

# Uncertainty Quantification and Machine Learning Algorithms for Physical Models: Tackling Computational Expense and High- Dimensionality

Cosmin Safta

with

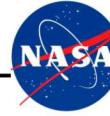
Khachik Sargsyan, Habib Najm, John Jakeman, Vishagan Ratnaswamy  
Alex Gorodetsky (Umich), Xun Huan (now @UMich), Joseph Oefelein  
(now @ GATech), Guilhem Lacaze (now @SpaceX), Daniel Ricciuto  
(Oak-Ridge National Laboratory), Roger Ghanem (University of  
Southern California), Christian Soize (Universite Paris-Est)

UC Merced, October 8, 2019



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

# Outline

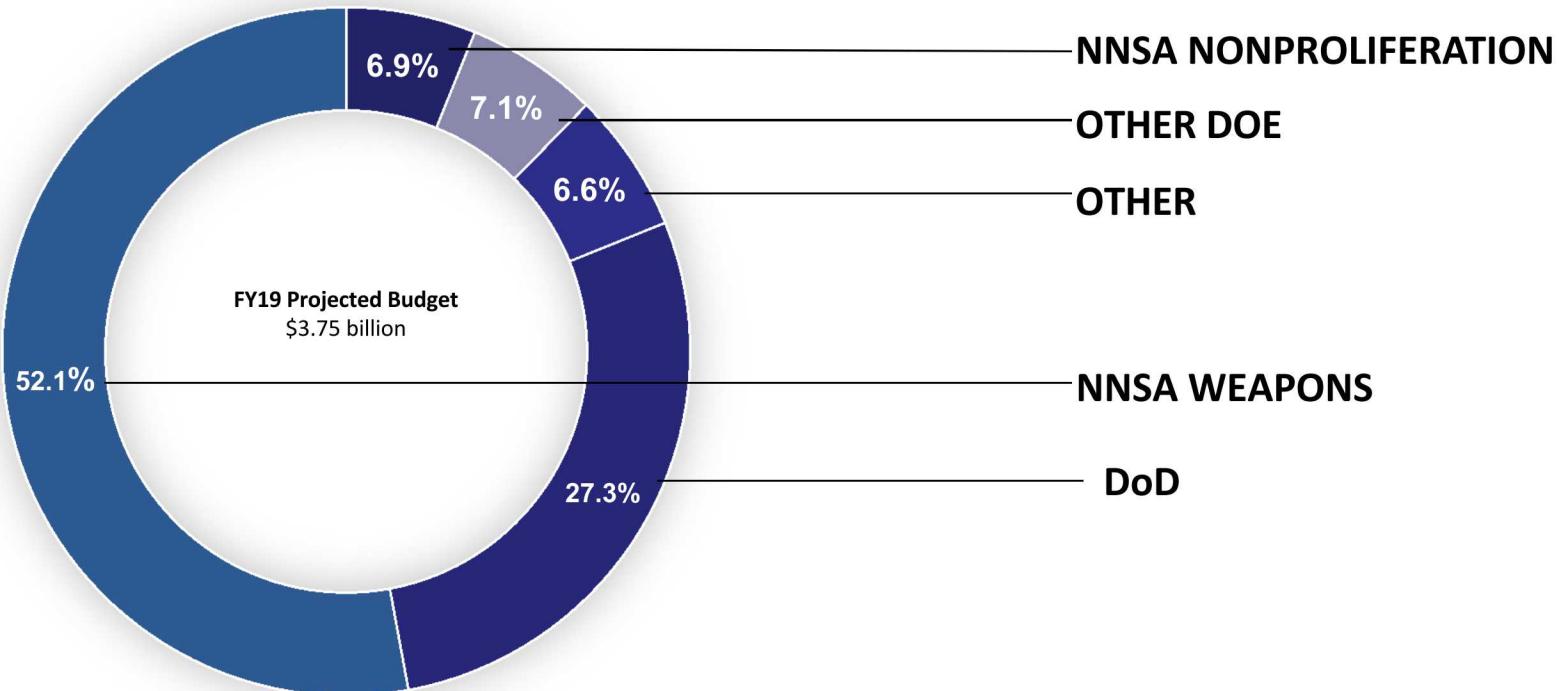
- Sandia Overview and Employment Opportunities
- Motivation and Context
  - Scramjet Engine
    - **optimize design under uncertainty**
  - Energy Exascale Earth System Model –   AFRL Component
    - **model parameterization and optimal sensor placement**
  - Analysis workflows
- Algorithms: Supervised and Unsupervised Learning
  - Overview
  - Relevant results and impact
- Outcome



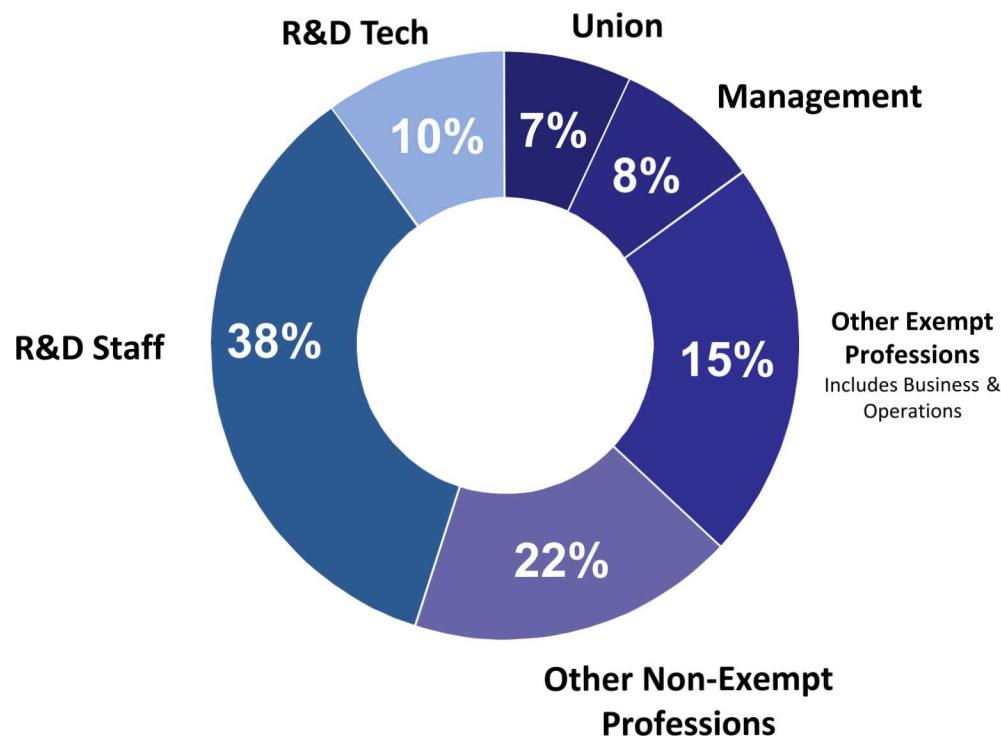
# Sandia Has Two Main Locations



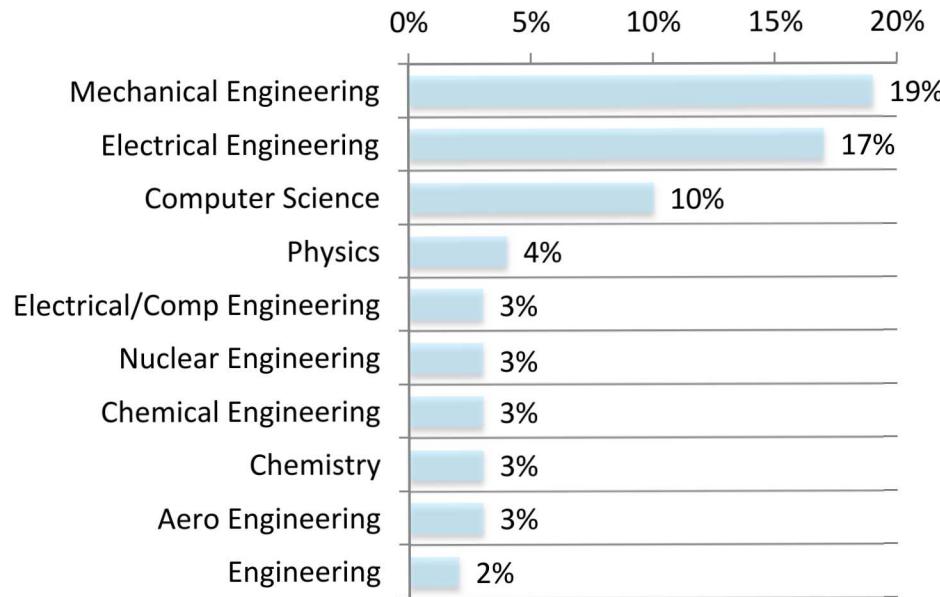
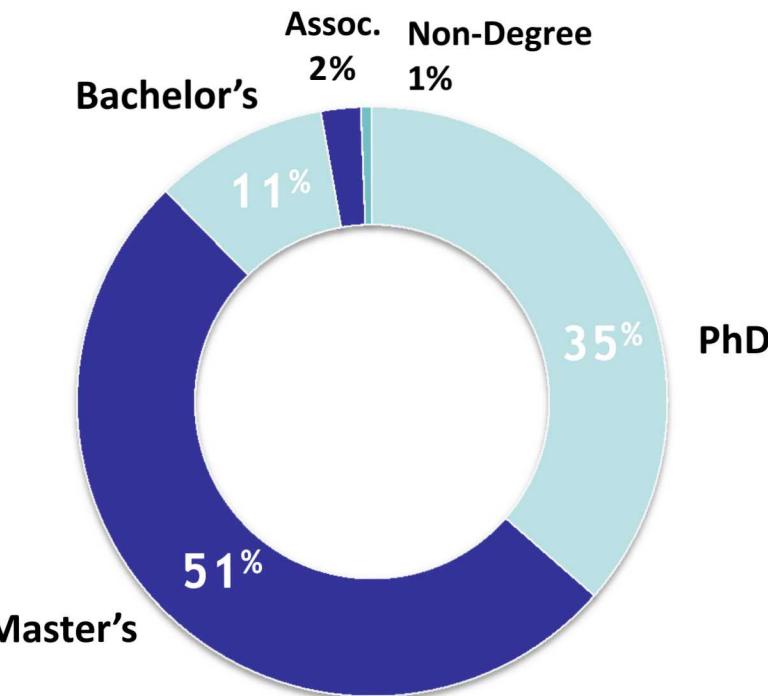
# Sandia's Funding ~ \$3.75 Billion



# Our Workforce ~14,100 employees



# R&D by Discipline & Degree



Data as of July 2019

# Internships

Encourages qualified students to develop interests in critical skills areas related to our mission, with the ultimate objective of developing our pipeline for our future. Available for Summer, Year Round and Co-op.

## Eligibility Criteria

- Full-time enrollment status at an accredited school during the academic school year
- Undergraduate equivalent of 12 hours per semester
- Graduate equivalent of 9 hours per semester
- Must have a minimum cumulative GPA of 3.0 on a 4.0 scale for Technical, R&D, and Business interns; 2.5 on a 4.0 scale for Clerical and Labor interns
- Have U.S. citizenship for positions that require a security clearance or as stated in the job posting
- At least 16 years of age

# Internships – Outreach and Networking Events

Summer Welcome Event

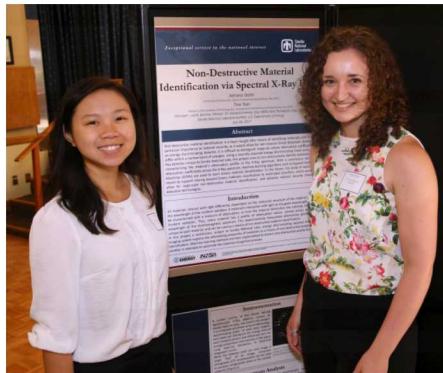
Intern Career Fair

Intern Symposium

Facility Tours

Speaker Forums

Professional Development Classes



# Post-doc Opportunities

## Key areas for post-docs at Sandia:

- Computer science/Computer Engineering
- Electrical Engineering
- Mechanical Engineering
- High-performance computing
- Microelectronics and microfluidics
- Nanotechnology
- Physics
- Chemistry/ Electro Chem
- Biosciences and biotechnology
- Radiation & electrical sciences
- Engineering sciences
- Pulsed power sciences
- Materials science & engineering

## Eligibility Criteria

- A recent PhD (conferred 5 years prior to employment) or the ability to complete all PhD requirements before hire date.

# Fellowship Opportunities

Sandia provides postdoctoral fellows with professional development opportunities and prepares fellows to conduct independent, groundbreaking research.

## **Postdoctoral Fellowships**

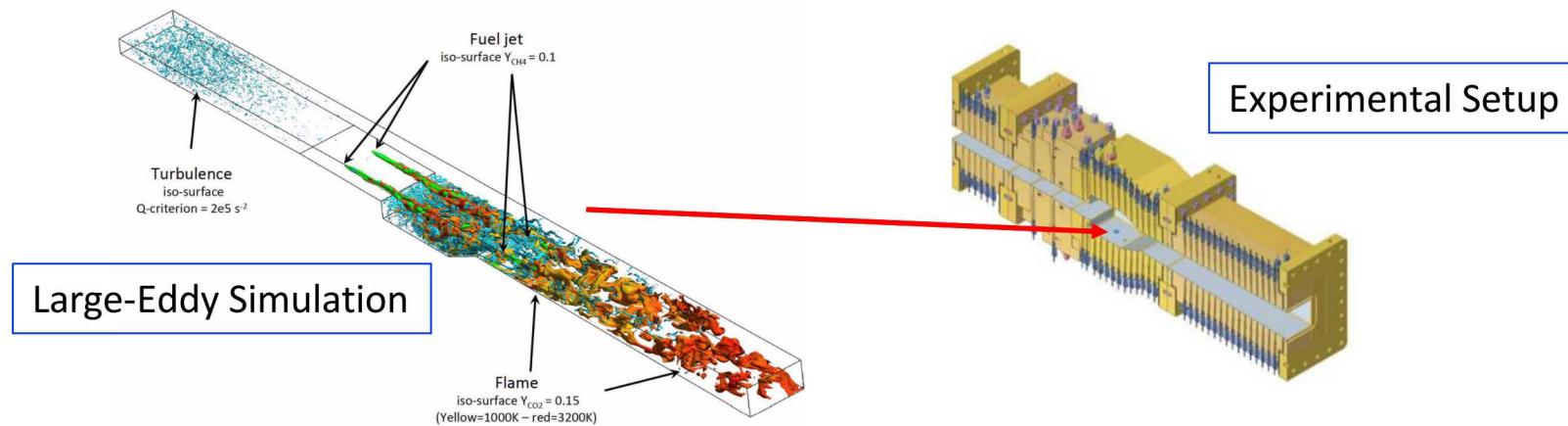
- Harry S. Truman Fellowship
- Jill Hruby Fellowship
- John Von Neumann

*\*Sign up for Automated Job Notifications!*

# Motivation and Context

- Scramjet Engine
  - *optimize design under uncertainty*
- Energy Exascale Earth System Model – Land Component
  - *model parameterization and optimal sensor placement*
- Analysis workflows

# Scramjet Engine – Design Optimization



**Sponsored by DARPA (EQUiPS program)**  
**Engine Configuration: NASA Langley Hypersonic International Flight Research and Experimentation (HIFiRE) direct connect rig (HDCR)**

Partners:



Sandia  
National  
Laboratories



USC

Mit  
Massachusetts  
Institute  
of  
Technology

Duke  
UNIVERSITY



## Challenges

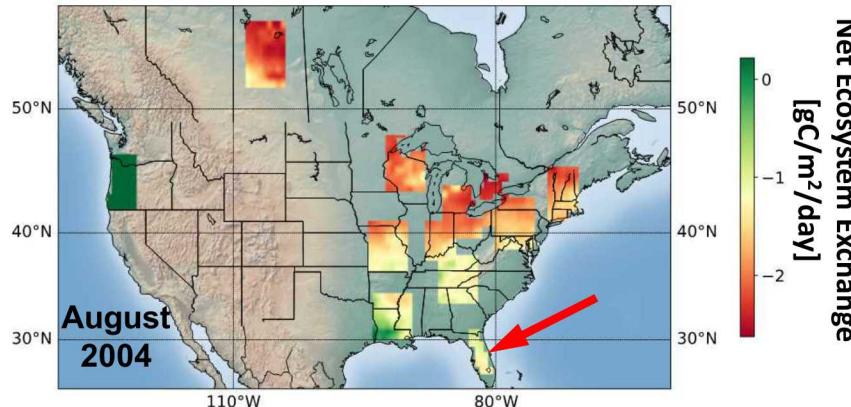
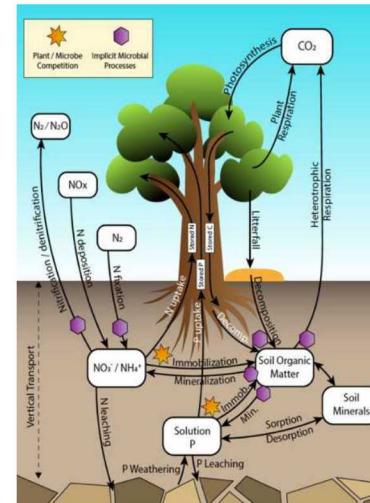
Computational Expense –  $\text{o}(10^4-10^5)$  CPU hours/model evaluation

- large range of scales (spatial/temporal) needed to capture the entire geometry

Large number of parameters, both discrete -  $\text{o}(50)$  - and distributed

# E3SM Land Model – Optimal Sensor Placement

Sample E3SM simulations to help decide on future experimental sites



Schematic of biogeophysical processes in E3SM – Land Model

Sponsored by DOE BER/ASCR

Understanding physical processes is critical to understand the climate feedbacks and their sensitivity to uncertainties in parameters and model structure

Partners:



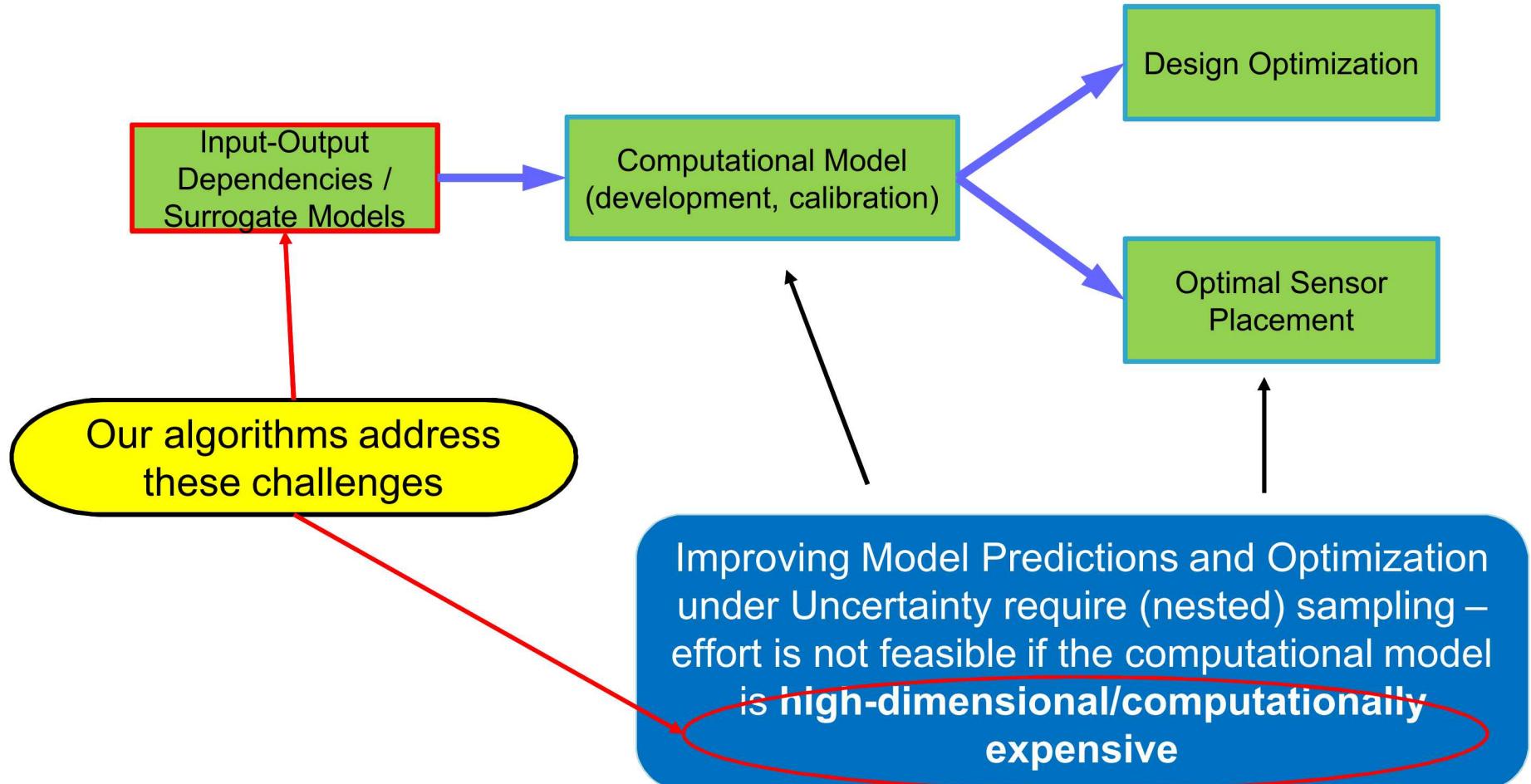
## Challenges

- Nonlinear input/output dependencies
- Large number of input parameters (10s-100s);
- Land cells with different parameterizations
- Computational Expense:  $\text{o}(10^4)$  CPU hours/land cell

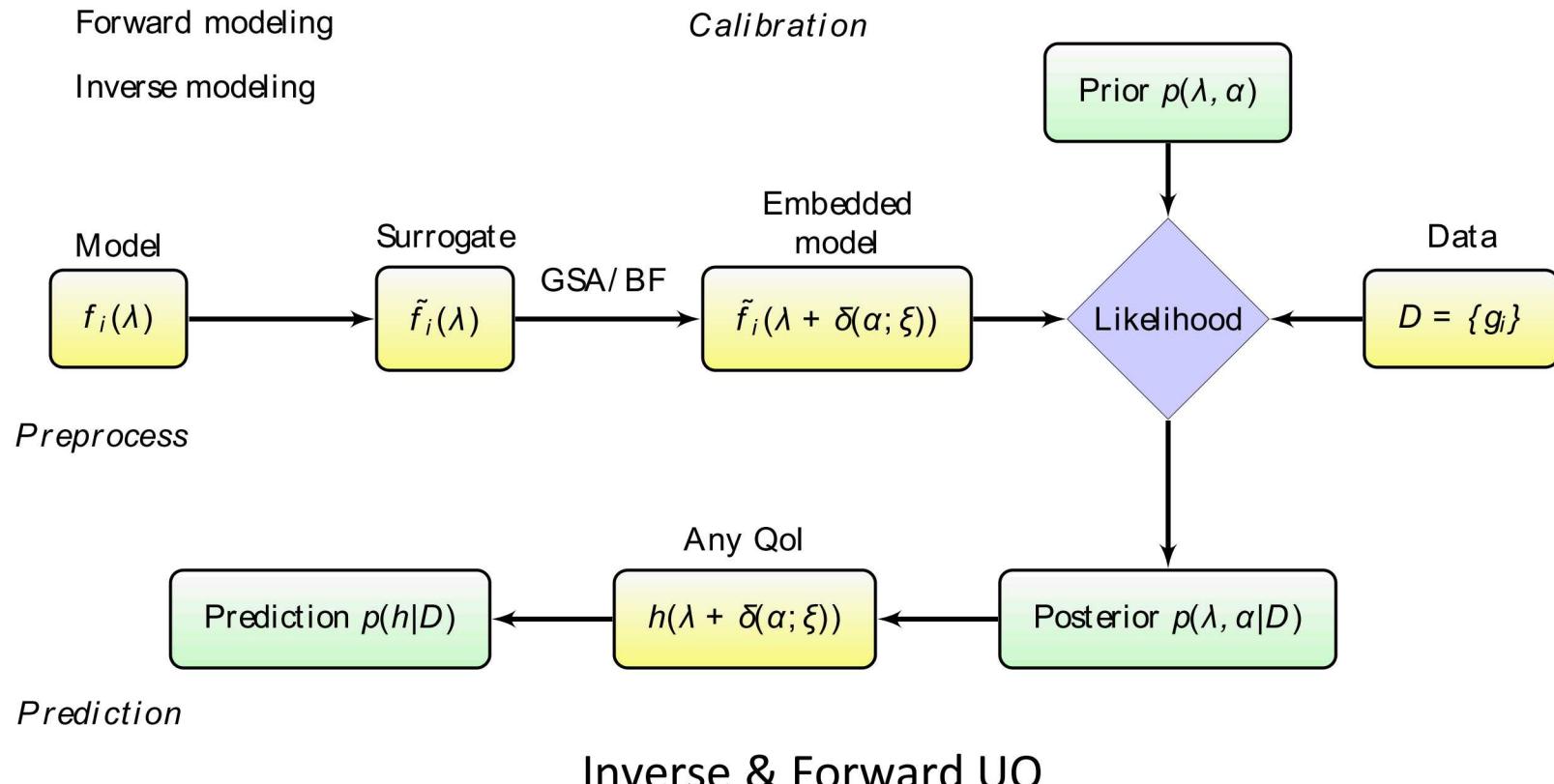


Work synchronized  
with FASTMath Institute

# Advanced UQ+ML Algorithms are Required To Enhance Modeling Efforts



# UQ Analysis Workflows



- **Dimensionality reduction**
- **(Noisy) Data Assimilation**
- **Model validation and comparison**
- **Confidence assessment**
- **Optimal design**
- **Decision support**

# High Dimensionality is a Major Challenge in UQ

- High dimensionality is the result of
  - Large number of uncertain parameters/inputs
  - Large number of degrees of freedom in random field inputs
- Model Calibration and Forward UQ efforts are in general challenged in this context
  - (Quasi) Monte Carlo methods are slow to converge
  - Spectral techniques (e.g. Polynomial Chaos) typically require an unfeasible number of model evaluations for very high dimensional systems
    - output quantities of interest (QoI) need to be relatively *smooth*
- In most engineering systems only a small number of inputs are important for subsets of QoIs
  - Explore techniques for global sensitivity analysis (GSA) to identify important model inputs
  - Employ algorithms to detect low-dimensional behavior in the input-output space

# Multiple Algorithms to Exploit Structure in High-Dimensional Models and Reduce Computational Cost



## Supervised Learning Algorithms

- Polynomial Chaos Expansions via Sparse Regression
- Low-rank Functional Tensor Train Models
- Neural Network Models

**Scramjet**

RAPTOR

## Unsupervised Learning Algorithms

- Low-dimensional Manifolds: Discovery and Sampling

**E3SM**



**Design Algorithms Adapted to Specific Challenges**

# Various surrogate types explored

UQ

- **Polynomial chaos (PC):**
  - Misnomer: nothing to do with chaos as in dynamical systems
  - Essentially a polynomial fit/regression to the black-box model
  - Extremely convenient for uncertainty propagation, moment estimation, global sensitivity analysis
    - e.g., PC surrogate allows extraction of sensitivity indices 'for free'
  - Can deal with highly non-linear models, but certain level of smoothness is assumed
- **Low-rank tensor representations:**
  - Nature is low-rank: only subset of inputs act together at the same time
  - More flexible than PC, but harder to construct
- **Neural networks:**
  - Can deal with non-smooth behaviors
  - Cons: much harder to train, even harder to interpret

ML

# Robust and Adaptive Sparse Regression to Discover Sparsity in Model Inputs

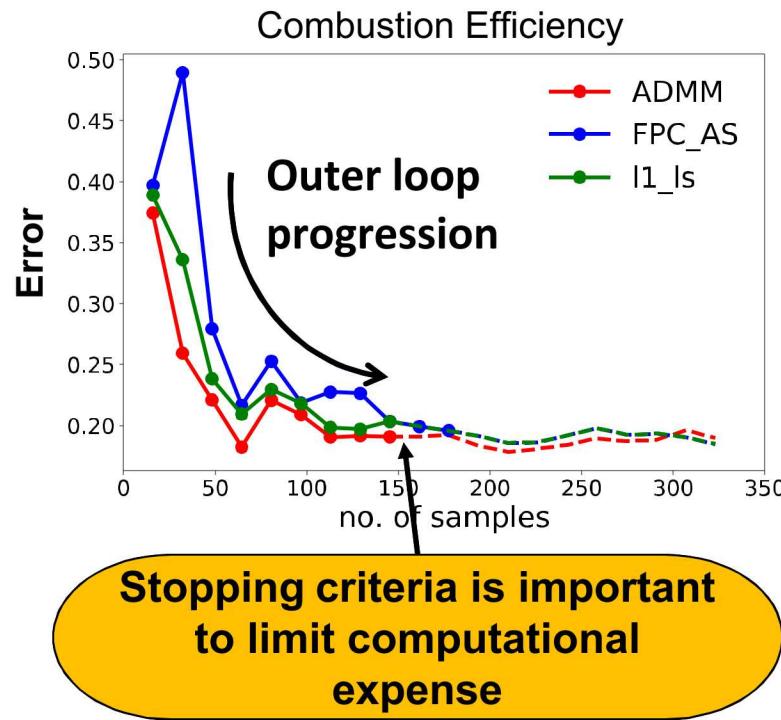
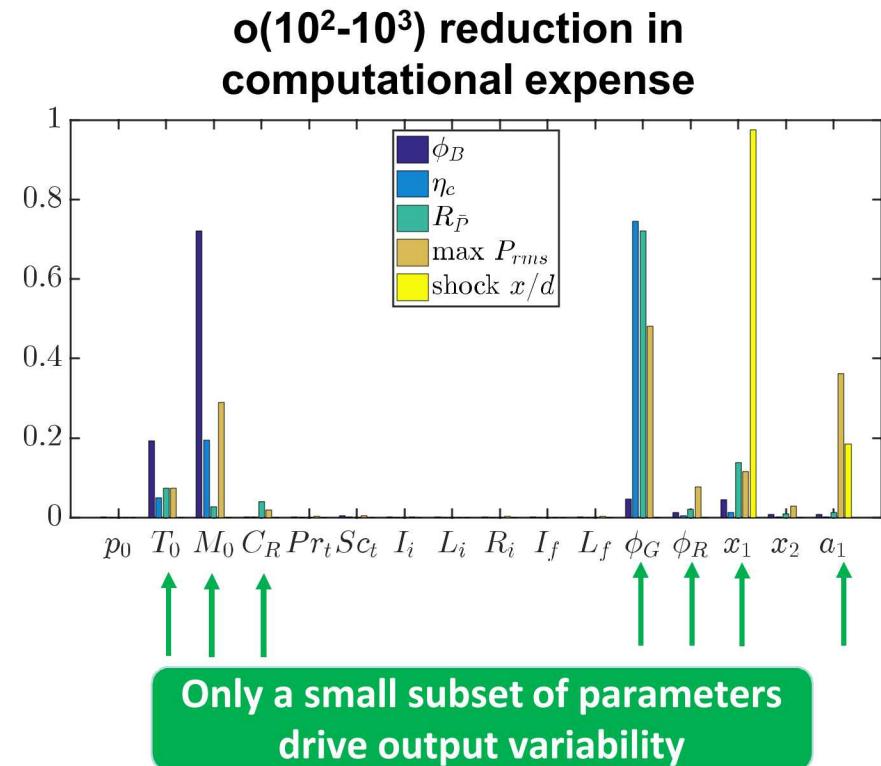
- Focus on Polynomial Chaos Expansions (PCEs) to express input-output dependencies
  - large number of coefficients and expensive model -> **system is underdetermined**
  - Compressive sensing seeks sparse solutions, discover the set of coefficients for terms that explain the available data
- Existing sparse PCE regression techniques (U. Colorado Boulder, SNL groups) are *challenged when fitting data with large noise* & the right number of samples required discover the model structure is not known a-priori for realistic computational models

Our new approach mitigates overfitting & determines the required no. of model evaluations adaptively through cross-validation and a strategy to guide stop-sampling decision

- use just enough samples to construct the surrogate model!

# Use Sparse Regression for Sensitivity Analysis to Enable Design Optimization

- Novel combination of algorithms for sparse regression for Polynomial Chaos Expansions
  - **Inner loop** for data fitting
  - **Outer loop** employing filters to decide if no. of samples is sufficient

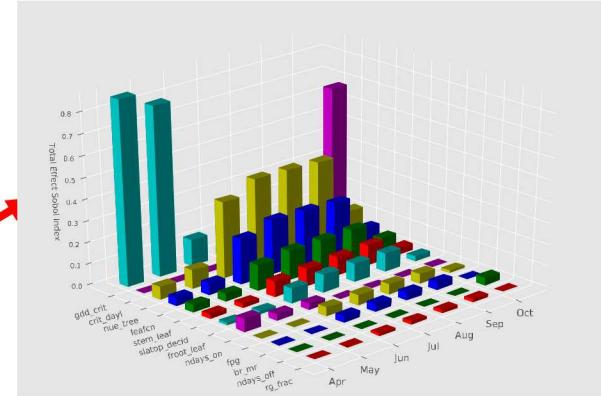


# Sparse and Low-Rank Surrogates

- Exploit model structure to reveal sparse low-rank interactions between model components and associated parameters
  - Surrogate model accuracy 4-8%; improvement of by a factor of 2 over classical surrogate model approaches

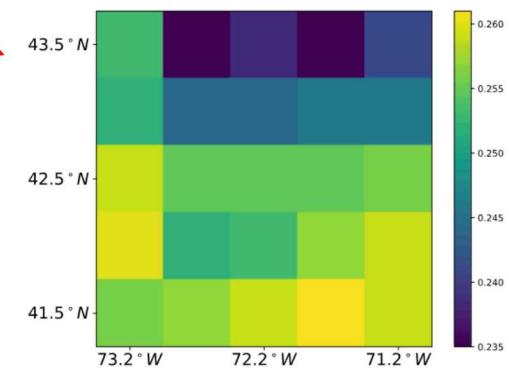
$$f(x_1, x_2, \dots, x_d) = \sum_{i_0=1}^{r_0} \sum_{i_1=1}^{r_1} \dots \sum_{i_d=1}^{r_d} f_1^{(i_0 i_1)}(x_1) f_2^{(i_1 i_2)}(x_2) \dots f_d^{(i_{d-1} i_d)}(x_d)$$

Total Effect Sobol Indices at US-Ha1



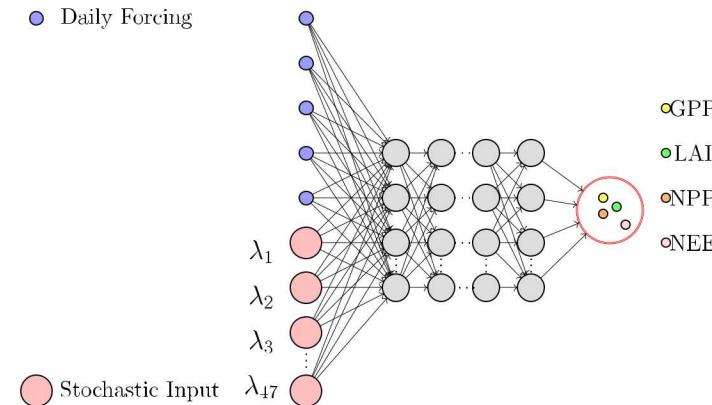
- Explore parametric functional tensor train representations to augment the low-rank models over the Land Model inputs with spatio-temporal dependencies (Joint work with FASTMath)

LEAFCN Sobol Index near US-Ha1

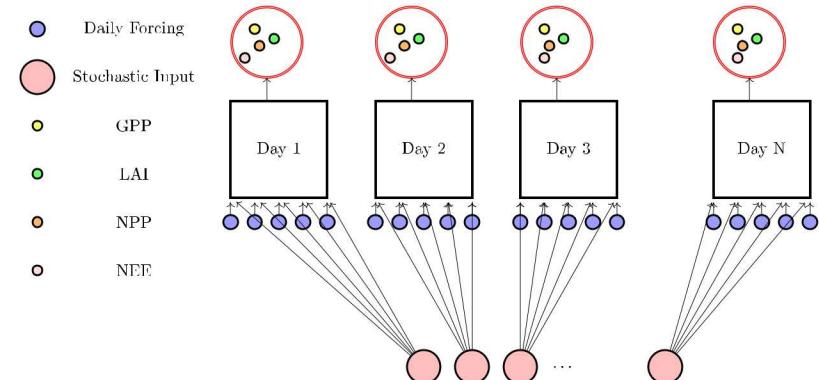


# Neural Network Surrogates Allow More Flexibility

## Multilayer Perceptron (MLP)



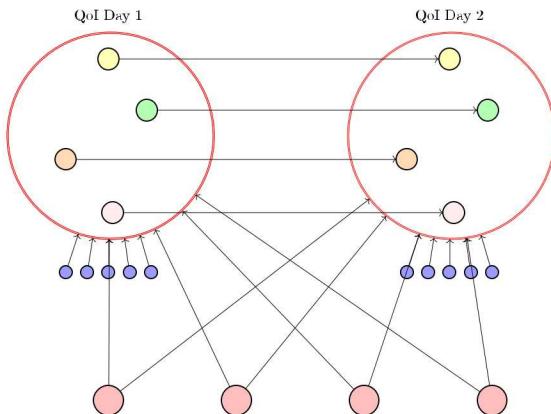
## Recurrent Neural Network (RNN)



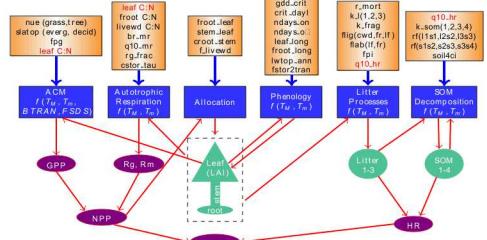
# We have created specialized RNN architecture knowing the connections between processes

## Vanilla long short-term memory (LSTM) network

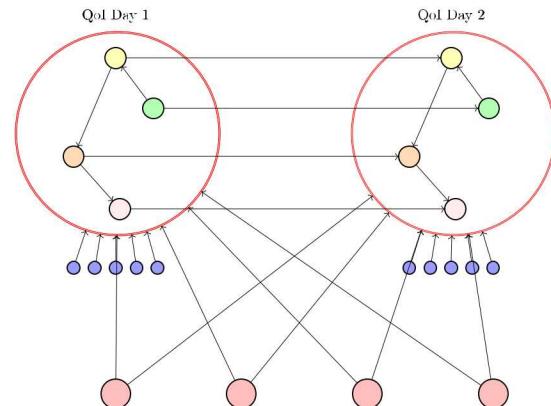
- Daily Forcing
- Stochastic Input
- GPP
- LAI
- NPP
- NEE



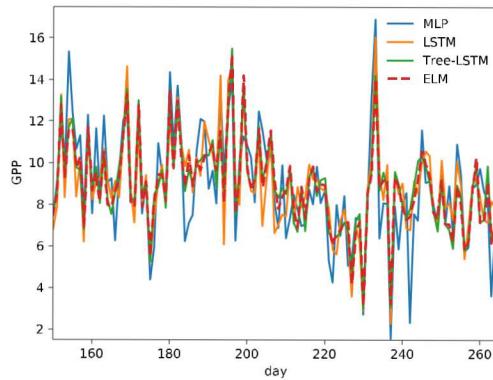
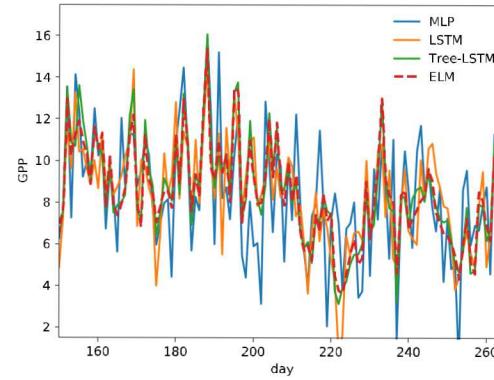
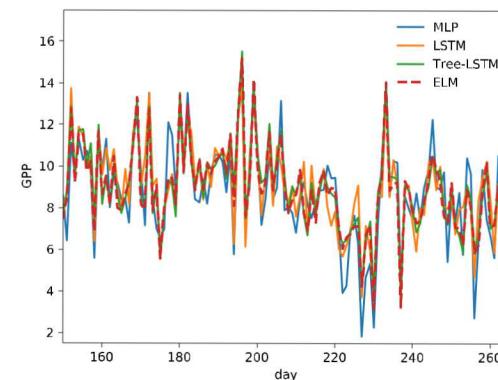
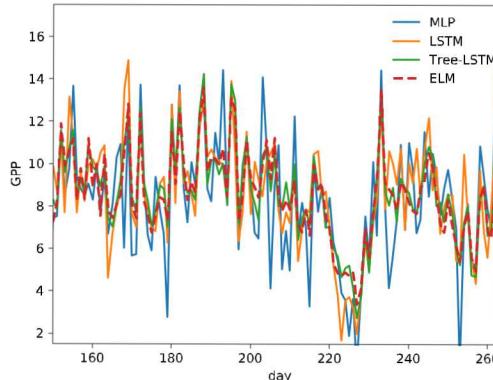
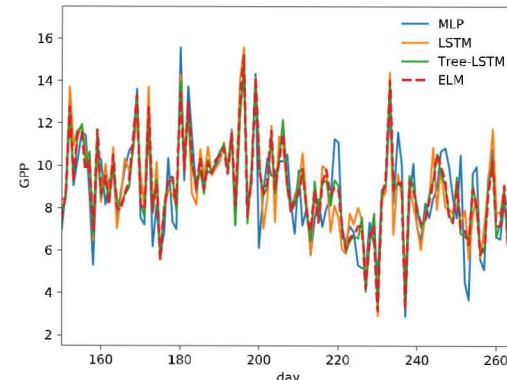
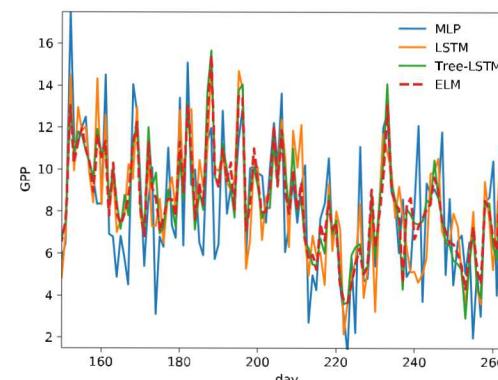
## Physics-informed LSTM



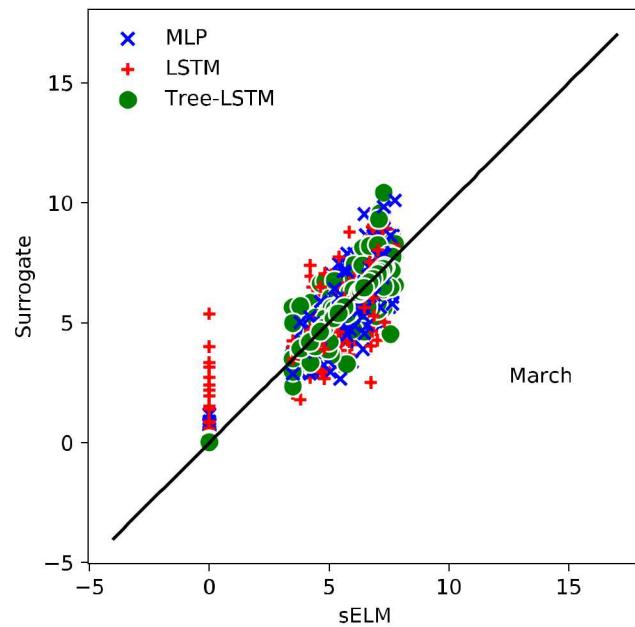
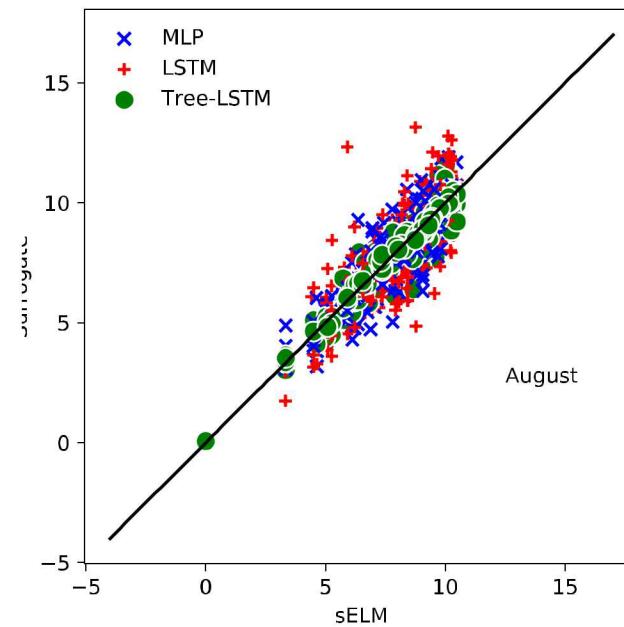
- Daily Forcing
- Stochastic Input
- GPP
- LAI
- NPP
- NEE



# Physics-informed RNN architecture captures daily dynamics well with a fraction of the cost



# Physics-informed RNN architecture captures daily dynamics well with a fraction of the cost



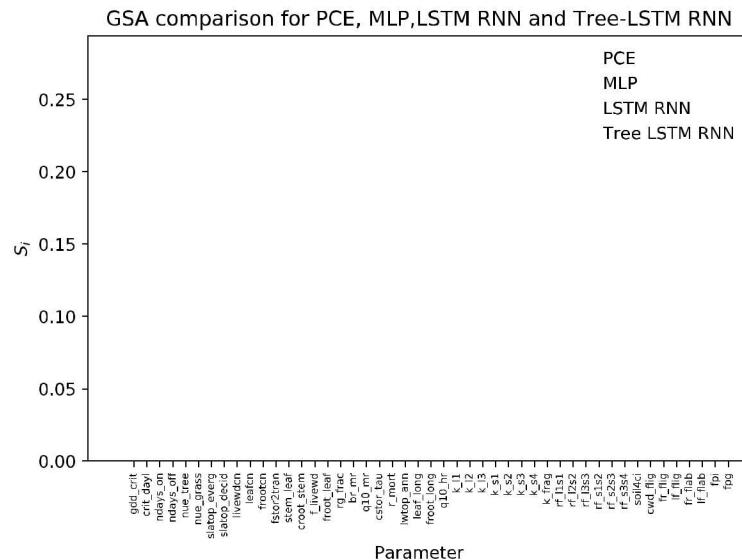
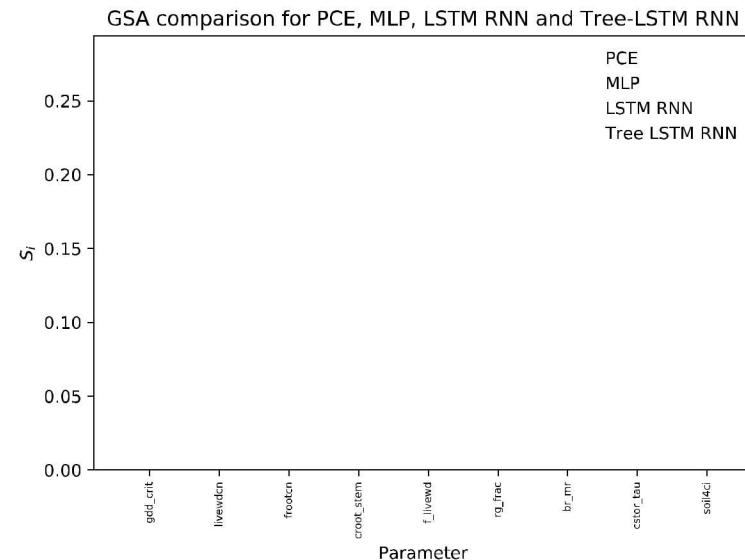
Physics-informed RNN architecture captures daily dynamics well with a fraction of the cost



## Price to pay?

## Compared to PC...

- a) GSA is not “free”, and requires extensive sampling of the ML surrogates.  
\*Not a big deal if the limiting factor is the ELM expense
- b) Does not come with uncertainties



# Multiple Algorithms to Exploit Structure in High-Dimensional Models and Reduce Computational Cost



## Supervised Learning Algorithms

- Polynomial Chaos Expansions via Sparse Regression
- Low-rank Functional Tensor Train Models
- Neural Network Models

**Scramjet**

RAPTOR

## Unsupervised Learning Algorithms

- Low-dimensional Manifolds: Discovery and Sampling

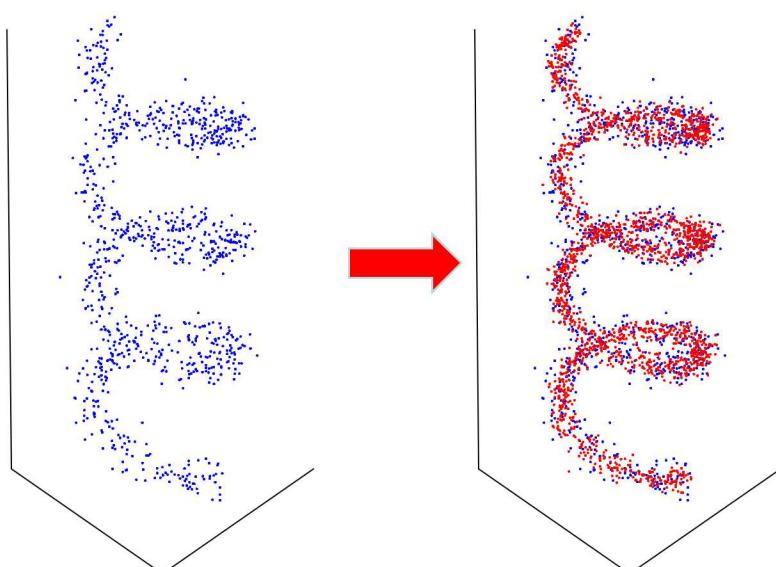
**E3SM**



**Design Algorithms Adapted to Specific Challenges**

# Exploit Intrinsic Structure in the Input-Output Space

- Use a set of samples (input-output state space) to delineate a manifold  $M$ 
  - Employ diffusion maps and stochastic differential equations that discover low-dimensional structures embedded in the state space
  - The manifold  $M$  provides an algebraic basis to generate synthetic samples that are statistically consistent with the training data
    - The computational cost for these samples is negligible compared to the cost of the original computational model

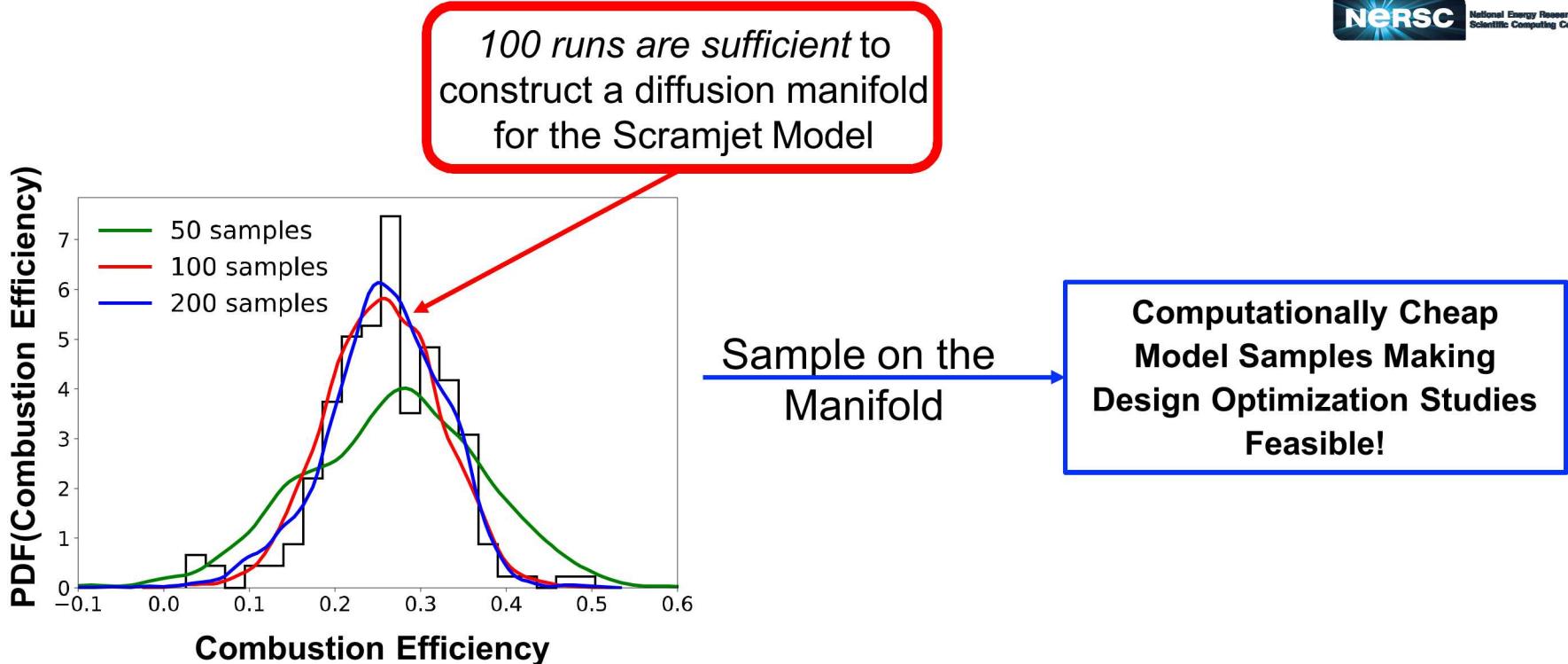


Novel set of algorithms that combine Markov Chain sampling with Diffusion Maps

Benefits from increased dimensionality in the output space – when outputs are correlated

# Computationally Cheap Model Samples from Low-Dimensional Manifolds

- *Manifold construction is adaptive – testing for statistical convergence as samples are added to the training database*
  - 2D “LES” cost: 10k CPU hours/run; 3D LES cost: 200k CPU hours/run
  - 11 input parameters, 5 design parameters, 5 quantities of interest



# Outcome

- Developed new algorithms aimed at removing bottlenecks in engineering design workflows:
  - Sparse Regression & Low-dimensional Manifolds techniques reduced the computational expense by 2-3 orders of magnitude for the Scramjet LES model **making design optimization feasible!**
  - Neural Network Models tackled non-linearities in the E3SM-Land Model with increased accuracy compared to previous algorithms – allowed **accurate selection of parameters that are important to the model!**
- Revealed new information on interactions between E3SM-Land Model components
  - Resulted in improved coupling between land model processes
- Algorithms implemented (or in progress) in Dakota & UQTk.



*Work supported by DARPA  
& DOE (SciDAC & BER/ASCR)*



# For more information

- References
  - “Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions,” Huan, **Safta**, et al, accepted for publication in SIAM/ASA Journal on Uncertainty Quantification (2018)
  - “Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations,” Huan, **Safta**, et al, AIAA Journal (2018): doi.org/10.2514/1.J056278
  - “Compressive sensing adaptation for polynomial chaos expansions,” Tsilifis, Huan, **Safta**, et al, submitted to Journal of Computational Physics (2018)
  - “Entropy-based closure for probabilistic learning on manifolds,” Soize, Ghanem, **Safta**, et al, , submitted to Journal of Computational Physics (2018)
  - “Enhancing Model Predictability for a ScramJet Using Probabilistic Learning on Manifolds,” Soize, Ghanem, **Safta**, et al, , submitted to AIAA Journal (2018)
  - “Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model,” **Safta** et al, Geoscientific Model Development (2015) doi:10.5194/gmd-8-1899-2015
- Other selected references:
  - “Uncertainty quantification in LES of channel flow,” **Safta** et al, International Journal for Numerical Methods in Fluids (2017), doi: 10.1002/fld.4272
  - “Efficient Uncertainty Quantification in Stochastic Economic Dispatch,” **Safta** et al, IEEE Transactions on Power Systems (2017), doi: 10.1109/TPWRS.2016.2615334
  - “Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov Chain Monte Carlo methods,” Lu, Ricciuto, **Safta**, et al, Biogeosciences (2017) doi: 10.5194/bg-14-4295-2017
- Contact Info:

Cosmin Safta  
[csafta@sandia.gov](mailto:csafta@sandia.gov) / 925-294-1292  
[www.sandia.gov/~csafta](http://www.sandia.gov/~csafta)