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Computational Project for a Theorist ) faor

=  Three-month practicum as component of Department of Energy
Computational Science Graduate Fellowship

= Supervised by Mike Desjarlais and trained by Kyle Cochrane

=  Preparation: Computational Methods in High Energy Density Plasmas long
program at UCLA’s Institute for Pure and Applied Mathematics

= Project Goals
 Compare two methods for computing release isentropes for aluminum
e Gain basic skills with VASP
* Increase knowledge of shock physics
e Become familiar with life at the Labs
e Learn how my thesis results might affect real calculations
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Warm Dense Matter: Quantum or Classical? i Netiona
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Models and Predictions Rely on Equations of State ) faor

= Engineering codes demand knowledge of material properties over entire
range of interest

= Historical models fail for warm dense matter (WDM)

= Different EOS and databases give different material properties

= Experimental data is limited to isolated regions of phase space

= Massive databases require reliable computational methods
* Must incorporate quantum and classical behavior
e Prediction of quality and size of errors is ideal
* Good agreement with available experimental data
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VASP: Quantum Molecular Dynamics (QMD) for WDM ) faor

= Vienna Ab-Initio Software Package (VASP): combines quantum treatment
of electrons with classical ions

= Density functional theory: highly efficient quantum method

= Molecular Dynamics: classical mechanics for simulating ion lattices

=  QMD output can be used to constrain EOS parameters

=  Shown to give good agreement with experimental data
 Example: M. P. Desjarlais Phys. Rev. B 68, 064204 (2003)
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Reliable Hugoniot Calculations Using VASP )t

= Materials under shock compression satisfy the Rankine-Hugoniot relation:

2(E,-E,)=(P,+P)(v,-v,)

where 1 and 2 are initial and final states, E is energy, P is pressure,
and v is specific volume.

= Relation derived from conservation of mass, energy, and momentum

= Two methods: ramps and bracketing
* Ramps: Temperature of ions and electrons is changed with each timestep

* Bracketing: Two calculations run at steady temperature, one higher and one
lower than hugoniot temperature
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Isentropes are Key Paths in Shock Experiments ) Joses,

= Follow paths where dS =0

" |sentropic release occurs after compression

= Modeling of shock transfer between materials requires isentropes and
hugoniots

= Provide information on sound speed, Gruneisen gamma and so can help
construct EOS models
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QMD Calculation of Isentropes )t

Total differential for entropy

ds = ﬁcZT+£a,’V

oT Vv

Use Maxwell relations and assume I'/V is nearly constant to write relation
between temperature-volume points along isentrope:

T, ~T,expq -V, 22 In L
OE,  V

l

Ramped runs provide pressure and energy derivatives w.r.t. temperature
Start from hugoniot point and construct isentrope

Reference: Desjarlais, M.P. Quantum Molecular Dynamics Simulations for Generating Equation of State
Data, Atomic Processes in Plasmas, AlIP, 2009.



QMD Calculation of Quasi-Isentropes

Uses Hugoniot relation

2(E,-E,)=(P,+PR)(v,-v,)
but with previous isentrope point as reference state 1.

= Can calculate in batches, assuming Gruneisen gamma remains constant

across a few isentrope points

= Recalculate gamma at hugoniot temperature of last run in batch

=  Approximation to ramped QMD isentropes, should be equal in limit of

small steps
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6 Mbar Release Isentrope Calculations

= Aluminum: FCC, 108 atoms

= 3-electron pseudopotential designed by Ann Mattsson

= K-Point Scheme: Baldereschi Mean Value Point

= Algorithm: combined Blocked-Davidson and Reduced Residual

Minimization

= Timesteps: between 0.25 and 1 fs

= Ramps: 1K per timestep
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Pressure versus Density

6 Mbar Release Isenstrope for Aluminum
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Temperature versus Density

6 Mbar Release Isenstrope for Aluminum
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Pressure versus Particle Velocity A Nona
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6 Mbar Release Isenstrope er Alumjnum
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Differential Quantities: Gruneisen Gamma

6 Mbar Release Isenstrope for Aluminum
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Differential Quantities: Specific Heat

6 Mbar Release Isenstrope for Aluminum
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Future Work i) Natora

= Continue 6Mbar isentrope calculations

=  12Mbar isentrope with 11-electron pseudopotential

= Compare to experimental data

= Compare 3-electron pseudopotential results to 11-electron
pseudopotential results: where do explicit inner electrons become
necessary?
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S u mMmm a ry m Il“aat}g:g?;ries

= QMD isentropes and quasi-isentropes give similar results for 6Mbar
release isentrope of aluminum, to within

* 60 m/s for particle velocities (<0.3%)
* 0.03 eV forisentrope temperatures (<<1%)

* 3 GPa forisentrope pressures (<4%)

= Close agreement supports use of isentrope method with larger steps than
qguasi-isentrope method, which requires small hugoniot steps.
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