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Sandia’s Funding ~ $3.75 Billion
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FY19 Projected Budget
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Our Workforce ~14,100 employees W=

R&D Tech Union

Management
8%

Other Exempt

Professions
Includes Business &
Operations

R&D Staff el W/)

Other Non-Exempt
Professions




R&D by Discipline & Degree

Assoc. Non-Degree

R o
Mechanical Engineering 19%
Electrical Engineering 17%
Computer Science 10%
Physics 4%
Electrical/Comp Engineering 3% PhD
Nuclear Engineering 3%
Chemical Engineering 3%
Chemistry 3%
Aero Engineering 3%
Engineering 2%

Data as of July 2019

Top 10 job descriptions shown, Regular exempt non-management employees only




Internships

Encourages qualified students to develop interests in critical skills areas related to
our mission, with the ultimate objective of developing our pipeline for our future.
Available for Summer, Year Round and Co-op.

Eligibility Criteria

Full-time enrollment status at an accredited school during the academic school year
Undergraduate equivalent of 12 hours per semester
Graduate equivalent of 9 hours per semester

Must have a minimum cumulative GPA of 3.0 on a 4.0 scale for Technical, R&D, and
Business interns; 2.5 on a 4.0 scale for Clerical and Labor interns

Have U.S. citizenship for positions that require a security clearance or as stated in the
job posting

At least 16 years of age




‘ Internships — Outreach and Networking Events

Summer Welcome Event
Intern Career Fair

Intern Symposium
Facility Tours

Speaker Forums

Professional Development Classes




Post-doc Opportunities

Key areas for post-docs at Sandia:

* Computer science/Computer Engineering * Physics

* Electrical Engineering * Chemistry/ Electro Chem

* Mechanical Engineering e Biosciences and biotechnology
* High-performance computing * Radiation & electrical sciences
* Microelectronics and microfluidics * Engineering sciences

* Nanotechnology * Pulsed power sciences

* Materials science & engineering

Eligibility Criteria

* Arecent PhD (conferred 5 years prior to employment) or the ability to complete all PhD
requirements before hire date.




Fellowship Opportunities

Sandia provides postdoctoral fellows with professional development opportunities and
prepares fellows to conduct independent, groundbreaking research.

Postdoctoral Fellowships

e Harry S. Truman Fellowship
 Jill Hruby Fellowship

* John Von Neumann

*Sign up for Automated Job Notifications!




Motivation and Context ) e

« Scramjet Engine
» optimize design under uncertainty
* Energy Exascale Earth System Model — Land Component

» model parameterization and optimal sensor placement

» Analysis workflows




Scramjet Engine — Design Optimization i)

Experimental Setup

Large-Eddy Simulation

Sponsored by DARPA (EQUiPS program)
Engine Configuration: NASA Langley Hypersonic International Flight Research and
Experimentation (HIFiRE) direct connect rig (HDCR)

Sandia i uk
. a7 USC L2
Fartners: @ laab:lorg?ories D € .

Institute of UNIVERSITY 7
Technology

Challenges
Computational Expense — 0(104-10°%) CPU hours/model evaluation
» large range of scales (spatial/temporal) needed to capture the entire geometry

Large number of parameters, both discrete - 0(50) - and distributed




E3SM Land Model — Optimal Sensor Placement ] e

Sample E3SM simulations to help 3
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Sponsored by DOE BER/ASCR

Understanding physical processes is critical to understand the climate feedbacks and their
sensitivity to uncertainties in parameters and model structure
. Sandia {Hm
Partners: @ Nationl l%})KGE L!::

laboratories National Laboratory Technology

Work synchronized
with FASTMath Institute

Challenges
Nonlinear input/output dependencies

Large number of input parameters (10s-100s);
Land cells with different parameterizations

Computational Expense: 0(10%) CPU hours/land cell




Advanced UQ+ML Algorithms are Tl
Required To Enhance Modeling Efforts

Design Optimization

Dependencies /
Surrogate Models

Our algorithms address
these challenges

Computational Model
(development, calibration)

Optimal Sensor

Placement

Improving Model Predictions and Optimization
under Uncertainty require (nested) sampling —
effort is not feasible if the computational model
i3 nigh-dimensional/computationaiiy
expensive




UQ Analysis Workflows i)

Forward modeling Calibration

Inverse modeling [ Prior p(A, a) ]

Embedded l
Model Surrogate model Data

[ GSA/BF ! f
| Fi(A) = i) >[ fi(A+ 8(a;§)) f—><Likelihood »<~—— D = {gi} ]

Preprocess V
Any Qol
[ Prediction p(h|D) ]4—[ h(A + &a;€)) ]4—[ Posterior p(A, a|D) ]
Prediction

Inverse & Forward UQ

Dimensionality reduction * Optimal design
(Noisy) Data Assimilation * Decision support
Model validation and comparison

Confidence assessment




High Dimensionality is a Major Challenge in UQ i) peona

= High dimensionality is the result of
= Large number of uncertain parameters/inputs
= Large number of degrees of freedom in random field inputs

= Model Calibration and Forward UQ efforts are in general challenged in
this context
= (Quasi) Monte Carlo methods are slow to converge

= Spectral techniques (e.g. Polynomial Chaos) typically require an unfeasible
number of model evaluations for very high dimensional systems

= output quantities of interest (Qol) need to be relatively smooth

= |n most engineering systems only a small number of inputs are important
for subsets of Qols

= Explore techniques for global sensitivity analysis (GSA) to identify
important model inputs

= Employ algorithms to detect low-dimensional behavior in the input-
output space




Multiple Algorithms to Exploit Structure in High- GER
Dimensional Models and Reduce Computational Cost

RAPTOR

EsM

Earth System Model

\

DAKOT A | JQ k ‘ Design Algorithms Adapted

Explore and predict with confiden

to Specific Challenges




Various surrogate types explored i)t

* Polynomial chaos (PC):
« Misnomer: nothing to do with chaos as in dynamical systems
« Essentially a polynomial fit/regression to the black-box model
« Extremely convenient for uncertainty propagation,
moment estimation, global sensitivity analysis
* e.g., PC surrogate allows extraction of sensitivity indices ‘for
free’
« Can deal with highly non-linear models,
but certain level of smoothness is assumed

 Low-rank tensor representations:
* Nature is low-rank: only subset of inputs act together at the same
time
« More flexible than PC, but harder to construct

» Neural networks:
« Can deal with non-smooth behaviors
« Cons: much harder to train, even harder to interpret




Robust and Adaptive Sparse Regression to k=N
Discover Sparsity in Model Inputs

= Focus on Polynomial Chaos Expansions (PCEs) to express input-output
dependencies

* large number of coefficients and expensive model -> system is
underdetermined
= Compressive sensing seeks sparse solutions, discover the set of coefficients
for terms that explain the available data
= Existing sparse PCE regression techniques (U. Colorado Boulder, SNL groups)
are challenged when fitting data with large noise & the right number of samples
required discover the model structure is not known a-priori for realistic
computational models

Our new approach mitigates overfitting & determines the required no. of model
evaluations adaptively through cross-validation and a strategy to guide stop-
sampling decision

* use just enough samples to construct the surrogate model!




Use Sparse Regression for Sensitivity Analysis i

to Enable Design Optimization

= Novel combination of algorithms for sparse regression for Polynomial Chaos Expansions

0.50

0.45

0.40

0.35

Error

0.30
0.25

0.20

Huan,

= Inner loop for data fitting

= Quter loop employing filters to decide if no. of samples is sufficient

Combustion Efficiency

—e— ADMM
—e— FPC_AS

—e— |1 |s

Outer loop
progression

*—— :=_===:===’<:
0 50 100 15 200 250 :
no. of samples

Stopping criteria is important >
to limit computational
expense

Safta, et al, SIAM/ASA JUQ (2018)
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Huan, Safta, et al, AIAA Journal (2018)




Sparse and Low-Rank Surrogates W=

« Exploit model structure to reveal sparse Total Effect Sobol Indices at US-Ha1
low-rank interactions between model
components and associated parameters

» Surrogate model accuracy 4-8%;

improvement of by a factor of 2 over I 11k
classical surrogate model )

approaches
o ry rq o .
%y, 56 e Hg) = Z Z - Z f1(’011)(X1)fél112)(X2) f(’d 1) (x4)
p=1i1=1  ig=1

LEAFCN Sobol Index near US-Ha1

™~

» Explore parametric functional tensor train
representations to augment the low-rank
models over the Land Model inputs with
spatio-temporal dependencies (Joint work
with FASTMath) BIW. W LW




Neural Network Surrogates Allow More Flexibility () &=,

© Daily Forcing

Multilayer Perceptron (MLP)
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Recurrent Neural Network (RNN)




We have created specialized RNN architecture kno@%@.u
the connections between processes

Vanilla long short-term memory 5
(LSTM) network C

LAI

Physics-informed LSTM




Physics-informed RNN architecture captures daily
dynamics well with a fraction of the cost




Physics-informed RNN architecture captures daily
dynamics well with a fraction of the cost

x MLP X MLP
15 4 + LSTM 15 4 + LSTM
® Tree-LSTM ® Tree-LSTM




Physics-informed RNN architecture captures daily
dynamics well with a fraction of the cost

Price to pay?
Compared to PC...
a) GSAis not “free”, and requires extensive sampling of the ML surrogates.
*Not a big deal if the limiting factor is the ELM expense
b) Does not come with uncertainties

GSA comparison for PCE, MLP,LSTM RNN and Tree-LSTM RNN GSA comparison for PCE, MLP, LSTM RNN and Tree-LSTM RNN

PCE PCE
MLP MLP

0:25 LSTM RNN 0.25 1 LSTM RNN
Tree LSTM RNN Tree LSTM RNN
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Multiple Algorithms to Exploit Structure in High-  gRe=
Dimensional Models and Reduce Computational Cost

Supervised Learning Algorithms
Polynomial Chaos Expansions via Sparse Regression

Low-rank Functional Tensor Train Models RAPTOR
Neural Network Models
EsSM
ot
= DAKOTA UQ k ‘ Design Algorithms Adapted
Explore and predict with confidence. Wl Sl . to SpeCifiC Cha"enges




Exploit Intrinsic Structure in the Input-Output i) o

Space

Use a set of samples (input-output state space) to delineate a manifold M
Employ diffusion maps and stochastic differential equations that discover low-
dimensional structures embedded in the state space
The manifold M provides an algebraic basis to generate synthetic samples that are

statistically consistent with the training data
= The computational cost for these samples is negligible compared to the cost of the

original computational model

Novel set of algorithms that
combine Markov Chain
sampling with Diffusion Maps

A 4

Benefits from increased
dimensionality in the output
space — when outputs are
correlated

Soize, Ghanem, Safta, et al, submitted to J. of Comp. Phys. (2018)




Computationally Cheap Model Samples
from Low-Dimensional Manifolds

=  Manifold construction is adaptive — testing for statistical convergence as samples
are added to the training database

= 2D “LES” cost: 10k CPU hours/run; 3D LES cost: 200k CPU hours/run
= 11 input parameters, 5 design parameters, 5 quantities of interest

7| Netora

100 runs are sufficient to

construct a diffusion manifold
for the Scramjet Model

7/ —— 50 samples
—— 100 samples
6_
—— 200 samples Computationally Cheap

d Sampleonthe | Model Samples Making
Manifold ‘| Design Optimization Studies
> Feasible!

=

PDF(Combustion Efficiency)
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Soize, Ghanem, Safta, et al, submitted to AIAA Journal (2018)




Outcome ) e

=  Developed new algorithms aimed at removing bottlenecks in engineering
design workflows:

= Sparse Regression & Low-dimensional Manifolds techniques reduced the
computational expense by 2-3 orders of magnitude for the Scramjet LES model
making design optimization feasible!

= Neural Network Models tackled non-linearities in the E3SM-Land Model with
increased accuracy compared to previous algorithms — allowed accurate
selection of parameters that are important to the model!

=  Revealed new information on interactions between E3SM-Land Model
components

= Resulted in improved coupling between land model processes

= Algorithms implemented (or in progress) in Dakota & UQTk.

s. DAKOTA TR
> Q
. Explore and predict with confidence, & "Wl

Work supported by DARPA vs.oeparrumntor | Office of
DARPA Jerizcce-A & DOE (SciDAC & BER/ASCR) 'ENERGY | science
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