example, taking the shape of the plot into 
account allowed us to identify earlier peaks that may be closer to the arrival time of the signal. After 
analyzing the NCD results for this dataset, we hypothesized that showing a plot of compression 
distance information to analysts could help to inform their decision making. One way this 
information could be useful is for data triage. If NCD and AIC produce very similar picks, there 
should be no need for a human analyst to adjust the pick times. Agreement between these two 
algorithms indicates that the signal arrival time is very clear. Similarly, when NCD has a very sharp 
peak, that indicates that the information content of the waveform supports making a pick that 
corresponds to the peak of the NCD plot. Placing the pick elsewhere is not likely to improve the 
analysis. In contrast, when NCD does not produce a single peak, the shape of the NCD plot can 
help analysts to narrow in on the most likely signal arrival times. When there is more than one NCD 
peak, analysts may want to inspect both regions. The shape of the NCD plot could also be used to 
automatically select the filter in which the signal is clearest. This is another use case that could save 
seismic analysts time and effort. 

2.4. Using NCD as a Signal Rectifier for Event-Level Analyses 

Our work applying NCD to individual seismic waveforms showed that it is an effective method for 
identifying likely signal arrival times. Identifying arrival times across multiple seismic stations is a key 
step in building seismic events, so it may be possible to use NCD information for signal rectification 
when building seismic events. 

To test this, we calculated NCD for 50 waveforms collected from 50 different seismic stations for 
the same event. When the plots were ordered by distance from the seismic event, the NCD plots 
showed the expected shift in time, with the NCD scores peaking later at stations that are farther 
from the seismic event. The NCD picks also corresponded closely to picks made by an expert 
analyst, as shown in Figure 18. 
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Figure 18. The NCD plots (left) and seismic waveforms (right) with stations ordered by distance. 
The maximum NCD value, marked with a red line, is shown in all plots. It typically corresponds 

closely to the analyst’s picks, shown with green lines. 

2.5. Summary of NCD Work 

Our primary goal for this project was to determine whether compression metrics such as NCD 
could be applied to seismic waveform data and whether this would produce information that could 
be helpful to seismic analysts. We successfully developed a moving window approach for calculating 
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NCD metrics on seismic data. By testing the impact of different discretization methods, window 
sizes, and step sizes, we identified parameters that are well-suited to the characteristics of seismic 
data. In comparing the results of the NCD calculations to AIC and expert picks, we showed that 
NCD typically produces a peak that is close in time to expert picks, and it is often closer to the 
expert judgement than picks based on AIC. NCD can also be used as a signal rectifier, which can 
help analysts determine if a given seismic signal corresponds well to a larger event. 

One drawback of NCD is that it frequently peaks slightly late relative to a SME’s determination of 
the signal arrival time. As discussed above, this slight delay is most likely due to NCD’s sensitivity to 
amplitude rather than the frequency content of the waveforms. Since NCD does not explicitly 
model the frequency content of the waveforms, there is a slight mismatch between the NCD peak 
and the strategy that was used by the SME, which emphasizes frequency changes occurring slightly 
before amplitude changes. It is important to note that in addition to looking at the amplitude and 
frequency of the waveforms, human analysts bring external knowledge to bear when making picks in 
seismic waveforms. Information that is not evident in the waveforms themselves, such as knowledge 
about the types of noise that occur at a particular seismic station or common patterns that have been 
observed from past seismic events, are not available to NCD or any other algorithms that must rely 
solely on the data at hand. 

Despite this drawback, NCD provides several other advantages over existing methods for seismic 
analysis, such as AIC. By plotting the NCD values over time, we can identify waveforms where the 
automatic picks are well-supported, select the optimal filter for each waveform, and identify the 
segments of a seismic waveform that are most likely to contain the signal onset even when the data 
are very noisy. All of these cues could help analysts to triage data, focusing their efforts on the 
examples that require expert judgement and external knowledge, rather than spending time adjusting 
picks that are already well-supported by the information content of the waveforms themselves. 

The primary remaining drawback of NCD is the time it takes to compute. It can take 0.1-0.3 
seconds to compute NCD for each window. Although using parallel processing can speed this up, it 
would still be very time consuming to calculate NCD for the 8-hour segments of data that analysts 
typically work with. To some extent, this processing could be done offline, so that the NCD 
calculations are available when an analyst starts his or her shift. But ideally, we would like seismic 
analysts to be able to call up compression metrics in real time. To meet this goal, we began testing an 
alternate compression metric: sliding information distance (SLID). SLID is specialized for change 
point detection and can be computed much more rapidly than NCD. In the sections that follow, we 
will introduce SLID, discuss how it can be applied to seismic waveforms, and assess its performance 
relative to NCD. 
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3. APPLYING SLIDING INFORMATION DISTANCE TO SEISMIC 
WAVEFORMS 

As discussed above, NCD takes a non-trivial amount of time to compute. The overhead of the full 

compression algorithm 𝐶(∙) may render the NCD impractical for use in change point detection for 
real-time analysis systems. Since the NCD needs to be computed repeatedly as we progress the 
adjacent windows through the seismic waveform, and analysts are dealing with thousands of 
waveforms, it would be too time-consuming to calculate NCD on the fly.  
 
Due to the computational overhead for NCD, we began to explore alternative compression metrics. 
It has been shown that the computational complexity of approximating the NID can be significantly 
reduced by operating directly on the underlying dictionaries constructed by the compression 
algorithms (Cerra & Datcu, 2012; Koga, Nakajima & Toda, 2016; Macedonas et al., 2008; Raff & 
Nicholas, 2017; Ting et al., 2019]. The sliding information distance (SLID) is a variant of these methods 
further specialized for change-point detection. We have previously shown that SLID efficiently, 
accurately, and robustly approximates the NID as it progresses, or slides, over adjacent windows in 
general data sequences (Ting et al., 2019). In this section, we demonstrate the application of SLID to 
seismic waveforms. 

3.1. Calculating the Sliding Information Distance 

Let 𝑘 denote a position within the waveform 𝑧 = {𝑧0, 𝑧1, … }. We formulate the event detection 

problem by considering two adjacent windows of 𝑧, denoted by 𝑥𝑘 and 𝑦𝑘, each of length 𝑤 ≥ 1: 
 

z0…zk−w−1, zk−w…𝑧𝑘−1⏟        zk…zk+w−1zk+w⏟          … 

                     𝑥𝑘(𝑤)           𝑦𝑘(𝑤) 
 

To obtain the SLID score of z at position 𝑘, each window 𝑥𝑘(𝑤), 𝑦𝑘(𝑤) is first converted to a 

dictionary of observed subsequences 𝑋𝑘(𝑤) , 𝑌𝑘(𝑤)  using a method that relies on a simplified 
version of the Lempel-Ziv (LZ) algorithm (Ziv & Lempel, 1977; Ziv & Lempel, 1978). For 

notational conciseness, we drop the dependence on 𝑤 and refer to 𝑋𝑘 , 𝑌𝑘 as the LZ sets of windows 

𝑥𝑘, 𝑦𝑘. The SLID score is then simply the Jaccard distance between two adjacent LZ sets and is 
defined by  
 

S(k) =  {
1 − 

|𝑋k ∩ 𝑌k|

|𝑋k ∪ 𝑌k|
, 𝑋k ∪ 𝑌k ≠ ∅ 

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

SLID takes values in [0,1]. Algorithm details on the computation of SLID are presented in Ting and 
colleagues (2019).   
 

Thus, SLID transforms a seismic waveform z into a signal 𝑆(𝑘) whose value at a position 𝑘 

corresponds to an approximate information distance between adjacent windows, each of size 𝑤. For 
the seismic application considered in this document, this resulting signal is postprocessed by 

applying a smoothing window of size 𝑢. Larger values in both 𝑤 and 𝑢 will produce smoother SLID 
signals. In general, windows large enough to average out the noise without averaging out the large-
scale structure are desired.  
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3.2. Applying SLID to Seismic Waveforms 

Once the smoothed SLID signal is calculated for a given waveform, it remains to identify seismic 
events. We assume seismic events are peaks within the SLID signal. Peaks within a signal are easy for 
a human to identify. However, it is not straightforward for an algorithm to identify peaks. We 
describe one approach for peak finding based on identification of peak regions and merging of 
adjacent peak regions. A schematic of the event detection workflow is shown in Figure 19.  

 
Figure 19. Flow chart for event detection of seismic waveforms. 

3.2.1. Peak identification 

To begin, we define peak regions as regions that are locally concave. Each region can be described 

by a list of indices describing the left, peak, and right positions within the region: δ𝑖 = (𝑙𝑖, 𝑝𝑖, 
𝑟𝑖) where the indices satisfy 𝑙𝑖 < 𝑝𝑖 < 𝑟𝑖 and the SLID signal satisfies 𝑆(𝑙𝑖), 𝑆(𝑟𝑖) < 𝑆(𝑝𝑖). 
Because the seismic signal is noisy (even after smoothing) there will most likely be many candidate 
peak regions. Therefore, a key component of the algorithm is merging of peak regions.  
 

3.2.2. Peak Merging 

The main steps to merging of candidate peak regions can be described as follows: 

1. For each candidate peak region δ𝑖 , compute the left and right prominences, that is, the 

change in magnitude between the value of the peak 𝑆(𝑝𝑖) and the bounds 𝑆(𝑙𝑖), 𝑆(𝑟𝑖).  
2. For regions whose left and right prominences are less than some tolerance parameter 

minProminence, search for adjacent peak regions, defined as regions whose indices are 

within maxSep and merge adjacent peak regions until the new left and right prominences 

are larger than minProminence.  
3. Finally, filter out merged peak regions whose peak values are below a threshold denoted by 

minHeight. 
 

The above algorithm produces a list of merged peak regions ∆𝑖= (𝑙𝑖, 𝑝𝑖, 𝑟𝑖)  consistent with the 

specified values for parameters minProminence, minHeight, and maxSep. If n∆ is the number 

of merged peak regions and nδ is the number of candidate peak regions, then n∆ ≤ nδ.  
  

3.2.3. Event prediction 

Given the collection of  n∆ merged peak regions, the next step is to identify the seismic event of 

interest. For general change point detection applications, it is possible to take all  n∆ merged peak 
regions as event regions. However, for the seismic event detection application, we have external 
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knowledge that there is a single event per waveform. Therefore, our prediction of the event is simply 
the time of the largest peak:  

𝑝∗ = argmax
𝑖=1,…,n∆

𝑆(𝑝𝑖)  

 

3.3. Uncertainty Quantification with SLID 

The prediction 𝑝∗  of the seismic event onset time depends on the choice of the five key parameters, 
which are shown in red in Figure 19. Without prior knowledge on the optimal parameter set, it is 
difficult to determine the confidence of our prediction for a given choice of parameters.  

One approach to assess the confidence in our prediction 𝑝∗ is based on uncertainty quantification 
(UQ). Specifically, if we assume the five parameters are mutually independent uniform random with 
the following ranges:   

• 5 < windowSize < 20 
• 0 < smoothingWindow < 5 

• 0.005 < minProminence < 0.2 

• 0.5 < minHeight < 0.8 
• 0 < maxSep < 2 

 

Our approach is to draw 𝑛 = 100 random samples from these parameters and run the SLID event 
detection algorithm for each of the 100 random samples, producing 100 predictions for a single 

seismic waveform. The resulting probability density function (pdf) of 𝑝∗ is fitted with a kernel 
density estimator (KDE) with a Gaussian kernel. The standard deviation of the fitted distribution is 
inversely proportional to confidence. 
 
Figure 20-22 illustrate this approach on the SLID seismic event predictions. In addition to the 

distribution of 𝑝∗ (red), we also plot the distribution of all merged peaks, 𝑝𝑖 , for 𝑖 = 1,… , 𝑛Δ 
(yellow). For reference, the expert picks (best and range) are also shown (blue). It can be seen that 
the standard deviations of the distributions match our intuition for predictions with high, medium, 
and low confidence. 
 

 
Figure 20. Exemplar result for a seismic event prediction with high confidence. 
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Figure 21. Exemplar result for a seismic event prediction with medium confidence. 

 

 
Figure 22. Exemplar result for a seismic event prediction with low confidence. 

 
A practical use case for the confidence values is to allow the analyst to quickly sift through 
waveforms where the algorithm has high confidence, and to more carefully analyze waveforms 
where the algorithm has low confidence. In order for this use case to hold, the algorithm confidence 
must correlate with algorithm prediction performance. Therefore, we next look at the correlation 
between algorithm confidence and performance.  
 

To quantify the algorithm performance, we compare 𝜇, the mean in the distribution of the algorithm 

prediction time, with 𝑡𝑆𝑀𝐸 , the SME prediction time. Specifically, since performance should be 
inversely related to the difference between the mean algorithm prediction and the SME prediction, 
we look at   
 

performance = |𝑡𝑆𝑀𝐸 − 𝜇|
−1. 

 

To quantify the algorithm confidence, we use the inverse of the standard deviation 𝜎 in the 
distribution of the algorithm prediction time:  
 

confidence = 𝜎−1. 
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Figure 23. Relationship between algorithm performance and algorithm confidence.  

 
The relationship between algorithm confidence and algorithm performance is shown in Figure 23. It 
can be seen that, in general, higher algorithm confidence tends to yield better algorithm 
performance. The highest density of low performing seismic waveforms (off by larger than 1 second 
from the analyst pick) also has a confidence score less than ~0.5 (bottom left corner in the plot). 
These results suggest that it is a promising approach to specify a threshold in the computed 
algorithm confidence score for a given seismic waveform (0.5 for this dataset), below which it is 
necessary to require an expert to make the event pick. 
 

Finally, if we define waveforms where |𝑡𝑆𝑀𝐸 − 𝜇| ≤ 1 second to be a true positive, we can also 
assess algorithm performance using a precision recall (PR) curve. Intuitively, precision refers to the 
percentage of results that are correct; recall refers to the percentage of correct results returned. 
Ideally, one would like both high precision and high recall. Figure 24 shows the PR curve, obtained 
by ranking waveforms according to their confidence score (solid) compared with a random ranking 
of waveforms (dashed). It can be seen that returning waveforms to an analyst sorted by confidence 
score yields a significantly better PR curve (average precision (AP) = 0.87) than returning the same 
waveforms at random (AP = 0.56). Even for low recall values (~0.1), a random ordering of 
waveforms yields a precision of approximately 0.6, whereas the waveforms with the highest 
confidence yields a precision higher than 0.95. In fact, using the confidence score to return 
waveforms to the analyst, the precision stays higher than 0.8 until high values of recall. Note that at 
full recall, where we have returned all the true positives, we have a precision of approximately 0.6, 
indicating that approximately 60% of all waveforms are considered true positives.   
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Figure 24. Comparison of precision-recall (PR) curve using the confidence score (solid) and a 

random ranking of waveforms. 

 

3.4. Assessing SLID Performance for Seismic Data 

Our initial work with NCD demonstrated that the maximum NCD value was typically close in time 
to the minimum AIC value and the range of possible arrival times picked by an expert analyst. SLID 
has major advantages over NCD from a computational perspective. It can be computed fast enough 
to be available on demand in real-time analysis settings, and it can be computed multiple times to 
provide UQ information for seismic waveforms. However, we wanted to ensure that it performed as 
well as NCD in terms of producing peak values that align closely with AIC and expert picks. To 
assess this, we compared the differences between the SLID peaks and the NCD peaks. 

3.4.1. Comparing SLID to NCD 

As a first step in this assessment, we calculated the absolute value of the time difference between the 
NCD and SLID peaks for each of the 536 waveforms in our dataset. The mean difference was 1.74 
seconds. For 379 of the waveforms (70.7%), the difference between the two peaks was less than or 
equal to 1 second. SLID had a slight tendency to peak later than NCD, with later SLID peaks 
occurring for 291 (54.3%) of the waveforms. A plot of the differences is shown in Figure 25. 
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Figure 25. A plot showing the time difference between the maximum NCD peak and the maximum 
SLID peak for all 536 waveforms in our dataset. 

 

The difference between the SLID peak and the expert analyst’s best pick was slightly larger, on 
average, than it was for NCD. Across the entire set of waveforms, the average difference was 0.63 
seconds for NCD and 1.65 seconds for SLID. This analysis took earlier peaks into account, when an 
earlier SLID or NCD peak was closer to the expert’s best pick. Note that SLID and NCD differed 
in terms of when they produced earlier peaks that met our criteria (a peak at least 80% the height of 
the primary peak, occurring within 5 seconds before the primary peak). There were many waveforms 
for which NCD produced an early peak but not SLID, and vice versa. Figure 26 shows the 
difference between the SME’s best pick and the closest NCD and SLID peaks. The waveforms are 
ordered by the size of the difference for SLID. This plot also highlights the tendency for SLID to 
peak slightly later than NCD. However, note that on the extreme ends of the plot, where the 
differences are large for SLID, NCD tends to have large differences as well, and often in the 
opposite direction. This indicates that those waveforms are very noisy and that neither algorithm is 
producing stable results. There are also many cases where SLID is much closer to the SME’s pick 
than NCD, as illustrated by the bars in the center of the plot. Despite this, the results of the two 
algorithms are often quite consistent with one another. 
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Figure 26. A plot of the differences between NCD and SLID and the SME’s best pick for all 536 
waveforms in the dataset. 

 

A better way to compare the two algorithms is to select the best filter for each event. Recall that 
there are 100 events in this dataset, each of which was analyzed under multiple filter conditions to 
produce the 536 waveforms. As in our initial assessment of NCD, we used the difference scores to 
select the filter for which SLID performed the best for each seismic event. When selecting only the 
best filters, the performance of SLID and NCD was almost identical. The mean difference between 
the closest NCD peak and the expert’s best pick was 0.47 seconds while the mean difference 
between the closest SLID peak and the expert’s best pick was 0.54 seconds. 

3.4.2. Comparing SLID to AIC and SME Picks 

To compare SLID to AIC, we used a second dataset that contained SME picks for multiple seismic 
events and stations. The process for creating this dataset was similar to the process outlined for the 
dataset described in Section 2.3. The new dataset was intended to capture a wider variety of stations 
and events to provide a better picture of SLID’s applicability to seismic analysis. While the first 
dataset consisted primarily of data collected from stations in Utah, the second dataset contained 
stations from all over the world. A map of the 37 stations included in the dataset is shown in Figure 
27. There were a total of 98 waveforms selected for the dataset, each of which could be filtered 
using the 6 filters described in Section 2.3. The SME made picks for the earliest possible, most likely 
(best), and latest possible arrival times in every filter that had a useable signal. The result was a set of 
444 waveforms. 
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Figure 27. A map of the seismic stations included in the global dataset. 

 

Across all 444 waveforms, the average difference between the maximum SLID value and the 
minimum AIC value was 6.99 s. The SLID peak was closer to the SME’s pick than AIC for 240 of 
the 444 waveforms (54%). AIC tended to produce much larger errors (relative to the SME’s pick) 
than SLID. On average, the SLID peak was 3.26 s away from the SME’s best pick while AIC’s pick 
was 6.68 s away from the SME’s best pick. The results of the two algorithms were less than 1 second 
apart for 252 (56.8%) of the waveforms. When the waveforms where the results of the two 
algorithms were less than 1 second apart were excluded from the analysis, the SLID peaks were an 
average of 6.11 s away from the SME’s best pick while the AIC picks were an average of 13.98 s 
away. SLID was closer to the SME’s pick than AIC for 121 (63%) of the 192 waveforms in this 
group. These results show that the results of SLID tend to be more similar to the SME’s picks than 
the results of AIC, particularly when the two algorithms produce results that are more than 1 second 
apart. 

When looking at the best filter for each station/event combination (the filter for which SLID was 
closest to the SME’s best pick), we found that the SLID peak was within 1 second of the SME’s best 
pick for 87 of the 98 events. These results are shown in Figure 28. 
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Figure 28. The difference between the SLID peak and the SME’s best pick for the filter that 
produces best SLID result for each event/station combination. 

 

This analysis indicates that the SLID peak is typically very close in time to the SME’s pick for the 
most likely signal arrival time when an appropriate filter is chosen for the data. For the events where 
the time difference was large, such as the event at the far left side of Figure 28, the waveforms were 
very noisy and the SME could only discern a signal in one or two of the filters. 

Given the computational advantages offered by SLID and the fact that it, like NCD, typically 
produces results that are very close to an SME’s picks when the seismic waveforms are filtered 
appropriately, we chose to use SLID when developing code that implements this method for seismic 
analysts. SLID can be run in real time and offers the additional advantage of supporting a UQ 
analysis, as discussed in Section 3.3. 

3.5. Assessing SLID for Minimizing False Detections 

Another question when assessing the utility of compression metrics for seismic waveform analysis is 
whether these metrics can produce better automatic picks than existing methods. As discussed in the 
introduction, the existing automated processing method produces many extra picks. Human analysts 
end up discarding about 40% of the picks made by the system. Another way to reject these 
extraneous picks would be to determine whether or not they produce a SLID peak. To test this 
approach, we obtained a dataset consisting of 68 false detections that were generated in one day’s 
worth of seismic data from one seismic station. For each of these false detections, the automated 
processing system placed a pick that was later rejected by a human analyst. We calculated SLID for a 
segment of data that included 60 seconds before and 60 seconds after each of the false detections. 
Most of the 68 examples did not have a clear SLID peak at all, and none of them had a peak that 
corresponded to the false detection. A representative example is shown in Figure 29. SLID was 
calculated using two different window widths for this example. Neither produces a peak near the 
time of the false detection, which is marked with a red line. 
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Figure 29. SLID plots for a representative example of a false detection made by the existing 
automated processing system. 

 
This exploratory analysis indicates that compression metrics could be helpful for refining the event 
bulletins that are produced by the existing automated systems. The absence of a SLID peak could 
help analysts to reject the false detections more rapidly, or SLID could become a component of the 
automated processing system to provide converging evidence for or against the automatic picks. 
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4. ASSESSING THE IMPACT OF INFORMATION FROM 
COMPRESSION METRICS ON HUMAN DECISION MAKING 

4.1. Experimental Methods 

4.1.1. Participants 

This experiment was reviewed and approved by the Human Studies Board at Sandia National 
Laboratories. Eleven Sandia employees (6 male, 5 female) participated in this study and were 
compensated for their time. The average age of the participants was 45 and all of the participants 
had a master’s or Ph.D. in geophysics or earth science (8 participants), electrical engineering (2 
participants), or computer science (1 participant). All of the participants work in the seismic analysis 
and global nuclear monitoring domain and had extensive experience with seismic analysis. 

4.1.2. Materials 

4.1.2.1. Visualization Conditions 

Nine different visualization conditions were developed for the experiment. One condition, as a 
baseline, presented only the seismic waveform. Another presented the waveform with a pick line 
based on the minimum AIC value for that waveform. This represents the current state-of-the-art, in 
which analysts see automatic picks based on the AIC algorithm. The other seven visualization 
conditions presented the SLID information in different ways. The SLID information could be 
presented as a plot of the scaled SLID values over time, a vertical line marking the maximum SLID 
value (visually equivalent to the pick lines based on AIC), or a highlighted range that indicated the 
location of the peak SLID values. The highlighted range started at 50% of the height of the peak on 
the left side of the peak and ended at 95% of the height of the peak on the right side of the peak. 
The highlighted range was biased toward the early/rising side of the peak due to our observation 
that SLID often peaks slightly late relative to SME picks. This highlighting system was intended to 
encompass the maximum SLID value as well as preceding values, indicating to the analyst where the 
arrival time is most likely to occur based on the SLID calculation. We presented these visual cues 
(SLID plot, SLID pick line, and highlighted range) individually and in every possible combination, as 
shown in Figure 30. 

Based on our earlier research indicating that the maximum SLID peak is often slightly late relative to 
SME picks, we also marked earlier SLID peaks that met certain criteria. In order to be marked in the 
visualizations, these earlier peaks had to be a distinct local maximum that was at least 80% as tall as 
the tallest SLID peak, occurring within 5 seconds prior to the tallest SLID peak. The earlier peaks, 
when present, we marked with a lighter shade of blue than the main peak, as shown in Figure 30. 
The earlier peaks were also highlighted, with the highlighted range beginning at 95% of the height of 
the early peak on the left side of the peak and ending at the nearest local minimum on the right side 
of the peak. This highlighting is biased toward the late/falling side of the earlier peak, since the 
signal arrival times often occur close to or soon after the early SLID peaks. As with the highlighting 
for the dominant peak, the highlighting of the earlier peak is intended to draw the analyst’s attention 
to the region of the waveform where the signal arrival is most likely to occur. 

4.1.2.2. Stimuli 

A total of 74 seismic waveforms were used as stimuli in the experiment. Two of these waveforms 
contained signals produced by known nuclear tests, one of which occurred in 1995 and one of  
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Figure 30. Examples of the nine visualization conditions used in the experiment. 

 

Waveform Only SLID Curve AIC Pick Line 

SLID Pick Line(s) Highlighted Range(s) SLID Curve + Line(s) 

SLID Curve + Highlight(s) Highlight(s) + Line(s) 

SLID Curve +  
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which occurred in 2017. Those two waveforms were presented to all participants in all visualization 
conditions using a within-subjects design. The remaining 72 waveforms contained signals from a 
variety of seismic events, such as earthquakes and mining events. The waveforms were selected 
based on the following principles: 

1) They were representative of common patterns that we had observed in the SLID outputs. 

2) They varied in their visual representations (i.e., some had a wide highlighted range while 
others had a narrow highlighted range) 

3) They emphasize cases in which the SLID results are not ideal (i.e., when there is not a single, 
sharp peak in the SLID plot). The current analytic workflow for the seismic analysts is highly 
effective, so it is important to demonstrate that adding new information to that workflow 
would not be distracting or detrimental to analyst performance, particularly in scenarios 
where the SLID peak is not sharp or does not coincide closely with the signal arrival time as 
determined by a SME. Noisy SLID plots occur when the waveform itself is noisy, yet those 
noisy waveforms represent the cases where adding information based on SLID is most likely 
to help (or hinder) the analyst’s decision making. Since our goal is to use SLID to help 
analysts focus their attention on the most likely arrival times in the waveforms that are most 
difficult to analyze, it was important to include a high proportion of noisy waveforms that 
are difficult to analyze. 

To meet these goals, we selected 8 waveforms that fell into each of the nine categories below. The 
“SME’s best pick” refers to the time point that the SME selected as the most likely signal arrival 
time for that waveform. The “SME’s range” refers to the time period defined by the SME’s pick for 
the earliest possible and latest possible signal arrival times for each waveform. When that range was 
small, the SME was very certain about when the signal arrived at the seismic station. When that 
range was large, the SME was less certain. The nine categories of stimuli were as follows: 

1) SLID had a sharp peak that overlapped tightly with the SME’s range 

2) SLID had a broad peak that overlapped tightly with the SME’s range (i.e., both SLID and 
the SME’s picks indicate the same band of uncertainty for the arrival times). 

3) SLID had a broad peak that did not overlap with the SME’s range 

4) SLID peaked late relative to the SME’s range 

5) The SLID plot had an earlier peak (meeting our criteria for marking in the visualizations) 
and that earlier peak was a good match to the SME’s best pick. 

6) The SLID plot had an earlier peak (meeting our criteria for marking in the visualizations) but 
the larger peak was a good match to the SME’s best pick. 

7) The range of uncertainty indicated by highlighting the SLID peak(s) is much narrower than 
the SME’s range. 

8) The range of uncertainty indicated by highlighting the SLID peak(s) is much broader than 
the SME’s range. 

9) The SLID and AIC pick lines are very different from each other and from the SME’s best 
pick. 

All participants analyzed all 74 stimuli, but the pairing of the nine stimulus sets and the nine 
visualization conditions was counterbalanced across participants so that each participant saw each 
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stimulus set with only one of the visualization conditions. The stimulus set-visualization pairing and 
the order in which the participants completed the blocks was counterbalanced using a Latin Square 
design. The result was nine unique stimulus lists. Each list contained nine blocks of stimuli, one for 
each visualization condition. There were 10 waveforms in each block: 8 from one of the stimulus 
sets described above and the two stimuli that were presented in every visualization condition for all 
participants. The order of the waveforms in each block was randomized. Each of the waveforms 
was assigned a code (such as “A_01”) so that the participants would be less likely to recognize any 
specific seismic events that they had seen or analyzed previously. In other words, the participants did 
not know when the signals depicted in each waveform occurred, which seismic station recorded the 
signal, or what kind of filtering had been applied to the waveform. They had to make their picks 
based only on the waveform itself and the information provided about SLID or AIC. 

4.1.3. Procedure 

Due to the COVID-19 pandemic, the experimental sessions were conducted via Skype. Participants 
digitally signed the consent form and returned it to the experimenter prior to beginning their 
session. After connecting with the experimenter via Skype, the participants were instructed on how 
to connect to a lab computer via a remote desktop connection. Once connected, the participants 
completed a demographic form and read a document that explained SLID and provided instructions 
for the task. Participants were then introduced to the graphical user interface (GUI) that was used to 
analyze the waveforms. They practiced using the GUI and making picks on two example waveforms. 

When participants were ready to begin the experiment, they opened a checklist that indicated the 
order in which they were to analyze the waveforms and the visualization options that they should 
select in the GUI for each block. After opening a waveform, participants could zoom in on the 
waveform and pan back and forth as desired. They made picks for the earliest, best, and latest arrival 
times for the seismic signal. Each pick was mapped to a mouse button. One participant did not have 
access to a three-button mouse, so that participant only made picks to indicate the best arrival time. 
The participants could erase their picks and redo them as needed. When they were satisfied with 
their picks, they clicked the “save” button, closed the waveform, and checked it off on the list. The 
participant’s picks were saved to a database, along with the time elapsed between when they opened 
the waveform and when they closed it. 

The whole experiment, including training, took about 2-2.5 hours. Some participants broke it into 
multiple sessions, based on their schedules. Three of the participants completed the experiment in a 
single session, 7 broke it into two sessions, and one participant broke it into 3 sessions. There were a 
couple of cases where the data from a particular waveform did not save properly due to a bug in the 
code. If there were more than one or two trials with missing data, the participants were asked to log 
back in to re-analyze those specific waveforms. 

4.2. Results 

For each waveform, we calculated the width of the range of possible arrival times selected by the 
participant, as well as the time difference between the participant’s best pick (their judgement of the 
most likely arrival time) and the SME’s best pick, the SLID peak and highlighted range, the earlier 
peak and highlighted range (when applicable), and the AIC pick. 

4.2.1. Participant Preferences 

The participants were divided in terms of their preferences for the different visualization conditions. 
A subset of five participants felt that the conditions with the highlighted ranges were the most 
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helpful, while a different group of four participants thought that the highlighted ranges were the 
least helpful. The participants who liked the highlighting tended to dislike the vertical lines (both 
AIC and SLID lines) and the SLID plot. The participants who disliked the highlighting preferred the 
SLID plot or the SLID and AIC lines. Two participants said that the plot with everything on it 
(SLID plot, SLID lines, and highlighting) was their least favorite because it was too busy. 

4.2.2. Within-Subjects Analysis 

First, we analyzed the results for the two waveforms that showed seismic signals from nuclear 
weapons tests. Both waveforms were presented to every participant under all of the visualization 
conditions. The first of these waveforms, the event Lop Nor 1995 as recorded at seismic station 
SRU in Utah with a 0.8 high pass filter, was selected because it had a relatively clear signal. Figure 31 
shows the waveform, zoomed in near the arrival time, with the best arrival time pick made by the 
SME, and the picks made by all 11 participants across the 9 visualization conditions (99 picks in 
total). Figure A-1 in Appendix A shows the full waveform, and Figure A-2 shows how the 
participants’ picks were distributed in each visualization condition.  

 

Figure 31. A zoomed-in view of the easier within-subjects seismic waveform (grey), the SME’s pick 
for the best arrival time (green) and the participants’ picks for the best arrival time (purple). The 

participants’ picks are stacked if there were multiple picks falling in the same hundredth of a 
second. The y-axis indicates the number of picks in each time bin and the x-axis shows time in 

seconds. 

 

Across all visualization conditions, there was only a 6.8 second range between the earliest time and 
the latest time selected by participants as the “best” arrival time. When we looked at the participants’ 
choices for the best arrival time in each condition, the average values fell in a tight range, regardless 
of condition. These results are shown in Figure 32. Note that the entire time range depicted in the y-
axis is only 2 seconds total. The average time of arrival selected by the participants fell within that 
same 2-second window, regardless of visualization condition. 
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Figure 32. The average best arrival time selected for each visualization condition for the easier 
within-subjects stimulus. 

 
Similarly, the participants’ picks for the best arrival time were very similar to the SME picks that 
served as our point of comparison. The average difference for each visualization condition is shown 
in Figure 33. For all but one condition (the AIC visualization), the average difference was less than 
half a second. 
 

 

Figure 33. The average time difference in seconds between the participants’ picks for the best 
arrival time and the SME’s picks for the best arrival time in each visualization condition for the 

easier within-subjects waveform. 
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Unsurprisingly, there was not a statistically significant difference between the conditions. A repeated 
measures ANOVA showed that the visualization condition did not have a significant effect on the 
participants’ accuracy (F(8,80) = 0.48). 

The second nuclear test in the dataset was conducted in North Korea in September 2017 and the 
waveform was recorded at station SRU in Utah. A bandpass filter from 3.0-6.0 Hz was applied to 
the waveform used in our study. This waveform was selected because it was very noisy, particularly 
when participants first opened the file, prior to zooming in on time points of interest. We predicted 
that there would be more variability in the participants’ picks across visualization conditions for this 
noisier, more difficult waveform. Figure 34 shows the waveform, the SME’s best pick, and the picks 
made by the study participants across all visualization conditions. The full waveform is shown in 
Figure A-1 in Appendix A. Figure A-3 in Appendix A shows how the participants’ picks were 
distributed in each visualization condition. 

 

Figure 34. A zoomed-in view of the more difficult within-subjects seismic waveform (grey), the 
SME’s pick for the best arrival time (green) and the participants’ picks for the best arrival time 

(purple). The participants’ picks are stacked if there were multiple picks falling in the same 
hundredth of a second. The y-axis indicates the number of picks in each time bin and the x-axis 

shows time in seconds. 

 
There was a much larger range of pick times for this waveform than for the easier stimulus discussed 
above. In this case, the participants’ best picks spanned a range of 95.2 seconds. However, this large 
span was mostly driven by one participant who picked a time that was much earlier than the other 
participants’ picks. Note that this early pick is not shown in Figure 34. Without this outlier, the 
remaining picks spanned a range of 6.7 seconds, which was very similar to the range observed for 
the easier waveform. The average time for the participants’ best picks in each visualization condition 
are shown in Figure 35 (the very early outlier is excluded from this analysis). Once again, note that 
the time range on the y-axis spans only 3 seconds. On average, the picks were quite close together. 
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However, it is notable that the variability in the picks is much larger for the Waveform Only and 
SLID Lines conditions than in the other conditions. 

 

Figure 35. The average best arrival time selected for each visualization condition for the more 
difficult within-subjects stimulus. 

 
The average difference between the participants’ picks for the best arrival time and the SME’s picks 
for each visualization condition is shown in Figure 36. The Waveform Only condition had the 
largest average difference and the highest variability. However, a repeated-measures ANOVA 
showed that there was not a significant effect of visualization condition on the participants’ accuracy 
relative to the SME (F(8,79) = 1.06, p = 0.4). 

 

 

Figure 36. The average time difference in seconds between the participants’ picks for the best 
arrival time and the SME’s picks for the best arrival time in each visualization condition for the 

more difficult within-subjects waveform. 

1504410149.00

1504410149.50

1504410150.00

1504410150.50

1504410151.00

1504410151.50

Waveform
Only

AIC Line SLID Lines Highlights SLID Lines
+

Highlights

SLID Plot SLID Plot +
Lines

SLID Plot +
Highlights

SLID Plot +
Lines +

Highlights

Ep
o

ch
 T

im
e

Average Best Arrival Time Selected in Each Condition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Waveform
Only

AIC Line SLID Lines Highlights SLID Lines +
Highlights

SLID Plot SLID Plot +
Lines

SLID Plot +
Highlights

SLID Plot +
Lines +

Highlights

A
ve

ra
ge

 T
im

e 
D

if
fe

re
n

ce
 (

se
co

n
d

s)

Average Difference between Participant and SME Picks for Best 
Arrival Time



 

53 

 

4.2.3. Between Subjects Analyses 

For most of the waveforms in the experiment, participants analyzed the waveforms in only one 
visualization condition. For these waveforms, we used a between-subjects analysis to assess the 
impact of the visualization conditions on the participants’ responses. Our primary goal was to test 
whether the information based on SLID would be a hinderance to the participants when it was not a 
good match to the SME’s pick. In other words, in those situations, did participants make picks that 
were closer to the SME’s pick or closer to the times indicated by SLID?  

As a first step in assessing the impact of SLID information on the participants’ picks, we calculated 
the difference between each participant’s best arrival time pick, the best arrival time picked by the 
SME, and the time of the maximum SLID value. The results for all waveforms are shown in Table 
1. The bolded cells indicate the instances where the outputs of each algorithm were displayed. 

Table 1. Mean (and Standard Deviation) Difference Results for All Between-Subjects Stimuli  

Condition 

Average Difference 
Between Participant’s 
Best Pick and SME’s 

Best Pick 

Average Difference 
Between Participant’s 

Best Pick and the 
Time of the Peak 

SLID Value 

Average Difference 
Between Participant’s 

Best Pick and the Time 
of the AIC Pick 

Waveform Only 1.10 (SD = 2.10) 3.45 (SD = 20.23) 3.20 (SD = 20.26) 

AIC Line 0.86 (SD = 1.06) 2.83 (SD = 20.18) 2.65 (SD =20.19) 

SLID Line(s) 1.02 (SD = 1.13) 3.10 (SD = 20.08) 2.88 (SD = 20.09) 

SLID Highlight(s) 0.90 (SD = 1.01) 4.88 (SD = 28.41) 4.77 (SD = 28.43) 

SLID Line(s) + Highlight(s) 0.94 (SD = 1.28) 4.78 (SD = 28.29) 4.80 (SD = 28.31) 

SLID Plot 1.00 (SD = 1.21) 3.06 (SD = 20.13) 3.08 (SD = 20.12) 

SLID Plot + SLID Line(s) 2.20 (SD = 9.23) 3.86 (SD = 22.24) 3.96 (SD = 22.28) 

SLID Plot + Highlight(s) 0.90 (SD = 1.07) 2.99 (SD = 20.29) 3.02 (SD = 20.30) 

SLID Plot + SLID Line(s) 
+ Highlight(s) 1.00 (SD = 1.91) 2.92 (SD = 20.08) 2.82 (SD = 20.08) 

 

These results show that the participants’ best picks were closer to the SME’s best picks than they 
were to the SLID or AIC picks, regardless of visualization condition. This is a good indication that 
providing the information based on SLID did have a detrimental impact on the participants’ 
performance. 

To investigate this further, we analyzed the stimuli where the difference between the SME pick and 
the maximum SLID peak was more than 1 second. This was the case for 21 of the 72 waveforms 
that were used in the between-subjects stimulus set. For those waveforms, the average difference 



 

54 

between the participants’ picks and the SME’s picks was 1.37 s (SD = 1.42 s) when only the 
waveform was shown and 1.67 s (SD = 1.93 s) when the SLID information was shown. The 
difference between the participants’ picks and the time of the SLID peak was 9.22 s (SD = 37.10 s) 
when only the waveform was shown and 9.78 s (SD = 40.34) when the SLID information was 
shown. In other words, displaying information based on SLID did not lead the participants to make 
picks that were closer to the SLID peak than they were to the signal arrival time, even when the 
SLID peak was relatively inaccurate. This is the situation in which adding additional information is 
most likely to mislead users, but we did not observe that happening in this study. 

When the difference between the SLID peak time and the SME’s pick was less than 1 second, 
participants benefited from the SLID information, making picks that were closer to the SME’s pick. 
For this subset of waveforms, the average time between the participants’ picks and the SME’s picks 
were 0.99 s (SD = 2.32 s) when only the waveform was shown. This difference dropped to 0.90 s 
(SD = 4.21 s) when the SLID information was shown. The participants’ picks also moved closer to 
the SLID peak in these situations. The average difference between the participants’ picks and the 
SLID peak was 1.08 s (SD = 2.32 s) when only the waveform was shown, but dropped to 0.93 s (SD 
= 4.23 s) when the SLID information was shown. While this is a small effect, it indicates that 
participants recognize when SLID aligns with their interpretation of the waveform and place their 
picks closer to the SLID peak. In contrast, when the SLID information did not align well with the 
SME’s picks, the participants successfully ignored the SLID peak and placed their picks close to the 
SME’s pick, regardless of where the SLID peak occurred.  

It is worth noting that several of the participants commented that they do not trust automatic picks 
in seismic waveforms, regardless of the algorithm doing the picking. One participant commented 
that “the best algorithms used in seismology are only accurate 50% of the time, so I don’t trust it.” 
Since all of our participants had extensive experience with seismic waveform analysis, they may be 
predisposed to ignore information supplied by algorithms when it does not match with their own 
assessments. It is possible that displaying SLID results that do not match well with expert 
judgements would be more problematic for less experienced analysts. 

It is also important to note that this experiment did not include any UQ information for SLID. We 
would expect the UQ information to improve accuracy for experienced and novice analysts alike, by 
allowing them to assess how confident they should be in the SLID information. If the UQ analysis 
shows with high confidence that a pick should be in a particular spot, we would expect to see the 
same effects that we observed in this study, where participants made picks that were close to the 
SLID peak when it provided them with a “good” result. In contrast, if the UQ analysis indicates low 
confidence, that provides analysts with information that would help them to ignore the SLID 
information and rely on their own knowledge instead. If less experienced analysts are more likely to 
be negatively impacted by unstable SLID outputs, we would expect the UQ output to counteract 
any negative impact. It is also likely that providing analysts with UQ information would help them to 
calibrate their trust in the algorithm’s outputs appropriately. 

4.3. Summary of User Study Results 

The results of this study indicate that participants used the SLID information when it aligned well 
with the SME’s judgements, and that this information helped them to make more accurate picks. 
They also recognized the cases when the SLID information was not particularly helpful (cases when 
the SLID peak was more than 1 second away from the SME’s best pick). In those cases, the 
participants successfully ignored the SLID peak and made picks that were much closer to the SME’s 
pick than they were to the SLID peak. 
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We did not observe any significant effects of visualization condition in the within-subjects analysis. 
Instead, we found that about half of the participants had a strong preference for seeing highlighted 
ranges to help direct their attention to a particular section of the data. The other half of the 
participants preferred to see the SLID plot and vertical pick lines that are similar to the way AIC 
picks are typically displayed. 

The findings of this study support the way in which SLID and UQ information are displayed in the 
SLIDPick Graphical User Interface, which is described in Section 5. When using the SLIDPick tool, 
users can choose whether or not to display the SLID plot and the UQ information. Like the 
highlighted ranges, the UQ information provides the users with cues about the time periods in 
which the signal arrival is most likely to occur. It is superior to the highlighting used in the user 
study, which was based on somewhat arbitrary cutoffs related to the peaks on a single SLID 
calculation. The UQ information incorporates numerous iterations of SLID, so it can both guide the 
user’s attention to the appropriate regions and indicate how much confidence they should have in 
any given SLID plot. 
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5. GRAPHICAL USER INTERFACE FOR APPLYING SLID TO SEISMIC 
WAVEFORMS 

One of the key outcomes of this project is the development of the Sliding Information Distance 
Pick (SLIDPick) graphical user interface (GUI) that allows users to compute SLID with UQ for any 
seismic waveform. This section provides a brief overview of the features of the GUI. 

5.1. Computing Environment 

The SLIDpick GUI is written in the Python programming language, version 3.6 and will run on 
Windows, Mac, and Linux operating systems - provided the supporting Python modules are installed 
on the given platform. The program has been successfully tested in a Python 2.7 environment with 
the necessary packages present. A list of required Python packages is shown in Table . 

 

Table 2: SLIDpick Required Python Modules 

Required Python Packages 

pandas subprocess os 

time tkinter matplotlib 

string sqlite3 pylab 

sys obspy scipy 

datetime math itertools 

numpy getpass basemap 

 

5.1.1. User-Specific Parameters 

The SLIDpick GUI requires the user to define three parameters that are dependent upon the user’s 
installation. A SLIDpick.par file defines the location of these parameters and must be located in the 
same folder as the SLIDpick software. For directory paths, ensure that the trailing slash is included 
in the variable name.  
 

Table 3: SLIDpick Parameters 

Parameter Description 
SLID_db  sqlite3 database file location 

Waves_loc  Directory of seismic waveforms, if analyzing 
data that is stored locally  

projection_lib  Map information required for event and 
bulletin maps 

 

5.2. Using the Interface 

5.2.1. Initiating the Program 

Based on operating system, there are different methods to initiate the program.  
  

• On Linux, include the environment on the first line of the SLIDPick_v1.1.py script (e.g., 
#!/usr/bin/env /path/to/Python /env) 

• For Windows, first activate the Python environment and then call the program.  
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source activate environment name 
Python SLIDpick_v1.1.py 

 
After issuing one of the commands above, the SLIDpick GUI is launched (Figure 37). 
 

 
Figure 37. SLIDpick User Interface. 

 

• File->Open: This option will invoke a file selection dialog that lists waveforms stored in the 
Waves_loc directory discussed in Section 5.1.1. The “Analyze File” button invokes the same 
function. 

• File->Save: This option, invoked after processing, will write the user’s results to the 
SLID_db. The “Save” button invokes the same function. 

• File->Exit: This option allows the user to exit the program and ends the user’s session. The 
“Quit” button invokes the same function. 

• Help dropdown menu: Opens a window with usage instructions. 

• SetUser button: Enter a unique User ID (see Section 5.2.2 for further instructions for using 
this field). 

• Smoothed SLID plot button: Compute and display SLID attributes in a waveform analysis 
window. 

• SLID window entry form: Allows user to set number of seconds used for SLID window 
computation. 

• UQ plot button: Allows the user to apply and display UQ refinement processing  

• Change UQ parameters button: Allows user to change parameters for UQ processing. 

• Change Filter button: Invokes a filter selection dialog where the user changes the data filter. 
There are six available filters, which are the standard filters used in seismic analysis, as 
discussed in Section 2.3. 

• Bulletin Lookback entry form: Allows the user to set time range, in hours, from current time 
to retrieve an event bulletin from IRIS.  

• Event Time entry form: Allow the user to input an event origin time to be used for real-time 
event-based waveform retrieval from IRIS. A date and time are required, e.g. 2020-09-
15T00:00:00, where time is in Universal Coordinate Time (UTC).  
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• Latitude entry form: Allows user to input an event latitude for event based real-time 
waveform retrieval. 

• Longitude entry form: Allows user to input an event longitude for event based real-time 
waveform retrieval. 

• Segment Length entry form: length of waveform segment past the origin time to be 
retrieved. 

• Search Radius entry form: radius from the given latitude and longitude of an event to search 
for stations and retrieve waveform data.  

• AnalyzeFile button: Invokes a file selection dialog that lists waveforms from the acquired 
experiment datasets stored in the Waves_loc.  

• Get Event button: Retrieves waveforms from the IRIS data center using the origin time, 
latitude, longitude, segment length and search radius as input parameters. Returns all 
available BHZ, HHZ, EHZ, and SHZ components from stations within the search radius. 

• Get Bulletin button: retrieves the event bulletin from IRIS for events occurring between the 
present time minus the Bulletin Lookback hours. Results in a popup dialog that allows the 
user to select an event, show on a map, and retrieve waveforms. 

• Analyze Stream button: After the user retrieves an event via the Bulletin popup, this button 
will sequentially loop through the newly acquired waveforms, apply SLID and/or UQ plots, 
and allow the user to analyze the data stream.  

• Save button: This option, invoked after processing, will write the user’s results to the 
SLID_db.  

• Quit button: Allows the user to exit the program and end the user’s session.  

5.2.2. Setting the User ID 

Prior to beginning a session, the user should set an identifying label in the “User ID” text entry 
widget. The User ID will be given to the analyst by the person conducting the experiment. The ID 
000 is set by default and processing will not be allowed until a suitable ID is entered and the “Set 
User” button depressed (Figure 38). The ID can be set to any alpha-numeric string, based on the 
preference of the experiment administrator. After the User ID is set, processing can begin. 
 

 
Figure 38. User ID field used for setting the unique alpha-numeric ID using the SetUser button. 

5.2.3. Reading Waveforms into the Interface 

After the User ID is set, the user can click on the “AnalyzeFile” button to open a waveform file for 
processing. A dialog of files (in the Wave_loc directory) is opened. 
 
After selecting a waveform file from the dialog shown in Figure 39, the waveform is displayed in the 
analysis window (Figure 40.) 
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Figure 39. Waveform file selection dialog. 

 

 
Figure 40. The waveform analysis window. 

5.2.4. Displaying Features on Waveforms 

Figure 41 shows buttons and entry forms on the left side of the SLIDpick GUI. The buttons are 
labeled Smoothed SLID plot, SLID Window, UQ plot, Change UQ parameters, and Change Filter. 
Any combination of these can be selected to display attributes and set parameters for the waveform 
analysis window. The attributes to be displayed are computed at processing time. 
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Figure 41. Location of Smoothed SLID plot, UQ plot, UQ parameters, and Change Filter buttons on 
the SLIDpick screen. 

 

• The Smoothed SLID plot button will calculate SLID for each waveform using the default 
parameters discussed earlier in this report. The user can change the default window size by 
using the SLID Window entry box.  

• The UQ plot button will show the distribution of the maximum SLID scores over a range of 
parameters.  

• The Change Filter button allows the user to select one of five high pass or bandpass filters, 
as described above. 
 

The Uncertainty Quantification can be used to assess the stability of the SLID result. The 
combination of attributes displayed will be logged in the database when analysis results are saved. 
Figure 42 illustrates a waveform with all attributes displayed.  
 



 

62 

 
Figure 42. Waveform with SLID and UQ features plotted. The SLID plot using the default 

parameters is shown in purple and the UQ result is depicted by the red distribution plot along the 
bottom edge of the window. 

5.3. Using Get Bulletin Interface to Retrieve Data 

If a user wants to analyze seismic data from the Incorporated Research Institutions for Seismology 
(IRIS) database, rather than waveforms saved locally on their computer, they will use the Get Event 
and Get Bulletin features. The Get Bulletin button in the GUI activates the Bulletin interface Figure 
43. This allows the user to retrieve a bulletin from IRIS and select events from the bulletin for 
processing.  
 

 
Figure 43. The Bulletin interface. 

 
The bulletin interface shows the list of events pulled from IRIS for the time period specified by the 
user in the main GUI. Users can select an event from the list and use the Get Event button to 
retrieve the data for analysis. If users want to explore the events available in the list, the Bulletin Map 
button will produce a global map of events in the bulletin, as shown in Figure 44. 
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Figure 44. Bulletin Map 

 
The Station Map button will plot stations within the radius of the event. This button can be 
particularly useful prior to using the Get Event button because it can inform the user how many 
stations will be requested. An example is shown in Figure 45. Users can then change the search 
radius if they want to retrieve data from more stations (or fewer stations). As the search radius 
increases, the segment length should be increased as well, to account for the fact that the signal will 
arrive later at more distant stations. Clicking on the Get Event button will retrieve available 
waveforms from stations within the search radius entered on the main window of the event. The 
waveforms will start at the origin time and end at the origin time plus the segment length time. The 
Clear Selection button will clear the current selection. The Close Bulletin button simply closes the 
dialog.  
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Figure 45. Bulletin dialog with event selected and Station Map displayed for stations within 5 
degrees of the event. Labels contain the network and station code. 

 
With the event selected in Figure 46 the result of pressing the Get Event button is shown in Figure 
47.  
 

 
Figure 46. Waveforms retrieved with Get Event button. 

 
After the user has retrieved the data using the Get Event button, clicking on the Analyze Stream 
button in the main window will process the data trace-by-trace and bring each up in the analysis 
window, as shown in Figure 47. 
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Figure 47. Data for station FUJU, for an event at 12:17:05 UTC on 09/15/2020, near the Fiji Islands 
located at latitude: 15.145 S and longitude: 179.793 E. 

5.4. Analysis 

Analysis, or start time picking, occurs in the waveform analysis window. After the user has set their 
ID, selected attributes to display, and opened a waveform, they are ready to make their earliest, 
actual, and latest seismic phase arrival time onset estimates.  
 
In the window, the user will notice an orange vertical line appear when the mouse cursor is in the 
waveform widget. The orange line is for reference. To pick the earliest seismic phase arrival time 
onset, slide the orange line to the appropriate place on the waveform and click the left mouse 
button, a blue dashed vertical line will appear.  
 
To mark what is believed to be the actual seismic phase arrival time onset, click the middle mouse 
button (or scroll wheel depending upon the mouse) and the time will be marked by a vertical green 
line.  
 
The right mouse button will mark the latest seismic phase arrival time onset and the resulting dash-
dot vertical line will be shown in wheat. 
 
If the user has a change of opinion and would like to change one of the estimates, select the 
corresponding “Clear” button on the bottom left side of the analysis window (see Figure 48).   
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Figure 18. Analysis window with analyst onset estimates. 

 
In Figure 48, all three picks are shown on the waveform as dashed blue, solid green, and dash-dot 
wheat vertical lines. Once the picking has been accomplished, the user can click on either the “Save” 
or “Close” buttons on the bottom right portion of the analysis window. Clicking “Save” will write 
the results to the database, this button calls the same function as the “Save” button on the main 
form of the GUI or the File->Save menu option. If the results are saved from this interface, the 
GUI will issue an error message dialog if the user tries saving from using either of the other options. 
The “Close” button will shut the waveform window. If needed, results can be saved using one of the 
other methods after the waveform window is closed. 
 
If a closer look is needed the user can ‘zoom’ in on the waveform using the magnifying glass icon in 
the tool bar of the analysis window (Figure 47). Note that while the zoom is active, the cursor for 
analysis is disabled. A second click of the magnifying glass is required to re-activate the cursor.  
 
The units on the y-axis in the upper plot in Figure 18 are normalized amplitude. Time is plotted on 
the x-axis in units of seconds. 
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Figure 49. Zoomed view of annotated waveform shown in Figure 48. 

5.5. Database 

The SLID database is an SQLite Version 3 database that consists of two tables. To query the 
database type: sqlite3 SLIDpicks_db 
 
The database will open, and the user will have a sqlite> prompt. Type Entering .schema at the prompt 
will reveal the table creation syntax and show the attributes of each table. 
 
The SLID_picks table (Table 1) contains the name of the waveform and user, epoch and human 
readable times for each onset estimate, a proc_time_seconds value that indicates how long the user took 
to make their picks, a condition value that reflects which attributes (if any) were displayed while the 
user was processing the waveform, and a lddate field showing the date/time the entry was made. 
 

Table 1: The SLID_picks Database Table 

Field Attributes Description 

Waveform text Waveform Name 

User text User Identification 

Earliest_time_epoch real/float Epoch time of earliest start  

Actual_time_epoch real/float Epoch time of actual start  

Late_time_epoch real/float Epoch time of latest start  

earliest text Human readable earliest start time 

actual text Human readable actual start time 

latest text Human readable latest start time 

Proc_time_seconds integer Analyst processing time 

condition text Overlays/attributes applied during analysis 

Lddate text / date Date/Time record saved to the database 

 
The slid_ref table (Table 2) is a mapping between the waveforms in the dataset and the associated 
csv files containing the AIC and SLID attributes that are plotted if selected. Typical SQL queries can 
be made of each table, for example, typing: 
 

select user,waveform,earliest,latest from slid_picks  
where waveform='CHS_CirclevilleMain.sac.1_3bp_2pass.sac' 
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will yield the result: 
 

002|CHS_CirclevilleMain.sac.1_3bp_2pass.sac|2011-01-03 12:07:21.610011|2011-01-03 
12:07:22.568235  

Table 2: The SLID_ref Database Table 

Field Attributes Description 

Slid_no text Cross-reference for numbered SLIDcsv files 

waveform text Waveform name 

 

5.6. Obtaining the Code 

The code for running the GUI is hosted at https://gitlab.sandia.gov/SeismicNCD For access, 
please contact the first author of this report. 

 

 

 

 

 

https://gitlab.sandia.gov/SeismicNCD
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6. CONCLUSIONS 

This project demonstrated that NCD and SLID can be applied to seismic waveforms to support 
global nuclear explosion monitoring. Although both methods are effective for detecting signal 
arrival times, we focused on SLID because it can be computed several orders of magnitude faster 
than NCD. This fast computation time allows for UQ analyses that indicate how confident the user 
should be in any picks based on SLID. Our user study demonstrated that providing information 
based on SLID was helpful to analysts, particularly for noisy waveforms. A key concern was whether 
SLID would distract analysts and lead to less accurate analyses when the SLID result did not 
correspond well to a SME’s analysis of a waveform. To address this concern, we emphasized cases 
in which a single SLID calculation produced mediocre results (note that poor SLID results obtained 
from a single calculation would be mitigated by using the UQ analysis as well). Even in this worst-
case scenario, we did not find any evidence that SLID misled the analysts or produced cognitive 
biases.  

SLID could be used to support seismic analysis in a variety of ways, such as the following: 
1) Corroborating the picks made by AIC. If the two algorithms agree, it is very likely that the 

pick is a true positive and that the timing of the pick is accurate. Conversely, when there is 
no SLID peak corresponding to an automatic pick, that pick could be a false positive and 
warrants further inspection by an analyst. 

2) Selecting the optimal filter band for displaying a waveform. Effective filters will enhance the 
visibility of the seismic signal and result in a SLID plot with a sharp peak and high 
confidence. 

3) Helping analysts to direct their efforts more efficiently. If a pick is well-supported by the 
information content of the waveform, as indicated by SLID, there is no need to spend time 
adjusting that pick. However, when SLID produces a broad peak, a peak that rises gradually, 
or a UQ analysis that indicates medium or low confidence, these are all indications that 
expert judgment is needed for making an accurate pick. The analysts bring external 
knowledge to bear on the problem that allows them to make accurate picks even for noisy 
signals that are not conducive to automated analyses. SLID can help to identify those signals 
so that analysts are applying their expertise when it is needed and not wasting time on cases 
where the automatic picks are sufficient. In addition, even when the SLID result has low or 
medium confidence according to the UQ analysis, both the SLID plots and the UQ plots 
can help to direct the analyst’s attention to the most likely time regions for the signal arrival. 
 

Future directions for this research could include testing the impact of the UQ analyses on analyst 
performance as well as investigating ways to incorporate the SLID and UQ calculations into the 
analysts’ workflow to support the applications described above. 
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APPENDIX A. SUPPLEMENTAL MATERIALS 

Table A-1. The Combination of Events and Stations Used in the NCD Evaluation Dataset 

Event Name Stations Selected 

Bald Mountain DUG, FLU, FSU, PSUT 

Bingham 2 
DBD, DCM, IMU, MLI, MMU, NMU, 
OWUT, PTU, SRU BHZ, SRU EHZ, WCU 

Bingham Canyon (earthquake) 
LHUT, MLI, MMU, NAIU, PNSU, RDMU, 
WCU 

Chile (earthquake) SRU BHZ, SRU EHZ, SRU HHZ 

Circleville AS (earthquake) FSU, HLJ, LCMT, LHUT, PNSU 

Circleville Main (earthquake) 
CHS, FSU, HLJ, HONU, LCMT, LHUT, 
PNSU, PTU 

Kemmerer 
CTU, MLI, MSU, NAIU, NLU, PTU, RBU, 
RCJ, SRU, WVUT 

Longwall Large (mining) 
DCM, PNSU, ROA, SRU BHZ, SRU EHZ, 
SRU HHZ 

Longwall Small (mining) PNSU, ROA 

Lop Nor 1995 (nuclear test) INCN, SRU EHZ 

NK Sep 2017 (nuclear test) INCN, MDJ, SRU EHZ 

Peabody 
FLU, MMU, MSU, SNO, SRU BHZ, SRU 
EHZ, SRU HHZ, WCU 

Salt Lake 
CWU, DAU, DUG, FLU, FSU, LEVU, PTU, 
WBC 

Sufco (mining) 
ELU, EMU, FSU, HTU, LEVU, SNO, SRU, 
TCRU, TMU ENZ, TMU HHZ, WCU 

Tohoku (earthquake) 
DCM, DUG, INCN, PD31, SRU BHZ, SRU 
EHZ, SRU HHZ 

Vanuatu (earthquake) FSU, ICU, SRU BHZ, SRU EHZ, SRU HHZ 
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Figure A-1. Views of the entire waveforms that were used as the easier (top) and harder (bottom) 
within-subjects waveforms. The green lines mark the SME’s pick for the best arrival time and the 

purple lines mark the participants’ picks for the best arrival times across all visualization 
conditions. 
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Figure A-2. The distribution of participants’ best picks in each visualization condition for the 
easier within-subjects waveform. 
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Figure A-3. The distribution of participants’ best picks in each visualization condition for the more 
difficult within-subjects waveform. 
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