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ABSTRACT

Quantum computing has the potential to realize powerful and revolutionary applications. A
quantum computer can, in theory, solve certain problems exponetially faster than its classical
counterparts. The current state of the art devices, however, are too small and noisy to practically
realize this goal. An important tool for the advancement of quantum hardware, called
model-based characterization, seeks to learn what types of noise are exhibited in a quantum
processor. This technique, however, is notoriously difficult to scale up to even modest numbers of
qubit, and has been limited to just 2 qubits until now. In this report, we present a novel method for
performing model-based characterization, or tomography, on a many-qubit quantum proessor. We
consider up to 10 qubits, but the technique is expected to scale to even larger systems.
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to its left. The terms are written similarly to the Hi and Si./ of Eq. 3.4, except the
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write Sp, in place of Eq. 3.4's Sii.   16
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6



Figure 5-2. Results of fitting cloud-noise models to data from real quantum devices. Our
tomographic approach was applied to five superconducting-qubit devices. Four
were Rigetti Quantum Computing devices (three used their "Aspee hardware
and and one their "Agave') and one IBM device run by BBN Raytheon. How
well a cloud noise model (of the class tested) is able to describe the data is mea-
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simulation requires roughly two orders of magnitude less time than the standard
approach of density-matrix propagation .   40

7



SUMMARY

This report presents the research work of a 3-year LDRD project entitled "Efficient, Scalable
Tomography of Many-Qubit Quantum Processors". It describes the primary results coming out of
the research, as well as some of the pitfalls and wrong paths taken along the way. The main
product of this research is a prototype method to perform quantum tomography on many-qubit
quantum processors and the theory behind it. We describe this many-qubit tomography after
giving some context for how this problem fits within the field.

8



1 INTRODUCTION

Quantum computing is a relatively novel means of computation that prepares, manipulates, and
ultimately measures a quantum mechanical state while maintaining its coherence - a fragile
property that, once lost, cannot be recovered.[8] Often this state is spread across many effective
2-level systems called quantum bits, or qubits. In theory, a quantum information processor (QIP)
could speed up certain problems by a factor exponential in the problem size relative to today's
classical computers. However, achieving such impressive performance gains on problems of
practical significance would require hundreds to millions of qubits, all operating with at very low
error rates. Current quantum processors are small (2-50 qubits) and noisy (high error rates), and
are unable to solve practical problems faster than their classical counterparts.[9] The path to a
useful quantum processor — a chief goal of the field — then, is continued improvement of quantum
hardware: the creation of quantum processors with more qubits and lower error rates.

One way of improving hardware is by using ad-hoc methods and intuition within the physics labs
where the pioneer quantum processors are built. In small systems of up to few qubits, such in-lab
intuition is a very useful and efficient way to proceed. Experimental teams' expertise in their own
hardware leads to simple tests that probe and correct for noise in the systems. As the system
becomes larger and more complex, however, it becomes increasingly difficult identify noise
sources and intuit ways of combating them.

At this point, the methods of Quantum Characterization Verification and Validation (QCVV)
become relevant. QCVV is an area of research that seeks to assess and understand the
performance of QIPs largely from a hardware-agnostic standpoint. It accomplishes these goals
through the use of QCV V protocols. A QCVV protocol analyzes the output of running a (usually
pre-defined) set of circuits on the QIP with the purpose of better understanding the QIP's
performance. This understanding takes different forms. QCVV protocols can be roughly divided
into holsitic methods, which measure the overall performance of a device, and tomographic
methods, which seek a detailed and predictive understanding of the noise.

Holistic methods are most helpful at succinctly measuring the capabilities and performance of
existing devices. They may be used to guide the development of hardware, e.g. by measuring the
performance of several different variants and choosing the best-performing one, but this usage
doesn't typically provide any insight into what types of experimental modifications would
increase the performance. As such, using holistic QCVV methods to navigate a path to improved
hardware is similar to optimizing a function without any derivative information. These methods
more useful for confirming, rather than driving, improved hardware performance

Tomographic methods, on the other hand, are intended to map out noise in greater detail. We
focus on one particular type of tomography we call model-based characterization. The goal of
model-based characterization is to construct a predictive model of a quantum processor (or a
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portion of it) based on training data. It attempts this by optimizing the parameters of a given
statistical model so as to maximize the likelihood between the model and its training data. If a
good fit cannot be obtained, the parameterized model must be enlarged or otherwise modified.
Ideally, the model's parameters can be related to physical effects and/or controls in the laboratory.
When this is true and a good fit is obtained, the resulting best-fit model provides significant
insight into the error mechanisms at work and/or how to mitigate them. This knowledge then
leads to improvements in the hardware, either by tuning the current device or through the design
of next-generation devices. Thus, model-based characterization serves as an important tool in
furthering the field of quantum computing.

Most QCVV protocols are limited in the number of qubits they can analyze at once. Holistic
methods offer better scaling in this regard, and some state of the art approaches can be applied to
20-qubit processors without problem[11]. On the other hand, tomographic methods such as
quantum process tomography and gate set tomography (GST) [6], are limited to 2-3 qubits — far
below the size of today's processors. This LDRD has succeeded in extending tomographic
methods to more qubits, and so furthered the state of the art in this area. In the remainder of this
report, we describe our development of a tomographic protocol - a means of model-based
characterization - that can be applied to up to 0(10) qubits.
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2. MODEL-BASED CHARACTERIZATION ON MANY QUBITS

In this section we describe a way to perform model-based characterization on processors with up
to 0(10) qubits. Our approach is based on concepts from GST, and in some ways can be seen as
an extension of GST that can be applied to larger processors. Before discussing the distinguishing
aspects of the many-qubit approach, we outline its basic structure and highlight its similarities
with GST. The basic steps common to GST and the many-qubit tomography presented in this
work are as follows:

1. Select a model. Model-based characterization ultimately optimizes a parameterized
statistical model. The function of the model is to, for a given set of parameter values 0, map
circuits into predicted outcome probabilities. Selecting a model means specifying exactly
how this is done, including how many parameters the model has. GST models represent
each QIP circuit layer (time step) as a dense matrix, and treat almost every element of these
matrices as an independent parameter.

2. Construct training circuits based on the ideal model. The training circuits are selected
so that their corresponding outcome probabilities (predicted by the model) are sensitive to
changes in the model parameters. Moreover, we demand that this sensitivity increases
linearly with the length (depth) of the circuits, so that small changes in the model
parameters are amplified to become large changes in the outcome probabilities of long
circuits. The careful selection and structure of the training circuits allows, in theory,
Heisenberg-like scaling of the best-fit model's accuracy with respect to circuit depth.
(Heisenberg scaling means the protocol makes efficient use of experimental resources.)
Constructing a set of training circuits with these desired properties, however, is nontrivial.
The circuits all have a particular structure, consisting of a preparation fiducial circuit
followed by a germ circuit repeated some number of times followed by a measurement
fiducial circuit. GST uses a three-part process to identify training circuits whereby 1)
fiducial circuits are selected, then 2) germ circuits are selected, and finally 3) redundant
fiducial pairs are eliminated on a per-germ basis.

3. Fit the model to the training data. The final step is to maximize the likelihood between
the model and the training data. A multi-stage optimization method is used (see section 5)
during which the likelihood function is repeatedly evaluated.

GST implements each of these steps using techniques that are practically limited to 1- and 2-qubit
systems. Extending them to more qubits presents a number of challenges, which we note in turn
below. These challenges are what make many-qubit tomography a hard problem, and why many
of the accomplishments of this LDRD were thought to be intractable or at least not worth
pursuing prior to this work.

11



• The size of the model. As the number of qubits increases, the number of parameters in
models that seek to capture generic noise can increase very quickly. For example, the
Markovian models used by GST have parameter counts that scale exponentially. This
means that the optimization problem (a non-convex, minimization) rapidly becomes
intractable. Moreover, even if the optimization could be performed, extracting meaningful
results relevant to improving future hardware from such huge models would provide a
challenge in and of itself.

• Training data selection. If we require the same Heisenberg-like accuracy scaling as GST,
training circuits must be chosen to amplify changes in the model parameters. The
somewhat ad-hoc three-part process used by GST cannot trivially be scaled up, suggesting
that a completely new approach is needed. While it is tempting to simply relax the
requirement of Heisenberg-like scaling, the structure of the GST circuits is also believed to
help the model optimization avoid local minima, making the move to a less structured set of
training circuits a risky prospect.

• The size of the Hilbert space. The most well known and appreciated impediment to
performing tomography on many qubits is the sheer difficulty of simulating the outcomes of
a (noisy) quantum circuit on many qubits. Standard techniques require time and memory
resources proportional to 4n for n qubits. While more efficient techniques are known for
restricted sets of circuits, these restricted sets do not coincide with the noisy gates
anticipated in real devices. Step 3 above requires the repeated evaluation of an objective
function that itself requires the simulation of many quantum circuits. State of the art
algorithms can perform single simulations on around 25 qubits using HPC systems (50
qubits using just pure state evolution[5]). Assuming a model with 1000 parameters, a
training set of ,=-2, 1000 circuits, and a optimizer that requires 100 iterations (these are
intended to be realistic numbers), performing tomography would require 108 > 413 circuit
simulations. This suggests that performing model-based characterization on around
25 — 13 = 12 qubits would strain cutting edge HPC systems, and that around 8 qubits would
be the most more modest HPC resources would allow.

In the sections that follow we describe how all of these challenges have been partially overcome
by the work performed during this LDRD. In section 3, we describe a novel class of
"cloud-noise" models whose parameters scale polynomially with number of qubits. Section 4
presents an efficient and scalable method for selecting training circuits that amply all the
parameters of a cloud-noise model. Section 5 describes improvements to standard optimization
techniques that allow us to successfully fit cloud-noise models to training data. We also show that
data from actual quantum processors can be adequately described by a cloud-noise model,
supporting our claim that these are useful and relevant low-parameter models. In section 6 a novel
algorithm for circuit simulation is presented and tested. This algorithm was designed to overcome
the Hilbert-space size constraints in situations when the overall amount of noise on the qubits is
small, and we demonstrate its use on up to 10 qubits.
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3. NOISE MODELS

Central to model-based characterization is the model itself. A model describes how some fixed
ti

number of real-valued parameters, 0, are used to construct the operations of the QIP under
investigation. A model with more parameters can (typically) explain more intricate features of a
data set, but requires more resources to optimize and can be more prone to over-fitting. GST uses
a class of models in which every possible circuit layer is represented by a dense 4" x 4" process
matrix, where n is the number of qubits, whose elements constitute independent parameters. This
is a natural choice, as it allows operations to be any time-independent "MarkoviaC process - but
the number of parameters in this class of models obviously scales exponentially.

To keep the number of model parameters from increasing too quickly, QIP operations need to be
represented in a sparse format, meaning the noisy operations must be specified by a small number
of free parameters (many fewer than the number of elements in their superoperator representation,
42"). If we restrict ourselves to Markovian models (where each operation has a time-independent
process matrix), then this sparsity means that not every type of Markovian error can be
independently allowed. We hypothesize that wisely choosing which independent errors to include
and which to exclude will result in a model that can predict real-device data despite having
relatively few adjustable parameters. Restricting the allowed types of noise based on a given type
of hardware too much will result in a model that, for better or worse, can only capture the noise
from that type of hardware. Not restricting enough will result in a model with an intractably large
number of parameters. We have developed a class of models that, we believe, achieves a good
balance in this regard. The models we present are able to describe a wide range of physical noise
sources and possess a number of parameters that scales linearly with the number of qubits. To
describe this class of models, we introduce the language of error generators.

In what follows, we work in the framework of superoperators, so that gates on n qubits are 4/1 x 4"
matrices, states are 4"-dimensional column vectors, and measurements are 4"-dimensional row
vectors. Gates are represented by symbols in normal italic font. Preparations and measurement
outcomes are represented using super-kets, e.g., p)) , and super-bras, e.g., ((E1, respectively. This
allows us to write the evolution of a density matrix using notation parallel to the traditional
quantum bra-ket notation for states. For example, GI p)) is the density matrix resulting from
preparing p and applying superoperator G, and

(AIGIP))

is the real-valued probability of obtaining outcome Ei after preparing p and applying G.

13
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3.1. Error generators

The concept of error generators lets us neatly and powerfully talk about the errors on a gate
operation. Let G be a n-qubit gate operation in question and GM be the corresponding ideal
(perfect) operation. We separate the intended action of G from unintended "errors" by writing

G = AGM , (3.2)

which defines the error map A. Since GO) is known and fixed as the ideal operation of the QIP,
parameterizing G amounts to parameterizing A. Physics-based arguments (e.g., the form of the
Schrodinger and Lindblad equations) motivate that we consider the logarithm of A, which we
denote F, rather working with A directly. We assume this logarithm is well defined (it almost
always is), and write:

G = er G(°) (3.3)

We call F the error generator of G. We restrict it to having the Lindblad form,

4.-1 4.-1
r = E aiHi E poi;

i=1 i,;=1
where ai are real values, pi.; are complex values, and Hi and Si j are maps given by

Hi: p i[P, p]

: p PipPi + 21 (pPiP; +Pip p) .

(3.4)

(3.5)

(3.6)

The Pi are Pauli matrices on n qubits, with Po the identity. The total number of Pauli matrices is
4n, and so the sums in Eq. 3.4 have the Pi and Pj in Eqs. 3.5 and 3.6 ranging over all 4n — 1
non-identity Paulis. The Hi act as Hamiltonian-type errors (rotations) about the Pi Pauli axis,
whereas the Sii operator corresponds to Pi-type Pauli-stochastic errors (for 1 qubit, these shrink
the Bloch sphere about the given Pauli axis). The off-diagonal Sif operators serve to rotate the
stochastic errors and to perform other types of errors (e.g. amplitude damping) that we do not
discuss further here.[1] We refer to the Hi and collectively as Pauli error terms, and to ai and
pi; as Pauli error coefficients. Notably, when is positive semi-definite, then A is a
completely-positive trace-preserving (CPTP) map. The number of Pauli error coefficients in this
case is (4n — 1) + (4n — 1)2 = (4n _ 1)4n, which is, as expected, the same as the number of
elements in a TP-constrained 4n x 4n superoperator matrix (the TP constraint fixes the first row of
the matrix).

The reason for introducing the error generator framework and writing G in terms of Pauli error
terms and coefficients is that it provides a way of connecting physically intuitive types of errors
with gate parameters. The errors associated with the Hi and Sii are particularly intuitive, as these
correspond to simple rotation and Stochastic errors on one or more qubits. Using error generators,
we can easily restrict the types and the locality of Hamiltonian and Stochastic errors by setting
some of the ai and Pii in Eq. 3.4 to zero. How we choose this "sparsity" is based on the following
considerations.
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• Type. As described above, Pauli error terms correspond to different types of errors, e.g.
Hamiltonian, Pauli-stochastic, and other types. For example, we can restrict to models
having just Hamiltonian and Pauli-stochastic noise by simply demanding that j be a
positive semidefinite diagonal matrix.

• Weight. The weight of a Pauli operator P is defined as the number of non-identity
single-qubit Paulis present in the expression of P as the tensor product of single-qubit
Paulis. For example, the 5-qubit Pauli X 0/ 0/ ® X 0/, written hereafter as XIIXI, has
weight 2 whereas HY II has weight 1. The weight roughly corresponds to the number of
qubit errors that happen simultaneously. Because high-weight errors are uncommon or
precluded by nature (e.g. microscopic Hamiltonians typically have at most weight-2 terms),
and because high-weight errors are problematic for quantum error correction, we consider
models where the error weight is restricted to be at or below some maximal value. This
maximal value is often 2 or 3, and is independent of n.

• Locality. Because errors often originate at a point or area in space, it is reasonable to
expect that the errors on gates will exhibit some kind of locality. We define locality
conditions by placing the qubits on a graph defining the nearest-neighbors of each qubit.
Then, we restrict the Pauli error terms to those that have non-identity Paulis only within a
radius of the gate's target qubits. The radius is specified as a number of nearest-neighbor
hops allowed from (any of) the target qubits. For example, suppose we have 5 qubits
arranged in a line. With a radius of 1, a gate that acts on qubit 3 is allowed to have Pauli
error terms with non-identity Paulis on qubits 2, 3, and 4 only. For example, IXXXI, IIXY I,
and IZIII are allowed but XIIII and HY IX are not. If the maximum weight allowed equals
2, then the IXXXI term would be forbidden because it is weight-3.

• Physical considerations. A third means of constraining the number of error terms in F is
based on the physics of the device itself. If, for instance, weight-2 ZZ-type errors are
expected to occur but other errors are not, we could simply drop all weight-2 Pauli error
terms except those containing two Z Paulis. A central motivation for using the Pauli error
generator framework described above is that the physics underlying qubit devices is often
neatly expressed in terms of the bit flip and phase errors corresponding to the Pauli basis
elements.

3.2. Cloud-noise models

During this LDRD, we used the error generator framework given above to focus on a particular
class of models we call cloud-noise models. The name comes from the model's ability to capture
errors that occur in a "clour around a gate's target qubits, as depicted in Fig. 3-1. A cloud-noise
model on n qubits is constructed as follows. The n-qubit idle operation is modeled as an
independent gate, and is limited to at most weight-wi Pauli error terms. There are no locality
constraints (there is no notion of target qubits for a global idle gate), except that the up-to WI
nontrivial Paulis must correspond to a connected subgraph of the qubits. The error on each gate
operation consists of a "local" part, followed by a "global" part. The local part is limited to Pauli
error terms with weight at most the number of target qubits plus an "extra gate weight", wg, that
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Figure 3-1. The types of errors, within a cloud-noise model, that are allowed
on 2-qubit gate between target qubits 3 and 4. The entire device consists of
6 qubits arranged in a chain. This example is for Wg = 0 and rg = 1, which
means that a 2-qubit gate can have up to weight-2 ((2+wg) = 2) errors on the
4-qubit "cloud" {2,3,4,5} defined as those qubits reachable by rg = 1 nearest-
neighbor hops from any target qubit. The first line pictorially represents the
ideal gate operating on its target qubits. The subsequent lines depict sev-
eral different ways weight-1 or weight-2 errors can act on qubits within the
cloud. Note that we do not demand that a weight-2 (or greater) error act on
neighboring qubits. (lf we added this constraint the final two lines would be
disallowed.) The column on the right gives examples of some of the Pauli
error terms that correspond to the picture to its left. The terms are written
similarly to the H, and S,.; of Eq. 3.4, except the Pauli P, is used explicitly as
the subscript (H, is written as H p, above) and we write Sp, in place of Eq. 3.4's
Su.

occur within a radius of rg (see Fig. 3-1 for an example). The global part is taken to be the same
as the global idle gate. This, in effect, treats the global idle operation as an always-on background
effect that we expect to align with the physics of many devices. We do not further reduce the
terms in F based on physical considerations, as this would require interfacing with more detailed
microscopic models of the device physics. We often, however, limit the types of the errors to just
the Hamiltonian and Pauli-stochastic types. Sometimes we additionally include linear
combinations of the off-diagonal Su error terms in order to allow for independent Pauli-affine
errors (these map p P for a Pauli P). We find that the number of parameters in such models
scales linearly with the number of qubits, since increasing the number of qubits adds a constant
number of gate operations, and each gate operation adds a constant number of error terms (i.e,
parameters). Figure 3-2 shows how this scaling behaves for several choices of wj, wg, and rg
when the qubits are arranged in either a 1-dimensional chain or 2-dimensional square lattice. All
the cloud-noise models we consider have X7c/2 and Y7E/2 gates on each qubit (single-qubit rotations
by 7r/2 radians about the x- and y-axis of the Bloch sphere, respectively), and one controlled-NOT
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(CNOT) gate between each nearest-neighbor pair of qubits. The models include only a single
control-to-target direction for each CNOT gate (the other directions could be straightforwardly
included as independent gates, but this would add to the parameter count).

In the numerical and experimental work detailed in section 5.2, we use models with wj = 2,
vvg = 0, and rg = 1 on linear chains of 1-6 qubits, corresponding to the solid blue line in
Fig. 3-2(a). We show there that such models can be used to fit simulated data, a nontrivial result
given the complexity of the model and circuit selection (cf. section 4), and fit experimental data,
supporting the desired result that cloud-noise models are able to capture the physics of actual
quantum processors.
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Figure 3-2. The parameter scaling of several classes of cloud noise models.
The plots in (a) and (b) show the number of parameters in cloud noise mod-
els with X7c/2,Y70, and uni-directional CNOT gates. Models are restricted to
having only Hamiltonian and Pauli-stochastic errors, and the values of WI, Wg
and rg shown in the captions. Upper and lower panes (a) and (b) show the
scaling for n qubits arranged in a 1-dimensional chain or in a 2-dimension
square lattice respectively. The case w1 = 2, Wg = 0, rg = 1 (blue solid line) is
particularly relevant, as this class of models is tested in section 5.
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4. TRAINING CIRCUIT SELECTION

The second challenge to performing model-based characterization on many qubits is knowing
what circuits are needed to probe the selected model — in this case a cloud-noise model. In this
section we describe an approach, invented during the course of this LDRD, for selecting sets of
circuits that are able to efficiently probe cloud-noise models. This means finding circuits that
amplify all of a cloud-noise model's parameters.

In GST this problem is tackled by a 3-part process related to the structure of the circuits. GST
circuits consist of a repeated germ circuit sitting between preparation and measurement fiducial
circuits. The first part of GST circuit selection identifies fiducial circuits that generate complete
sets of effective state preparations and measurements. The second and most computationally
intensive part selects germ circuits. It repeatedly constructs Jacobian matrices containing the
derivatives of the outcome probabilities of all the selected germ circuits with respect to all the
model parameters. The size of this matrix, combined with the increased number of repetitions
(trial germ sets) needed to construct a full germ set, results in this part scaling as a high-order
polynomial with qubit number. The third part removes redundant pairs of fiducials. Redundancy
exists because each germ circuit doesn't amplify every direction in its process matrix space.
Overall, the poor scaling of the germ selection step requires we find a different approach to circuit
selection, while the redundancy corrected for in the final step suggests that there is efficiency to
be gained through alternative methods.

The scalable approach we present here selects circuits having the same
germ-sandwiched-between-fiducials structure as traditional GST circuits. It takes as input the
ideal model and a series of circuit lengths (depths) Li for i =1 . . .NL. These lengths dictate how
many times the germs are repeated. The circuits are divided into NL bins, one for each Li. All of
the circuits corresponding to germ g and the Li-th bin contain g repeated [Li//g] times, where 1g is
the length (depth) of g, sandwiched between some number of fiducial pairs. The Li are usually
logarithmically-spaced powers of 2. The purpose of the repeated germ is to amplify one or more
linear combinations of the model parameters. The purpose of the pair of fiducial circuits is to
expose the amplified quantities in the circuit outcome probabilities. This circuit structure is
identical to that of standard GST.

The means of selecting germs and fiducial pairs in the present approach, however, is tailored to
cloud-noise models (cf. section 3). The fact that parameters "belong" to different gates (including
the global idle gate) allows us to focus on amplifying the parameters one chunk at a time rather
than all at once. Gates' spatial locality (except for the global idle) and the limited weight of errors
allow us to 1) restrict the search for germs to taking place on just a subset of the qubits, and 2)
apply the results found for one subset of the qubits on another similar subset. The circuit selection
process first finds circuits that amplify the parameters belonging to the global idle gate, and then
circuits that amplify different "clouds" of gates (defined below).
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4.1. Amplifying the global idle

Consider first how to amplify the parameters of the n-qubit global idle gate. By construction, this
gate has errors with weight at most WI, and so we can capture the effect of any individual error on
a set of just wl qubits. It is best not to think of these wI qubits as any portion of the original
device, but rather as a separate scratch space that we will use temporarily. Because the ideal idle
gate commutes with all operations, any idle gate errors are amplified by simply repeating the idle
gate itself. Thus, the germ-selection process is trivial for the idle gate: only one germ is needed,
the global idle itself. All we need to do is find a set of fiducial circuit pairs that, when they
sandwich the repeated idle, result in circuit outcome probabilities that together are sensitive to all
of the idle gate's parameters.

This process is performed by iterating through a candidate set of fiducial pairs and checking
whether the current pair makes any new (independent linear combinations of) idle gate
parameters accessible as we define presently. Let the current fiducial pair under consideration be

denoted (Fprep, Fmeas), and denote the potentially noisy idle gate on 14/1 qubits as GI. Using the
super bra-ket notation described above, the Ei-outcome probability for the circuit formed by
sandwiching the global idle, repeated m times, between the fiducial pair is:

pi = gilFmeas(Gi)m Fprep1P)) • (4.1)

This equation assumes that the QIP has a single state preparation p)) and a single measurement
that is represented as a positive operator-valued measure (POVM) with effects (outcomes)
Using Eq. 3.3 to decompose GI gives

pi = gilFmeas (eri 1-)in Fprep1P)), (4.2)

where we have used the fact that G;(31) = I, the perfect identity. To consider the effect of small
changes in the parameters (the ai and pi; in Fj, cf. Eq. 3.4), we can expand the exponential in a
Taylor series,

Pi = ((EilFmeas ((I F + .)I)m Fprep1P)) (4.3)

Pi = gilFmeas (I + mr + ...)Fprep1P)) (4.4)

Pi = ((EilFmeasFprep1P)) (4.5)

+ni((EilFmeasrIFprepIP)) + • • • (4.6)

After the simple rearranging performed in Eqs. 4.4-4.6, we find that the component of pi that is
linear in F/ and m, the number of germ repetitions, is simply ((EilFmeasFIFpreplp)) . This term can
be obtained by computing the first-order polynomials for pi when m = 1 and m = 0 and
subtracting the two. The linear term, expressed as a function (a polynomial) of the parameters,
can then be differentiated at the parameter-space point for the ideal model (usually 0 = 0). This
gives the direction in parameter space that is amplified by the circuit outcome probability pi as m
(the repetitions of GI) is increased. Repeating this procedure for all of the outcomes (different
((Eil) gives the set of amplified directions accessed by the given fiducial pair. We say that the
fiducial pair accesses, rather than amplifies, certain directions since it is more properly the
repeated germ that does the amplification.
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If the idle gate on 14,1 qubits has NI parameters, then we continue checking candidate fiducial pairs
for new accessed directions until NI independent directions are found. Since each fiducial pair
represents up to d — 1 independent circuit outcome probabilities, we expect to need a minimum of
NI (d — 1) fiducial pairs. When this procedure finishes, a set of fiducial pairs for the GI germ that
access all of the (up-to-weight-wi) errors on our WI "scratcV qubits has been found.

The errors on the wl scratch qubits may occur on any wi-qubit connected subset of the n total
qubits. Note that the one and only germ, the idle gate, naturally extends from WI to n qubits. To
ensure the outcome probabilities are sensitive to all up-to-weight-w/ errors on n qubits, we need a
set of fiducials on n qubits such that their restriction to any connected wj-qubit subset yields at a
minimum the fiducial pairs found for wl qubits using the procedure outlined above. This is
closely related to the k-coverage problem (with k = WI), and can be solved efficiently. We refer to
this process as "tiling" the fiducials, as it extends the fiducials from WI to n qubits in a way that
bears some resemblance to repeating the fiducials on a subset of the qubits to all of the qubits.
Tiling results in a set of n-qubit fiducials that access all the parameters of the global idle gate.

Suppose there are NA such pairs and denote them {Fpci p7F2as} for i = 1 ...NA.

Recall that these fiducial pairs all belong to the sole global idle germ. Since the global idle has
unit length (depth) the final circuits for the i-th bin, corresponding to length Li, are simply

{F,,Czie)as(Gi)L̀ Fgpl where j = 1 • • • NA•

4.2. Amplifying gate clouds

Next, we move on to find circuits that amplify the parameters of other (non-idle) gates. We divide
up the gates into clouds, defined as a group of gates having the same target qubits and having the
same neighborhood for potential errors as specified by wg and rg. For instance, all the single qubit
gates operating on a given qubit would form a cloud, assuming that their maximum-error-weight
(1 + g) and radius (rg) values were the same.

The purpose of clouds is to divide the circuit selection process into separable units. Let's consider
a particular cloud. The gates within this cloud are different from the global idle gate in that 1)
these gates' nontrivial action is restricted to a local neighborhood of qubits, call it S, around the
cloud's target qubits, and 2) the ideal implementation of these gates is, in general, nontrivial on
the target qubits. Point 1) means that we can restrict our search for germs and fiducial pairs to
qubits in S, similarly to what we did with the group of WI scratch qubits for the idle gate. A
consequence of 2) is that germ selection is more involved, since naively repeating a nontrivial
gate may "echo away" certain of its errors, i.e., some errors are made to cancel themselves via the
action of the gate. Similarly to how we focused only on amplifying the parameters belonging the
global idle gate above, here we restrict ourselves to just the parameters belonging to the gates in
the cloud, which we refer to as the cloud's parameters. We repeat the following steps to find the
circuits (germs and fiducial pairs) that amplify these parameters:

1. Take the next germ g for consideration from a candidate list. g can be a single gate, but in
general is a short sequence of gates. The list of candidate germs is supplied as input, and
only needs to contain circuits that act on the target qubits of the current gate cloud.
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Non-target qubits are always idling in the ideal (error free) versions of the circuits under
consideration, so errors on non-target qubits can be amplified using just the idle germ as in
the global idle case. We take as our list of candidate germs all possible circuits acting on the
target qubits that have length below a certain cutoff, and random longer circuits (this choice
is not unique).

2. Compute the number of repetitions l such that the ideal gl is the identity. We call g1 a
synthetic idle. In all the QIPs we have considered, the native gates all have the property that
such an l exists, and a synthetic idle can be found.

3. Find the parameter-space directions amplified by the synthetic idle g1 . This is done by
finding a set of fiducial pairs for the germ g1 that access as many amplified linear
combinations of cloud's parameters as possible. The procedure is identical to that used to
identify fiducial pairs for the global idle gate with one important exception: We don't
expect that repeating g1 will necessarily amplify all of of the cloud's parameters because g
may echo away some errors. In this context, the fiducial-pair selection process stops only
after we have tried every candidate pair. This is acceptable, since typically there are not that
many candidates. The possibility of a germ being insensitive to some types of errors is why
more than a single germ is needed, and why we must keep selecting germs until all the
cloud's parameters are amplified.

4. If g1 amplifies new (independent) cloud-parameter directions, then g is accepted as a new
germ. From the analysis of gl in the last step we know which parameter-space directions
repeating g will amplify (or, more properly, the space of amplified directions). However,
when repeating g a number of times, b, that is not a multiple of l, different fiducial pairs will
be needed to access these amplified parameter-space directions. This is in contrast to the
case of the identity germ, where same fiducial pairs can be used at all repetition-counts. For
a non-identity germ, the non-trivial action of the gate "twists" about the outcome
probabilities so that to access the same known-to-be-amplified linear combinations of
parameters in the circuit outcome probabilities, different fiducial pairs are needed. We can
find these fiducial pairs by applying the same procedure we used for the global idle gate or
gl to the non-idle gb gate with a simple modification. When considering a fiducial pair,
instead of adding any pair that accesses one or more new parameter-space directions, we
only accept pairs that access the particular directions found from the analysis of gl , i.e.,
those that we know are amplified by g. In this way we can find, for each length Li and
b=LLillgj, a set of fiducial pairs to surround gb such that all the newly amplified
cloud-parameter directions are evidenced in the circuit outcome probabilities. Circuits
composed of gb sandwiched between each of the so-found fiducial pairs, are added to the
i-th bin of circuits for the current cloud.

5. Otherwise, we reject the candidate germ and return to step 1 immediately.

6. Test if the number of independent amplified directions equals the cloud's number of
parameters. If so, then the selection process ends. Otherwise go to step 1.

Our implementation (in pyGSTi[7]) groups clouds that differ only by qubit relabeling together
into a cloudbank. The process above is repeated for each cloudbank (effectively, for each distinct
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cloud). Grouping the clouds into cloudbanks avoids duplicate work, but more importantly allows
straightforward and efficient tiling of the circuits on clouds with disjoint qubits. For example,
consider a 6-qubit linear chain with single-qubit )4/2 and 1/42 gates on each qubit. If each gate
has an error radius of 1, then, e.g., the gates on qubit 2 can have errors on qubits 1, 2 and/or 3.
Similarly errors on gates targeting qubit 3 and 4 are constrained to the qubit subsets {2,3,4} and
{4,5,6}, respectively. The circuits for each of these three clouds have the same structure, and thus
belong to a single cloudbank. When creating the final circuits, the circuits on the {1,2,3} and
{4,5,6} clouds can be performed in parallel ("tiler) since the clouds are disjoint. Circuits on the
{2,3,4} cloud would be performed separately (possibly with clouds from another bank, e.g. {5,6},
though this is not part of our current implementation). We tile the circuits found for the individual
clouds in this way, one bank at a time. This is done separately for each bin of circuits
(corresponding to the different Li), resulting in final circuit sets for each bin. These circuits add to
those found for the global idle to form a complete set of circuits that amplify all the parameters of
the cloud-noise model.
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5. FITTING THE MODEL TO DATA

Cloud-noise models are designed to capture common types of noise in many-qubit processors,
and in the previous section we developed a procedure for finding circuits that are sensitive to such
models' parameters. The next and final step in our approach to many-qubit tomography is to
optimize over the parameter space of a chosen model, di, resulting in an optimal set of model
parameters. We refer to the 0-parameter model obtained by evaluating di at the best-fit point as
the best-fit model. When our tomography protocol is successful, the best-fit model is a predictive
model that describes the behavior of the device beyond just the training data.

The best-fit model, which we denote diN4LE, is found by maximizing the logarithm of the
likelihood between the data and the model. The loglikelihood function being optimized is given
by

logY (6) = Enilogpi(6), (5.1)

where i ranges over all the outcomes for all the circuits, ni is the number of times the i-th outcome
is observed, and pi is the probability of that circuit outcome, as it is predicted by di. Since the
probabilities pi(0) are general, nonconvex functions, log is not convex. This precludes the use
of efficient global optimization methods. We must instead resort to using local optimization
methods that cannot guarantee a global optimum will be found. In spite of this, we have
developed a heuristic optimization method that, we find, is able to nearly always find the global
optimum in practice. We describe this method presently.

5.1. Optimization method

There are many out-of-the-box local optimizers that can be directly applied to optimize Eq. 5.1.
For example, the s cipy library contains a wide selection of general optimization methods. We
find, however, that standard implementations succeed only some of the time, and often yield
significantly non-optimal results. Over the course of this LDRD, many additions and updates
were made to our optimization procedure, which began as the algorithm used for standard GST.
What we present here represents the culmination of that work. We attribute our final approach's
robustness to two important elements:

1. The optimization is performed in stages.

2. The local optimization method performed at each stage is robust to canyons and valleys,
and less likely to attempt large steps.
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As described in section 4, we bin the circuits according to length (Li-value). The purpose of this
segregation is so that the optimization can be performed in stages. The first stage optimizes log
using only the circuits from the first bin (i in Eq. 5.1 ranges only over the circuit outcomes of
circuits in the L1 bin). The second stage uses the circuits from the first two bins, and so on, until
NL optimization stages have been completed. The stages are "daisy-chainecr', meaning that the
best-fit found for stage (k — 1)-th stage is the initial seed for stage k. When we take the {Li }Ni L1 to
be powers of 2, each successive stages adds circuits that are roughly twice as long as the circuits
of the prior stage. This gradual lengthening is intended to avoid local minima by providing a good
seed to each stage of the optimization. This is crucial because the local optimization method that
performs each stage can only be expected to minimize the objective function within a basin. The
progression of stages tries to ensure that each stage is always seeded at a point in same basin as
the global optimum. Since the outcomes of longer circuits are more sensitive to model
parameters, adding longer circuits to the optimization makes more, smaller, and steeper basins.
This creates a landscape with a sharper global minimum but also with more local minima, similar
to the situation in standard GST[6]. In practice, when there are N = 103 - 104 samples per circuit,
we find that taking the {Lei L1 to be powers of 2 is sufficient to ensure the seed of each stage is in
the correct basin. Failure is often detected by observing an extremely bad best-fit that gets
increasingly bad with successive stages.

We perform the optimization at each state using a modified Levenberg-Marquardt (LM) method.
The LM method solves a nonlinear least squares problem, and the log-likelihood can easily be
transformed to have this form.[2, 6] It is an iterative method that chooses each step by
interpolating between a Gauss-Newton step and a gradient-descent step. If f is the vector-valued

least-squares objective function and J is its Jacobian matrix, then the step 30 is computed by
solving

(JT + A,D) 30 = JT f, (5.2)

where is the damping parameter and D is the scaling matrix. A precursor to the LM method,
introduced by Levenberg, set D = I (the identity matrix). In this case, varying X between 0 and
clearly interpolates between the Gauss-Newton and gradient descent steps, respectively. The
traditional LM method uses D = diag (JT J), the matrix formed by extracting just the diagonal of
JT J. The value of X is adaptively updated at each iteration, and there are multiple suggested ways
of performing this update [12]. We find that within the realm of suggested X -update strategies,
performance does not substantially depend on the precise strategy chosen. Choice of the scaling
matrix, on the other hand, we find to change the optimization's behavior significantly, and so we
focus on modifications here.

The purpose of the scaling matrix is to inflate or deflate the "global" damping amount applied
to different parameter-space directions based on the curvature of the objective function in that
direction. A large damping results in a step close to a pure gradient-descent step, and is often
advantageous when the objective function is far from its optimum and/or on a plateau above a
canyon. A low damping results in nearly Gauss-Newton step, which is often advantageous when
near the minimum or when following a canyon. Levenberg's D = I suggestion is called "additive
damping" because A, is simply added to each coordinate direction, whereas the traditional LM
method uses so-called "multiplicative damping", where the damping along each coordinate
direction is proportional to the approximate curvature along that direction.
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We modify the LM method in two significant ways, both centered around the scaling matrix:

• The scaling matrix is placed in the basis of singular values of JT J. We find that the
diagonal values of JT .1 are often bad proxies for the singular values of the matrix, and lead
to poor scaling choices because the "principle axes" of the objective function's landscape
(e.g. the direction of a canyon) do not lie along the coordinate directions. By evaluating the
left-hand side of Eq. 5.2 within the basis of F 7's singular vectors we choose effective
coordinate directions that better align with the objective function, and hence get a more
accurate idea of which parameter directions are important.

• The scaling matrix values are adaptive. The scaling matrix is a diagonal matrix of the
singular values of JT .1 raised to the power s (usually near 1.0). Our algorithm keeps track of
the current value of s, which we denote so, and adapts it after every iteration, much like A..

At each iteration, three different gO values are considered: one using s = so; the other two
using s = so ± 3s, where 3s is a small fixed number (we use 0.1). If the best decrease in

I If I I is given by s = so + 3s, then this becomes the so on the next iteration, and similarly for
so — 3s. Note that when s = 1 and ./T./ happens to be diagonal, then D = diag .1), the
same update as the traditional LM method. When s = 0, it results in D = I.

We also have experimented with allowing uphill steps and geodesic acceleration[l 2]. Allowing
uphill steps can notably improve performance by reducing the number of LM iterations needed.
This suggests that our landscape may have winding canyons that are helped by an ability to glide
around a turn like a bobsled. We did not find any improvement using geodesic acceleration, and
so disabled this feature in our final optimization algorithm. Overall, we find that our modifications
to the scaling matrix have the most significant positive effect on algorithm performance

5.2. Numerical validation

As stated earlier, the optimization problem at hand is not convex. This means that no efficient
techniques are known to exist that globally optimize log Y. The staged optimization algorithm
described in the last section, while it attempts to mitigate the weakness of other local optimization
methods, is not guaranteed to find a global optimum. In this section, we show that in numerical
tests our proposed algorithm is able to find a global optimum. These results do not prove the
method will always succeed, but they do establish that there are at least some cases when it does.
Furthermore, they suggest that the method will succeed in cases similar to the
physically-motivated tests.

For each fixed number of qubits, we assess the model-based characterization protocol described
thus far by seeing whether a "base' parameterized model ./g(e) to able to fit training data
simulated from a true model that is known to be describable by the base model. Our base model is
a cloud noise models with Hamiltonian and Pauli-stochastic errors, and wl = 2, wg = 0, and

rg = 1. The true model 4(true = (9true) is created by fixing the parameters of the base model in
a way that selects realistic random errors on the qubits as follows. For each gate, including the
global idle, and for each state preparation and measurement operation,
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• The coefficients of 3 randomly chosen weight-1 Hamiltonian errors (3 randomly chosen ai
in the operation's error generator) and 2 randomly chosen weight-2 Hamiltonian errors are
set to values uniformly sampled from [-0.0005, 0.0005].

• The coefficients of 3 randomly chosen weight-1 Pauli-stochastic errors (3 randomly chosen
(3li in the operation's error generator) and 2 randomly chosen weight-2 Pauli-stochastic
errors are set to values uniformly sampled from [0, 0.0005].

These errors mimic an expected situation in which a small subset of the error terms dominate the
others. In addition to these errors, a uniformly random value from the interval [0,10-5] is added
to each ai and f31i coefficient of the global idle gate. Since the global idle operation is applied at
the end of every circuit layer, these random errors mimic the presence of low-level background
noise that is not in any particular direction.

After Iltrue is created, training data are produced by, for each training circuit, sampling N times
from the multinomial distribution constructed from the circuit's outcome probabilities. Recall that
the training circuits are chosen to amplify movement along all directions within .1('s parameter
space. Since the true model corresponds to a point within the parameter space of the model being
optimized (0 1 we expect the tomography to succeed in reconstructing <If\-true,, true from the training
data. When there is no finite sample error (the N co limit), this reconstruction should be exact,
and we have verified that this is the case on 1-6 qubits. When there is finite sample error, the
best-fit model,—MLE dt(eMLE), should fit the data slightly better than the true model since
it is able to fit some of the statistical noise.

To quantify this, we measure the obtained versus expected goodness-of-fit by applying Wicks'
theorem. Wick's theorem states that, given two valid models .16 and , twice their
log-likelihood ratio, X = 2(logYI — log -Z2 ) should be 4-distributed, where k = Nl — N2 is the
difference in the models' number of parameters. We define the number of standard deviations X is
above it's mean k as

Na = 
— k

. (5.3)
V2k

When .16 is known to be valid, Na » 1 is strong evidence that .172 has been violated, and that a
larger (or different) model is needed to explain the data.

The points in Fig. 5-1 give Na from comparing the best-fit estimate from data with N = 10, 000
with the true model and with the so-called "maximal mode'. The maximal model, by definition,
contains one parameter for every degree of freedom in the data, and therefore fits the data
perfectly. The number of degrees of freedom in the data is roughly equal to the number of
independent counts but, we find, must be corrected for small-N effects. This is especially true as
the number of qubits gets large, since small circuit outcome probabilities result in many outcomes
having few observed counts. The maximal model is a useful reference point, as it can be
computed directly from the data without knowledge of the true model. As a consistency check,
Fig. 5-1 also compares the maximal and true models, both of which are expected to always be true
by construction.

We find that our tomographic protocol successfully finds a good fit (Na < 3 between the estimate
and true models) for 1-6 qubits. Comparison with the maximal model also give low Na values as
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Figure 5-1. Validation that multi-qubit tomography is able to reconstruct an
underlying "true" model on 1-6 qubits. For each qubit number, a cloud-noise
model is created with random noise as described in the text. Data generated
from this model, with N = 10,000 samples per circuit, are fit to a cloud-noise
model with the same structure (Hamiltonian and Pauli-stochastic errors, wi =
2, wg = 0, and rg = 1) but that initially has no errors. Wilks' theorem is applied
between pairs of models as indicated in the legend. Low N, indicates that the
first model listed in the legend (the best-fit estimate or true model) is valid.
In the comparison between the best-fit and true model (green line), low N, <
3 indicates that the tomography has reconstructed the true model as well
as can be expected. Comparisons between each model and the "maximal
model" described in the text (blue and yellow lines) indicate that estimate
and true model explain the data, but with a slight uptick at the n = 6 that we
believe is from an inaccurate calculation of the maximal model's degrees of
freedom (see text for details).
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we expect, but with a notable up-tick for 6-qubits. We believe this is because finding the exact
number of degrees of freedom in the maximal model is complicated by low-N effects, and that
our accounting for this is slightly inaccurate at n = 6. Overall, these results suggest (but do not
prove) that our iterative local optimization method, paired with our approach to circuit selection,
is able to successfully navigate to a global optimum. We do not observe any cases where the
optimizer clearly gets stuck in a local optimum This is in part due to improvements made to the
optimization method (see section 5.1) and in part, we suspect, because we consider small noise
magnitudes and a fairly large N (sample count). We expect that, similar to GST, the optimization
will fail when N drops below a critical value and/or the errors are large. A more comprehensive
study of conditions for which the optimization method fails is a topic for further work.

5.3. Experimental validation

In addition to being able to handle the challenges of the global optimization problem, successful
model-based characterization must begin with a model rich enough to describe actual noise
present in devices. So we ask: Are cloud-noise models able to describe realistic noise? Whereas
the global optimization problem lies within the realm of computer science, the answer to this
question is governed by physics, and is difficult to answer absolutely. At the time of this writing
there are many QIPs in existence. They are based on multiple material systems (largely
superconductors and trapped ions), and this diversity is expected to grow in the future. Thus, we
expect a wide range of physical effects to be included in "realistic noise'. Still, a critical step in
the evaluation of any model-based characterization must be to test the protocol on existing
devices, and in so doing answer this foundational question as best as we can. Since cloud-noise
models were designed to capture fairly general noise, we have at the outset a hope and
expectation that they will be able to describe a wide range of physically relevant noise.

We test how well our model-based characterization approach works on a number of extant
quantum processors. For each tested processor we 1) select an appropriate cloud-noise model dl
(i.e., choosing the types of errors to allow, locality, etc.), 2) generate training circuits based on the
ideal .4' using the method of section 4 and execute them on the QIP, and 3) optimize //('s
parameters so that the model's predicted probabilities best fit the training data. We again use Na
(cf. Eq. 5.3) to quantify how well the model fits the data, now having no choice but to compare
the estimated model with the maximal model. Ideally, the best-fit model would be able to explain
all of the data, as in the simulated-data case, so Na < 2.

Figure 5-2 shows Na obtained from applying our protocol to actual quantum processors. These
QIPs range in size from 2-8 qubits, and all have superconducting transmon qubits. (Ion trap
processors were not tested due to the lack of public availability of larger processors.) The
processors we tested came almost entirely from Rigetti Quantum Computing (RQC), with one
exception being a device fabricated by IBM and run by BBN Raytheon. In each case, we use a
cloud noise model that is restricted to Hamiltonian, Pauli-stochastic, and Pauli-affine errors only,
and with 14,1 = 2, wg = 0, and rg = 1 Affine-type errors were specifically included because
superconducting qubits are known to suffer from "T1 decay", an error process whereby the 11)
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state decays into the 10) state (but not vice versa) after some time. Affine errors are required, in
tandem with stochastic errors, to model amplitude damping.
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Figure 5-2. Results of fitting cloud-noise models to data from real quantum
devices. Our tomographic approach was applied to five superconducting-
qubit devices. Four were Rigetti Quantum Computing devices (three used
their "Aspen" hardware and and one their "Agave") and one IBM device run
by BBN Raytheon. How well a cloud noise model (of the class tested) is able
to describe the data is measured by the number of standard deviations, AT, of
model violation we observe. Higher values of N, indicate more certainty that
the (best-fit) model is invalid, i.e. that it doesn't describe all of the data. Dif-
ferent color bars show AT, for when fitting data from different sets of circuits.
The circuits use to perform the tomography are binned according to the max-
imum length of their germ-power, L. AT, values for a given L,„ include alI the
circuits with L<L„„. Absent bars indicate optimizations that were never run,
e.g. only L= 1 circuits were used to analyze the 6- and 8-qubit devices. We
find that even shallow (L = 1) circuits on the 6- and 8-qubit devices cannot
be described by a cloud-noise model of the type we tried. The other three
devices show near-consistency (low-N„) for shallow circuits but that the cer-
tainty of model violation grows with increasing L. This behavior is typical
when the model is able to capture much but not all of the device behavior.

The results presented in Fig. 5-2 show mixed success. In the largest devices - 8-qubit Agave and
6-qubit Aspen - the cloud noise model is clearly unable to describe the data. Even the initial

(Lmax = 1) optimization stage was unable to produce an adequate fit, causing us to stop the test
there. In the other, smaller, devices, the model is able to describe the data from shallow circuits

(Lmax — 1 and sometimes Lmax = 2) but not frorn deep circuits. We see, particularly in the Aspen
4Q device, a step-like behavior of Na that is typical when the model describes the QIP's behavior
moderately well. Here the data from shallow circuits are consistent with model predictions but
longer (deeper) circuits, which provide more sensitive tests of model violation, yield data sets that
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indicate increasing certainty of model violation.

While this performance may initially appear disappointing, we conclude that these cloud-noise
models' ability to capture real device noise is promising. We take this optimistic view because
there is reason to suspect that the noise in the larger devices we tested is substantially higher, even
on a per-qubit basis, than that in smaller devices. By construction, the cloud-noise models
describe fewer kinds of errors than full-blown GST (this is what avoids having their number of
parameters grow too quickly). However, running single or two-qubit GST on subsets of the larger
devices reveals that these devices posess noise that not even GST's Markovian error model can
capture. This indicates that the dominant sources of noise are not Markovian single or two-qubit
errors. We expected a scenario where the errors on a multi-qubit device would be similar to those
of isolated qubits (or pairs of qubits), with some additional error coming from couplings with the
other qubits. The errors in larger devices seem, instead, to be dominated by effects that are either
high-weight (greater than weight 2) and/or non-Markovian. The assumptions that went into our
cloud-noise models (low-weight, locality, Pauli-alignment) are based on a physical picture where
high-weight errors are perturbations on local errors. Devices that cannot even remotely be
explained by local Markovian models (1- and 2-qubit GST models), such as the 8-qubit Agave
and 6-qubit Aspen devices, we do not expect to be describable by cloud-noise models either. We
expect that as experimental groups target such non-Markovian effects as drift and heating, which
can be identified by separate means,[10] we will see 5-10 qubit devices with noise similar to the
smaller devices and that are describable by cloud noise models.

When we restrict ourselves to the smaller 3-4 qubit devices, the chosen cloud-noise models are
able to describe shallow but not deep circuit data. This indicates that the model is able to roughly
reproduce the data, but not well enough to pass the demands of statistical validity. We expect in
these situations that although the model is certainly invalid, a small amount of "slack" can be
added to the predicted circuit probabilities to achieve statistical consistency with the data. This
"wildcard error" is the topic of an ongoing and parallel research effort, and combining it with the
approach developed here is a topic of further study. Thus, we expect that only minor tweaks to the
model or improvements to the hardware (e.g., to combat drift or other time-dependent effects),
will allow cloud-noise models to accurately predict these smaller processors' execution of deeper
circuits.
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6. CIRCUIT SIMULATION VIA PATH INTEGRATION

Evaluating the log-likelihood objective function (Eq. 5.1) requires computing the model's
predicted probability pi (0) for each observed circuit outcome i. We therefore require strong
simulation of circuit outcome probabilities, as the probability distributions themselves are needed
- sampling from them alone (weak simulation) is insufficient. In the results presented so far we
have computed outcome probabilities by propagating a density matrix forward in time, as
implemented in pygst i [7]. Over the course of the LDRD, the circuit simulation capabilities in
pygst i were updated to become more time and memory efficient. We achieved this primarily by
eliminating unnecessary copying and handling a significant amount of the computation in more
efficient C-code. Density matrix propagation requires storing a real vector (the density matrix) of
size 4n and repeatedly multiplying it by sparse matrices - a task with exponential resource scaling
in n. We find that performing cloud-noise model fitting beyond 6-8 qubits becomes intractable
using modest HPC resources (100s of processors and lOs of gigabytes of memory per processor).
A more streamlined HPC code could probably eek out another 2 or 3 qubits, but with substantial
development cost and CPU time.

An alternative would be to repeatedly sample from the outcome probability distribution (weak
simulation) until a convergence tolerance is reached. This approach has the advantage that it
scales as r times the number of samples needed for convergence, which is often less than 4n. A
downside to this approach is that it becomes difficult (expensive) to compute accurate derivatives
of the probabilities, which are helpful to optimization approaches in general and essential to the
particular LM approach we presented above. It also fails to remove the exponential scaling of
circuit simulation with n. Still, this approach has the merits of a yielding a clear reduction in
resources and having a straightforward implementation, and we would like to see it pursued in
future work.

In this work we took a different tack, and explored an alternative approach that circumvents, in
certain regimes, the exponential scaling of traditional circuit simulation. This approach has
allowed us to extend our model-based characterization to systems of more than 10 qubits.

The core idea is to replace matrix multiplication, which has exponential-in-space scaling ("space"
here is the number of qubits, i.e., size of the processor) with an exponential-in-time path integral.
By intelligent pruning of the paths, imposing suitable conditions on the magnitude of the errors
(that they be small), and limiting the length (duration) of the circuits, we are able to mitigate the
exponential-in-time scaling and push the tomography protocol to handle higher numbers of
qubits.

In the end, we observe that the technique provides a dramatic speedup in the regime where
circuits are short (low depth) and errors are small The shallow-depth, small-error regime is of
particular interest because only shallow-depth circuits are needed for tomography (consider
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process tomography), and there may be less need to characterize many qubits at once when some
or all of the qubits have large errors. In large-depth or high-error regimes, where the method is
not intended, it will become intractable even for fewer than the 6-8 qubits that can be performed
using traditional strong simulation methods.

We can write a circuit outcome probability in super bra-ket notation as

P = MGM • • • G2G111))) (6.1)

where Gi are super-operators corresponding to the n-qubit gates (circuit layers), 1p)) is a state
preparation, and ((E 1 is a POVM effect. In a traditional density-matrix propagation technique,
lp)) is represented by a real 4n-dimensional column vector, the Gi by 4" x 4" real matrices, and
((E I by a real 4n-dimensional row vector. Probability p is then computed by simply multiplying
lp)) through all of the Gi and taking a final dot product with 4'1. Now consider writing each gate
in terms of its error generator. Applying Eq. 3.3 to Eq. 6.1 gives

p = GV1) • • • er 2 GT) 4) p)).

If we expand the exponentials as their Taylor series, then
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(6.2)

(6.3)

(6.4)

The sum in the second line expresses p as the sum over all paths from p to E, where a path is the
product of one term from each Gi's Taylor series, sandwiched between 4'1 and lp)). We define
the order of a path to be the sum of the orders of its constituent Taylor terms, i.e., ErLi ki. We can
expand a path into the sum of one or more elementary paths by writing each F as the sum of
"rank-1 Pauli maps" via Eq. 3.4. We define a rank-1 Pauli map to be any mapping p piPpPl
where P and P' are Paulis and p. is a scalar. Note that the composition of rank-1 Pauli maps is also
a rank-1 Pauli map. For later convenience, we rewrite Eq. 3.4 in terms of such maps,

(4n—t)
F = E

i=1
(6.5)

where coi runs over both the ai and Aik of Eq 3.4 and Ri is a rank-1 Pauli map - either H1 or one of
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the terms of S jk (cf. Eqs. 3.5 and 3.6). We can then expand Fk in terms of rank-1 Pauli maps:

Fk

Q(k)

E T k)

j=1

(6.6)

k!

i1!i.2! • • • iin 
FI wig; (6.7)

• q=1

(6.8)

In the second line, we have defined m = 411 (41z — 1). In the final line, we flatten the multi-index

{Or 1 into a single integer index j, and idenfity the rank-1 Pauli maps T
(k) 

as the summands in
the multinomial expansion of the line above (Eq. 6.7). The number of terms in this expansion is

(m+k— 1
Q(k) =

m — 1 ) •
(6.9)

We use Eq. 6.8 to replace the factors in Eq. 6.4 and arrive at an expression for p as the sum of
elementary paths:
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(6.10)

Each elementary path is indexed by kl,k2, . , kM and by11, j2, . . , jm. Let us write these indices
compactly as a pair of vector indices, (k, j), whose 2M components are the ficif and { ji}.

There are infinitely many paths, and so the manipulations leading to Eq. 6.10 may seem like a
fruitless endeavor. However, let us restrict ourselves to the special but common case when the all

(
the Gi

o)
 are Clifford superoperators, lp)) prepares a pure state, and ((E projects onto a pure state.

Let us now observe:

• The single zero-th order path (composed of all the zero-th order Taylor terms) is the ideal
probability - i.e. the result if none of the gates had errors on them. Since these are Clifford
superoperators, computing this term is efficient using the stabilizer state framework[3, 4].

• Each elementary path maps p CpC where C and C are Clifford operations. This follows
from our earlier definition of an elementary path, which made use of the fact that each error
generator Fi can be written as the sum of rank-1 Pauli maps, and the fact that Pauli
operators are isomorphisms on the Clifford group. Together with our assumptions on p and
E, this observation implies the each elementary path can be efficiently computed using the
stabilizer state framework.

• When the errors are small, the oci and Ai coefficients in the error generators also must be
small. Consequently, magnitude of the Taylor terms and elementary paths quickly becomes
small with increasing order. This makes the sum of elementary paths amenable to
truncation: the number of paths may be reduced to a computable number with a tolerable
loss in accuracy.
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We find, therefore, that under the stated assumptions the sum in Eq. 6.10 can be truncated in a
rigorous way, and each of the retained elementary paths can be computed efficiently. When the
magnitudes of the noise are small enough, a number of paths that are tractable to compute yield a
sufficiently accurate approximation for p, and it can be used as a proxy for the actual probability.
This approximate p is used within the core log-likelihood optimization step of model-based
characterization.

Truncation could be performed by simply keeping only the paths up to a given order. This was
our first approach, and its relatively simple implementation is its primary advantage. A
disadvantage is that it doesn't provide a fixed bound on the errors in the approximated
probabilities (the bound depends on the magnitudes of the ai and Ai coefficients). Said another
way, keeping a fixed number of paths obviously doesn't adapt the number of paths to the size of
the gate errors. It could be modified to do so, e.g., by computing the maximum possible error in
each circuit probability and adjusting the maximum path order accordingly. But choosing a single
maximal path order suffers from another more serious problem. We expect that real devices will
have some errors that are much larger than others, and this approach treats all errors with the
same path order on equal footing. Our path integral approach must be able to deal efficiently with
such situations, and keep higher order terms when, and only when, they correspond to large
errors. A uniform maximal path order is clearly incapable of such adaptation.

A better approach, and the one that represents the culmination of the LDRD's work, keeps all the
paths, regardless of their order, that have a magnitude (defined below) greater than a threshold
value. This threshold is set on a per-circuit basis, and adjusted so that the approximation error in
the outcome probabilities of each circuit falls below a given global threshold n.
An essential part of this approach, then, is to compute an upper bound on the approximation error
of each circuit outcome probability. Consider one such probability, p. The path sum in Eq. 6.10
can be decomposed into the sum over the kept paths, that is, the approximate probability papprox,
and the sum over the omitted paths, which we denote perr:

p = Papprox + Perr (6.11)

Let us denote the set of path indices j) corresponding to kept paths by X and the set of
omitted path indices by Y. Thus, X is a finite set whereas 6' is infinite. The approximation error,

Perr, is the sum over paths with index (k, j) e O. Since the entire point of omitting paths is to
save the cost of computing them, it is counterproductive to compute pen by summing over
omitted paths. We instead compute an upper bound on pen that does not require an explicit
omitted-path sum.

We begin by applying the triangle inequality to the definition of pen (the restriction of Eq. 6.10 to
paths omitted in the truncation):
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E
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Let HA denote the vector or matrix 2-norm for preparation and measurement vectors, and gate
matrices, respectively. Then, for any superoperator 0 = 0201,

g1010 <11g111.11021110111.111011 follows from the sub-multiplicative property of the
2-norms. When we apply this to the factor in absolute values within Eq. 6.13, and note that the
vector 2-norm of (E1 and I p)) can be at most 1 (their dot product is a probability), and that

110)11= 1 because these are unitary maps, we're left with

1Perd E  km! kl!
(ic,j)ce

The right hand side of Eq. 6.14 is a sum over omitted paths. This is equal to the same summand,
summed over all paths, minus the sum over the kept paths. The sum over all elementary paths,

v TA(ik ,A ,k jl 1) 

(kJ) 
kM! kl!

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

The yi factors in Eq. 6.17 are defined by letting y be the evaluation of Eq. 6.5 with (pi replaced by
its absolute value and Ri is replaced by its norm:

4.(4n-1)

Y= L
i=1

(6.19)

From Eq. 6.8 it follows that yk is not only a bound on LiQ(k)11 T (k)11 but is equal to it, since the

sub-multiplicative property applied to gi(k)11 is saturated for the unitary maps Ri. The derivation
of Eq. 6.17 thus follows (with a gate-index subscript added to y). Equation 6.18 follows
immediately from the Taylor series of the exponential function. The final result is that the right
hand side of Eq. 6.14, summed over all paths, is expressible as a simple function of the absolute
values of the various Pauli error coefficients coil). These coefficients depend on the model

parameters, and so Eq. 6.18 must be recomputed as 5 varies. The Ri factors, however, are
independent of the model parameters, and so need be computed just once. Also, the 11Rill norm in
Eq. 6.19 may be replaced with the matrix 1-norm, since the map is unitary. This is advantageous
from an implementation standpoint, as the 1-norm is easier to compute and is used within sparse
matrix exponentiation algorithms.

We can use Eq. 6.18 to write the right hand side of Eq. 6.14 as the difference between the sum
over all paths and the sum over kept paths in a compact way that can be computed efficiently. We
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denote this right hand side by

M 11T(41)11 IlT1(k.1)11 
nexp(7i) — L

kM! kl!i=1 (1c,1)EX

and so we can rewrite Eq. 6.14 as

(6.20)

1Perr 4. (6.21)

The error bound 4 is a function of the current parameters, 6, in multiple ways. First, the y and
T ic)11 factors are explicitly dependent on 6. More subtly, the set X also depends on 6, as X

contains all the paths with magnitude greater than a threshold, 52, and the path magnitudes depend

on 11 TY()11 (cf. Eqs. 6.22 and 6.23 below). The key take away is that, 4 = 4 (6 , n(o)) provides a
way of tracking how poorly a specific circuit outcome probability is being approximated. We
make the circuit-dependence of 4 and n explicit using a subscript, e.g. 4c (0, nc(6)).
We define the magnitude of elementary path (k, j.) to be

IITA(/P)Il 11141.1)11
PM(k, j) =  ,ji (6.22)

km! kl!

which is the summand in Eq. 6.20. This real-valued quantity reflects how strong the collective
error along the given chain of error terms is and thus how important it is to include in the final
path integral. Equation 6.20 is the difference between the sum of all possible path magnitudes and
the sum of the magnitudes of the paths that are kept. Thus, to make 4 small using as few paths as
possible, the best strategy is to keep the paths with the largest magnitudes. For each circuit C, we
choose a path-magnitude threshold S2c and keep all paths with magnitude greater than or equal to
this threshold. Thus, the set of kept-paths, X, for each outcome of C is given by

Arc = {(i,j)s.t.PM(k > (6.23)

We choose nc small enough that 4 (nc) < ri for each circuit C (where we have simplified
notation by dropping the 0 dependence). In this way, we compute as few paths as possible in
order to attain a given guarantee on the approximation error. The values of S2c, (one value per
circuit) define a specific path truncation.

The approach given above finds a sufficient set of paths for computing circuit outcome
probabilities within a prescribed error tolerance It does this at a single point 9 in model
parameter-space, i.e., for a concrete instantiation of all the gate errors, since the path magnitudes
depend on O. The question then emerges: How do we optimize the log-likelihood and control the
approximation error in the outcome probabilities? We attempted several approaches to this before
settling on the one we currently use.

One approach is to recompute the per-circuit thresholds nc, and thereby the kept paths Xc, at
each objective function evaluation. This approach suffered from at least two issues: 1) it is
expensive to compute the nc, and 2) the objective function is then only approximately consistent
from point to point. The first issue is a practical one, as performing the optimization in this way
may negate all the performance gains of using the path integral technique in the first place. The
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second issue makes the LM optimization less robust - the objective function is more like a
stochastic function and may require the specialized methods of stochastic optimization.

A second approach is to stop the optimization whenever a step is attempted that doesn't meet the
desired error tolerances. We found this approach to be problematic because the optimization
would not proceed very far before attempting such a step. This is not surprising, since only the
minimal number of paths needed to achieve the given ri are kept, so any substantial step in
parameter space is likely to void the ability of the selected paths to achieve n.
We have settled on an approach that sets two different error tolerances /I and ni. The first, 11, is
used when constructing the path sets df/-c, as before. The second, 7Y, is more relaxed (ri ' > TO,
and is used as a stopping criterion during the optimization. When the optimizer would have
accepted a step that fails to achieve 71' the LM optimization is halted, new path sets are obtained
(using To, and the optimization is resumed. This continues until the optimization converges
within the region where the probabilities are approximated within the tolerance TY . (We restrict
the number of allowed restarts to 5 for practical purposes.)

We have tested this approach throughout its development on simulated data. The tests proceed
similarly to those using the density-matrix-propagating circuit simulation method - the only
difference is in how the circuit outcome probabilities are computed and the additional stopping
criterion and restarts mentioned above. We test the method using cloud-noise models restricted to
Hamiltonian and Pauli-stochastic errors with WI = 2, wg = 0, and rg = 1. Data is simulated for
2-10 qubits with finite sample error using N = 10, 000 samples per circuit. We only consider
shallow circuits (L = 1 in all but the 1-qubit case) as this is the regime we expect the technique to
perform the best. The data generating model is chosen exactly as it was for the validation in
section 5.2. We choose ri = 0.01 = 1/N5 and Ty = 1077 = 0.1. A comparison of the best-fit
objective function values (in units of Ng) using the approximated probabilities as well as those
using the exact (density matrix propagated) probabilities, is given in Fig. 6-1.

We find overall that the path-integral method works well in the low-error shallow-circuit regime
studied. It consistently finds a best-fit solution with low No- that, when the comparison is possible,
is close to the result of the exact probability simulation. Figure 6-2 shows that the number of CPU
hours required is drastically reduced from that of the full density matrix forward simulator,
reducing run times by approximately two orders of magnitude. At the very least, this technique
holds promise as one that quickly finds a good seed for other methods.

We believe there is still room for exploration and improvement in this area. In particular, n and ri'
are the absolute errors allowed in the probability values rather than in the objective function. It
seems potentially more useful to set error tolerances in terms of the objective function, as this is
what is ultimately being optimized. Secondly, the optimization method is still somewhat ad-hoc,
and we do not believe we have found what is clearly the best way to perform it. Further
algorithmic development and testing will prove beneficial. Finally, we expect the bound 4 of
Eq. 6.20 is loose, and can be improved upon.
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Figure 6-1. Comparison of our tomography protocol using approximate
(path-integral) and standard (density matrix propagation) forms of circuit
simulation. N„ values are computed by applying Wilks' theorem to the true
and estimated models (as in Fig. 5-1), and quantify our confidence in the va-
lidity of the estimated model. The estimated model should be valid, given
the source of the data is a cloud-noise model of the same type as that which
generated the data. The maximum L value used for the 1-qubit results was
16; for all other qubit numbers only L = 1 circuits were used. The low N,
values in all cases confirm that using both circuit simulation methods the
tomography protocol was able to reconstruct the data generated by the true
model well. The path-integral approach performs slightly less well, but tracks
closely with the exact circuit simulation method up to n = 8 qubits, and uses
many fewer resources (allowing it to be extended to n = 10).
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7. SUMMARY AND OUTLOOK

This LDRD was successful in achieving it's primary goal of developing an tomographic protocol
that can be applied to many-qubit processors. We have described that method in this report. We
have shown that our method efficiently represents the noise in a many-qubit QIP using so-called
cloud-noise models. The circuits needed to probe the parameters of a cloud-noise model can be
found efficiently, using a newly developed, scalable approach to circuit selection. Optimization
algorithms that have been tuned and customized are able to reliably optimize over the space of
model parameters, finding a good best-fit model when one exists. Our testing on existing QIPs
demonstrates that cloud-noise models are able to capture a substantial amount of the noise in
existing hardware, and offers promising prospects for future hardware. Finally, a novel method
for computing circuit outcome probabilities was developed that ultimately allows our
tomographic method to be scaled to 10-15 qubits. This technique leverages certain common
contexts, such as the ideal gates being Clifford operations, to overcome the
exponential-in-qubit-count behavior endemic to traditional methods.

Overall, this 3-year research effort has been a great success. The project ends having reached its
goal of creating a new efficient and scalable form of QIP tomography. When the project began the
state of the art was limited to performing tomography on at most 2 qubits. Pushing this figure to
10-15 qubits is an accomplishment that was seen as an incredibly lofty goal three years ago.

While the project largely followed the track set out at its beginning, there were several unexpected
lessons we learned along the way.

• Optimizing circuit simulators for tomography is difficult and time-consuming work. We
underestimated the amount of time and effort required to tweak and tune what in many
respects is a standard and well-studied problem: the classical simulation of a quantum
circuit. The problem, however, changes dramatically when there is not one but thousands of
circuits that need to be simulated repeatedly - sometimes tens of thousands of times. To
tackle this problem, different time vs. memory tradeoffs, especially those surrounding the
caching of intermediate values, become critical. We ended up only being able to simulate
6-8 qubits using standard circuit-simulation techniques rather than 8-10 as we initially
expected, and only after putting substantial effort into solving the problem.

• There are many nuances to scaling up actual QIPs. At the beginning of this project we
expected to have access to many QIPs with 4-10 qubits, as many research groups seemed on
the brink of scaling up their well-oiled 2-qubit platforms. This was not the case. There were
to us a great many underappreciated complexities to making even marginally functional
many-qubit QIPs in practice, many related to material science and device fabrication. In the
end, we had fewer available QIPs to test, and the larger devices were significantly more
noisy than we expected (cf. section 5.3). We learned that noise in actual devices may be
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much more varied than we though, and attempted to mitigate the paucity of available test
systems by increasing the flexibility of our models and leaning more heavily on simulations.

The follow-on funding opportunities for this work are numerous, and some have already been
secured. In future work, we plan to focus on more extensive experimental verification (more 4-10
qubit devices are becoming available now) and on further honing the path-integral approach
detailed in section 6. Experimental systems are very diverse, and a closer study of more
experimental systems will allow us to further tailor our flexible cloud-noise models to push
current hardware to be better in its next generation. The path-integral approach could be the start
of something what could grow into breakthrough algorithms needed to scale characterization
methods to still more qubits. Thanks to the work done in this LDRD, we have all the necessary
groundwork to pursue these two exciting avenues and continue to make important contributions to
the field of quantum computing.
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