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Outline

• Sandia Overview and Employment Opportunities

• Motivation and Context

• Scramjet Engine

optimize design under uncertainty

• Energy Exascale Earth System Model —*Ill )onent

model parameterization and optimal sensor placement

• Analysis workflows

• Algorithms: Supervised and Unsupervised Learning

• Overview

• Relevant results and impact

• Outcome
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Sandia Has Two Main Locations

ql) National Nuclear Security
Administration labs

.11 10 Science labs

11, Nuclear energy lab

4, Environmental
management lab

gli Fossil energy lab

q11 Energy efficiency and
renewable energy lab
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National
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Sandia's Funding r" $3.75 Billion

ill
FY19 Projected Budget

$3.75 billion

Sandia
National
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OTHER DOE
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Our Workforce e"14,100 employees

-12,300

-1,800

Regular employees

Temporary employees, students

& postdoctoral appointees

New Mexico Site: (see breakout)

Workforce: -12,500

R&D employees: -4,200

(R&D Staff & Technologists)

California Site: fsee breakout)

Workforce : -1,600

R&D employees: -650

(R&D Staff & Technologists)

R&D Staff

R&D Tech Union

Sandia
National
Laboratories

Management

Other Exempt
Professions

Includes Business &

Operations

Other Non-Exempt

Professions



R&D by Discipline & Degree

0% 5% 10% 15% 20%

Mechanical Engineering 19%

Electrical Engineering 17%

Computer Science 10%

Physics 4%

Electrical/Comp Engineering 3%

Nuclear Engineering 3%

Chemical Engineering 3%

Chemistry 3%

Aero Engineering 3%

Engineering 2%

Top 10 job descriptions shown, Regular exempt non-management employees only

Bachelor's

Master's

Sandia
National
Laboratories

Assoc. Non-Degree
2% 1%

Data as of July 2019

PhD
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1 Internships
Encourages qualified students to develop interests in critical skills areas related to
our mission, with the ultimate objective of developing our pipeline for our future.
Available for Summer, Year Round and Co-op.

Eligibility Criteria

• Full-time enrollment status at an accredited school during the academic school year

• Undergraduate equivalent of 12 hours per semester

• Graduate equivalent of 9 hours per semester

• Must have a minimum cumulative GPA of 3.0 on a 4.0 scale for Technical, R&D, and
Business interns; 2.5 on a 4.0 scale for Clerical and Labor interns

• Have U.S. citizenship for positions that require a security clearance or as stated in the
job posting

• At least 16 years of age



I Internships Outreach and Networking Events

Summer Welcome Event

Intern Career Fair

Intern Symposium

Facility Tours

Speaker Forums

Professional Development Classes



I Post-doc Opportunities
Key areas for post-docs at Sandia:

• Computer science/Computer Engineering

• Electrical Engineering

• Mechanical Engineering

• High-performance computing

• Microelectronics and microfluidics

• Nanotechnology

Eligibility Criteria

• Physics

• Chemistry/ Electro Chem

• Biosciences and biotechnology

• Radiation & electrical sciences

• Engineering sciences

• Pulsed power sciences

• Materials science & engineering

• A recent PhD (conferred 5 years prior to employment) or the ability to complete all PhD
requirements before hire date.



1 Fellowship Opportunities
Sandia provides postdoctoral fellows with professional development opportunities and

prepares fellows to conduct independent, groundbreaking research.

Postdoctoral Fellowships

• Harry S. Truman Fellowship

• Jill Hruby Fellowship

• John Von Neumann

*Sign up for Automated lob Notifications!



Motivation and Context

• Scramjet Engine

• optimize design under uncertainty

• Energy Exascale Earth System Model — Land Component

• model parameterization and optimal sensor placement

• Analysis workflows

Sandia
National
Laboratories
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Scramjet Engine Design Optimization 

Turbulence
iso-surface

Q-criterion = 2e5 s-a

Large-Eddy Simulation

Fuel jet
iso-surface Y,,,a= 0.1

Flame
iso-surface Yco, = 0.15

(Yellow=1000K — red=3200K)

Experimental Setup

Sandia
National
Laboratories

Sponsored by DARPA (EQUiPS program)
Engine Configuration: NASA Langley Hypersonic International Flight Research and

Experimentation (HIFiRE) direct connect rig (HDCR)

Partners:
Sandia
National
Laboratories

usc PIT DukeMassachusetts
Institute of
Technology

U N I V E R S I T Y

[Challenges 

Computational Expense — o(104-105) CPU hours/model evaluation
• large range of scales (spatial/temporal) needed to capture the entire geometry
Large number of parameters, both discrete - o(50) - and distributed

12



E3SM Land Model Optimal Sensor Placement
Sample E3SM simulations to help

decide on future experimental sites
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Sponsored by DOE BER/ASCR

Understanding physical processes is critical to understand the climate feedbacks and their

sensitivity to uncertainties in parameters and model structure

Partners: Nationalarldia
Laboratories

Massachusetts
Institute of

National Laboratm Technology

OAK PIT
RIDGE 

Challenges 
Nonlinear input/output dependencies
Large number of input parameters (10s-100s);
Land cells with different parameterizations

Computational Expense: o(104) CPU hours/land cell

FASi
Work synchronized

with FASTMath Institute



Advanced UQ+ML Algorithms are
Required To Enhance Modeling Efforts

Input-Output
Dependencies /

Surro•ate Models

Our algorithms address
these challenges

Computational Model
(development, calibration)
7
N

Design Optimization

I—
Optimal Sensor

Placement

Sandia
National
Laboratories

Improving Model Predictions and Optimization
under Uncertainty require (nested) sampling —
effort is not feasible if the computational model

is high-dimensional/computationaify
expensive

14



UQ Analysis Workflows

Forward modeling

I nverse modeling

M odel 

(À)

Preprocess

Surrogate

Prediction p(hlD)

Prediction

Calibration

Prior p(A, a)

Embedded
model

GSA/BF r
D = {g}

Any Qol

+ 5(a; j—>

+ 5(a;

Likelihood

Posterior p(A, alD)

Inverse & Forward UQ

• Dimensionality reduction

• (Noisy) Data Assimilation

• Model validation and comparison

• Confidence assessment

D at a

• Optimal design

• Decision support

Sandia
National
Laboratories
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High Dimensionality is a Major Challenge in UQ

■ High dimensionality is the result of

■ Large number of uncertain parameters/inputs

■ Large number of degrees of freedom in random field inputs

Sandia
National
Laboratories

■ Model Calibration and Forward UQ efforts are in general challenged in
this context

■ (Quasi) Monte Carlo methods are slow to converge

■ Spectral techniques (e.g. Polynomial Chaos) typically require an unfeasible
number of model evaluations for very high dimensional systems

output quantities of interest (Qol) need to be relatively smooth

■ In most engineering systems only a small number of inputs are important
for subsets of Qols

■ Explore techniques for global sensitivity analysis (GSA) to identify
important model inputs

■ Employ algorithms to detect low-dimensional behavior in the input-
output space

16



Multiple Algorithms to Exploit Structure in High-
Dimensional Models and Reduce Computational Cost

Supervised Learning Algorithms

• Polynomial Chaos Expansions via Sparse Regression

• Low-rank Functional Tensor Train Models

• Neural Network Models

Unsupervised Learning Algorithms

• Low-dimensional Manifolds: Discovery and Sampling

))111111°11°' Explore and predict with confidence. U QII

DAKOIA

Scramjet

E3SM

Sandia
National
Laboratories

RAPTOR

SM
Energy Exascale

Earth System Model

Design Algorithms Adapted
to Specific Challenges 

17



Various surrogate types explored
• POlynomial chaos (PC):

Sandia
National
Laboratories

• Misnomer: nothing to do with chaos as in dynamical systems
• Essentially a polynomial fit/regression to the black-box model
• Extremely convenient for uncertainty propagation,

moment estimation, global sensitivity analysis
• e.g., PC surrogate allows extraction of sensitivity indices 'for

free'
• Can deal with highly non-linear models,

but certain level of smoothness is assumed

• Low-rank tensor representations:
• Nature is low-rank: only subset of inputs act together at the same

time
• More flexible than PC, but harder to construct

• Neural networks:
• Can deal with non-smooth behaviors
• Cons: much harder to train, even harder to interpret

18



Robust and Adaptive Sparse Regression to
Discover Sparsity in Model Inputs

• Focus on Polynomial Chaos Expansions (PCEs) to express input-output
dependencies

• large number of coefficients and expensive model -> system is
underdetermined

• Compressive sensing seeks sparse solutions, discover the set of coefficients
for terms that explain the available data

• Existing sparse PCE regression techniques (U. Colorado Boulder, SNL groups)

are challenged when fitting data with large noise & the right number of samples

required discover the model structure is not known a-priori for realistic

computational models

Sandia
National
Laboratories

Our new approach mitigates overfittinq & determines the required no. of mode]

decision

evaluations adaptively  through cross-validation and a strategy to guide stop-

sampling
• use just enough samples to construct the surrogate model! 

19



Use Sparse Regression for Sensitivity Analysis

to Enable Design Optimization

Sandia
National
Laboratories

• Novel combination of algorithms for sparse regression for Polynomial Chaos Expansions
• inner loop for data fitting
• Outer loop employing filters to decide if no. of samples is sufficient

Combustion Efficiency
0.50

0.45

0.40

:C72 0.35

iw
0.30

0.25

0.20

0

Outer loop
progression

ADMM

FPC AS

11_15

50 100 15 200 250 300 350

no. o samples

Stopping criteria is important
to limit computational

expense

Huan, Safta, et al, SIAM/ASA JUQ (2018)

0.8

0.6

0.4

0.2

0

o(102-103) reduction in
computational expense

MOB

Ai 77c
Rp
max 13„,„,,

 Ishock x/d

L

Po To Mo CR Prtsct IZ

t I I

11 . eR 
Li Ri I.f Lf OG OR X1

1 1 t

x2 al

Only a small subset of parameters
drive output variability

Huan, Safta, et al, AIAA Journal (2018)
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Sparse and Low-Rank Surrogates Sandia
National
Laboratories

• Exploit model structure to reveal sparse Total Effect Sobol Indices at US-Hal

low-rank interactions between model
components and associated parameters
• Surrogate model accuracy 4-8%;

improvement of by a factor of 2 over
classical surrogate model
approaches

t-1 rd 

f (Xi . X2; • Xd) • • •   f-110/1) (X-1) 1112) (X2) • • ' fLid —11d) (xd)

10=1 11=1 Id =1

• Explore parametric functional tensor train
representations to augment the low-rank
models over the Land Model inputs with
spatio-temporal dependencies (Joint work
with FASTMath)

40

-"rd.
e Is Oct
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— — 
— jun 

10,

- May
Apr

LEAFCN Sobol Index near US-Hal
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Neural Network Surrogates Allow More Flexibility

Multilayer Perceptron (MLP)

Recurrent Neural Network (RNN)

O Daily Forcing

A2

A3

• Stochastic Input A47

• Daily Forcing

• Stochastic Input

O GPP

• LAI

• NPP

O NEE

CPP

•LAI

•NPP

ONEE
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We have created specialized RNN architecture knoRsa.
the connections between processes

Vanilla long short-term memory 0
(LSTM) network

Daily Folcing

Stochastic Input

GPP

O LAI

O NPP

0

QoI Day 1

Physics-informed LSTM

ACM AutotrophIc

Re IratIon lacatIon
El TR., .F SO S)

k.sorn(-1 23 0)

rt(Ils1 I2s2 1313)

rksls s2s31310)

so11,1

\

(r) Daily Forcing

4110 Stochastic Input

O GPP

• LAI

• NPP

O NEE

Qol Day 1

QoI Day 2

Qol Day 2



Physics-informed RNN architecture captures daily
dynamics well with a fraction of the cost
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Physics-informed RNN architecture captures daily
dynamics well with a fraction of the cost

Sandia
National
Laboratories



Physics-informed RNN architecture captures daily
dynamics well with a fraction of the cost

Price to pay?
Compared to PC...
a) GSA is not "free", and requires extensive sampling of the ML surrogates.

*Not a big deal if the limiting factor is the ELM expense
b) Does not come with uncertainties

GSA comparison for PCE, MLP,LSTM RNN and Tree-LSTM RNN

0.25 -

0.20 -

v.; 0.15 -

0.10 -

0.05 -

0.00

PCE

MLP

LSTM RNN

Tree LSTM RNN

Parameter

GSA comparison for PCE, MLP, LSTM RNN and Tree-LSTM RNN

0.25 -

0.20

0.15 -

0.10 -

0.05 -

0.00

PCE

MLP

LSTM RNN

Tree LSTM RNN

Parameter
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Multiple Algorithms to Exploit Structure in High-
Dimensional Models and Reduce Computational Cost

Supervised Learning Algorithms

• Polynomial Chaos Expansions via Sparse Regression

• Low-rank Functional Tensor Train Models

• Neural Network Models

Unsupervised Learning Algorithms

• Low-dimensional Manifolds: Discovery and Sampling

>PI'  ) Explore and predict with confidence. tioi 11(11) 

DAKOIA  

Scramjet

E3SM

Sandia
National
Laboratories

RAPTOR

SM
Energy Exascale

Earth System Model

Design Algorithms Adapted
to Specific Challenges 
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Exploit Intrinsic Structure in the Input-Output 

Space
• Use a set of samples (input-output state space) to delineate a manifold M

• Employ diffusion maps and stochastic differential equations that discover low-
dimensional structures embedded in the state space

• The manifold M provides an algebraic basis to generate synthetic samples that are
statistically consistent with the training data

The computational cost for these samples is negligible compared to the cost of the
original computational model

• .

•••••••.'.••••

• :•r•.••..i.:'•'•,:•.;:••,4:•.•••--

Sandia
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Novel set of algorithms that
combine Markov Chain

sampling with Diffusion Maps

Benefits from increased
dimensionality in the output
space - when outputs are

correlated

Soize, Ghanem, Safta, et al, submitted to J. of Comp. Phys. (2018)
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Computationally Cheap Model Samples
from Low-Dimensional Manifolds

Sandia
National
Laboratories

• Manifold construction is adaptive - testing for statistical convergence as samples
are added to the training database

• 2D "LES"  cost: 10k CPU hours/run; 3D LES cost: 200k CPU hours/run eNAVY
NaligW

6

5

4

2

100 runs are sufficient to
construct a diffusion manifold

for the Scramjet Model

• 11 input parameters, 5 design parameters, 5 quantities of interest

50 sannples

100 samples

— 200 samples

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

Combustion Efficiency

0 6

Sample on the

=11, - - -' National Energy Reeeereh
• —I .-- SeWeft Computing Coda

Manifold

Soize, Ghanem, Safta, et al, submitted to AIAA Journal (2018)

Computationally Cheap

Model Samples Making

Design Optimization Studies

Feasible!
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Outcome
Sandia
National
Laboratories

• Developed new algorithms aimed at removing bottlenecks in engineering

design workflows:

• Sparse Regression & Low-dimensional Manifolds techniques reduced the

computational expense by 2-3 orders of magnitude for the Scramjet LES model

making design optimization feasible!

• Neural Network Models tackled non-linearities in the E3SM-Land Model with

increased accuracy compared to previous algorithms — allowed accurate

selection of parameters that are important to the model!

• Revealed new information on interactions between E3SM-Land Model

components

• Resulted in improved coupling between land model processes

• Algorithms implemented (or in progress) in Dakota & UQTk.

DEFENSE ADVANCED

RESEARCH PROJECTS AGENCY

Work supported by DARPA
& DOE (SciDAC & BER/ASCR)

ow DAKOTA 
Explore and predict with confidence

. DEPARTMENT OF ce ofOffi
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