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What is the problem?

 Enriched uranium can be 
used to construct a nuclear 
weapon

 It is important to verify the 
enrichment of uranium as it 
exits the processing stream 
to detect material diversion 
efforts



A quick review: the front 
end of the fuel cycle



Current technology is good, but…

 “Enrichment meter” 
measures gamma 
emissions from the 
uranium hexafluoride 
(UF6)
 Sensitive to variations in 

container wall thickness

 Not sensitive to material 
beyond outer skin of UF6

 Gives local enrichment, not 
total mass (need a scale for 
masses)

The enrichment meter principle.  From Reilly et al., 
Passive Nondestructive Assay of Nuclear 
Materials, Fig. 7.3



How we got involved…



Summarizing the problems

 The enrichment measurement relies upon weakly-penetrating 
particles
 Sensitive to container wall thickness

 Sensitive to geometry

 Cannot sample entire volume…what’s in the center?

 Typical NDA techniques measure enrichment, not isotope 
masses
 To obtain masses, a load cell (scale) measurement is necessary

+ = ?



Our view of the world: fast neutrons
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Sandia’s concept: directly measure 
fast neutron emissions

 Fast neutrons generated by 
independent processes within the 
UF6 can provide an independent 
enrichment measurement that 
samples the entire UF6 volume

 Neutron imaging of the UF6

distribution detects unexpected 
UF6 geometries and applies 
necessary corrections

 Sandia has developed expertise in 
neutron imaging and spectroscopy 
that will enable success

Transmission of particle beams through 
5% enriched UF6 (without container wall)



Neutron spectrometry may be used to 
determine UF6 enrichment & mass in a 30B

 238U: neutrons via spont. fission 
and (,n) reaction on F atoms

 234U: neutrons via (,n) reaction 
on F atoms

 The two processes have 
measurably different energy 
spectra

 It should be possible to separate 
234U and 238U contributions to 
the energy spectrum

 Direct measurement of 234U and 
238U masses

 234U content is proportional to 
235U content (proven by LANL for 
enrichment ≤ 5%) SOURCES4C calculation of neutron 

spectrum for 5% enriched UF6



Summarizing the concept…

 Spectral information
 The high-energy portion of the spectrum is purely from fission, and 

the magnitude is a function of the total 238U mass

 The low-energy portion of the spectrum is mostly from (,n) on F, and 
the magnitude is a function of the total 234U + 238U mass

 The sum of these components indicates the total sample mass

 The ratio of these components is a function of uranium enrichment

 Imaging information
 Imaging the material distribution may allow for geometry corrections 

to be applied (if necessary)

 Imaging the total volume can provide confidence that the container 
geometry is consistent with expectations



Advantages of this technique

 Independent verification of isotope ratios and masses

 Highly-penetrating particles are less sensitive to geometry 
perturbations

 No load cell necessary

 Imaging can be used to:
 Map material distribution

 Reject natural backgrounds

 Reject neutrons from nearby cylinders



Initial calculations: emitted neutron 
spectra using SOURCES4C

 Calculate spectra for 
different enrichments to 
examine the dependence

 Use SOURCES4C
 Input: isotopics, density, 

energy bin boundaries

 Output: (,n), spontaneous 
fission rates (n/cm3s)

 No detector response or 
transport physics in cylinder 
at this point



Full transport calculations imply 
manageable spectral perturbations

 The source term is perturbed in a large mass of UF6.
 Scattering

 Induced fission

 Absorption

 A 30B cylinder was modeled in MCNP5.
 Enrichments: DU, natU, 5% enriched 235U

 Maximum fill mass

 Spectra appear to maintain enough structure for the 
measurement concept to work.



Results of the MCNP5 
calculations



Neutron spectrometry can be performed 
with the Neutron Scatter Camera
 The Neutron Scatter Camera is a mature 

system developed at Sandia for large-area 
search

 Multi-element system

 Liquid scintillator for n/g discrimination

 Imaging capabilities (interaction cell locations, 
measured energies)

 Spectrometry (deposited energy, time-of-
flight)

252Cf

AmBe



The (simulated) 30B emissions 
with full detector response

These spectra are normalized to more easily 
compare the distributions



The simulated spectra were analyzed 
using Principal Component Analysis (PCA)

 PCA is a technique that allows representation of data having 
many variables with a small set of significant variables

 Data dimensionality reduction is key aspect without losing 
characteristic data features 

 The UF6 fast neutron spectrum is a function of filling profile, 
235U enrichment and mass, and scattering environment

 Filling profile may vary from cylinder to cylinder

 PCA will characterize parameters including: declared 235U 
enrichment, mass, and filling profile

 Cylinders with unexpected 235U enrichment or very unusual 
material distribution may be detected as an anomaly using 
PCA



PCA Technique

 PCA requires the transformation of data into orthogonal 
feature space

 Transformed data is a linear combination of original data

 Transformed data is uncorrelated

 Reveal as much of the original variance in the transformed 
data space

 The new data are ordered according to the degree of variance 
and are called principal components (PC)

 The first few PC’s are carry the most variance in the 
characterized data



Preliminary data

 Full transport simulations of neutrons within 30B cylinders 
and out to the Neutron Scatter Camera

 The detector response function was folded on to the detected 
neutron energy spectrum

 The PCA algorithm was trained using 3% 235U

 Other enrichments ranging from depleted to 5% were clearly 
discriminated using the PCA approach



The simulated detector response 
spectra for 16 NSC cells



PCA Technique



Field measurements were performed 
to validate our results

 It is important to measure filled 30B cylinders with to collect 
data with
 The appropriate (,n) source term

 A complex source with multiplication, scattering

 Appropriate rates (neutrons and gammas)

 Realistic backgrounds

 The Paducah Gaseous Diffusion Plant hosted our 
measurements
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Paducah Deployment



Paducah Deployment
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The Paducah DAQ was chosen to be 
representative of the NSC

 Wanted a “NSC-like” data acquisition system that afforded 
more flexibility and had a larger assortment of detector sizes
 4 EJ-309 liquid scintillator cells: 2”x2”, 3”x3”, 5”x2”, 5”x5”

 5”x5” NaI(Tl) crystal

 3He tube

 Analog electronics were similar to the NSC electronics at that time

 PSD, ADC, scaler rates, trigger gate for coincident measurements

 Measurements of several enrichments
 0.711%, 2.00%, 3.60%, 4.00%, 4.95%

 4.00%, 4.95% (downblended Russian material)

 Goals
 Measurement of neutron spectra

 Discover and work through difficulties associated with field 
measurements 26



Pulse pileup from high gamma rates 
created PSD challenges

PSD plots (log intensity scale)
Neutron pulse height 
spectrum
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Focus on the smallest EJ-309 cell 
(manageable pileup)

PSD plot (black=neutrons, 
green=gammas)

Neutron energy spectra for 
each 30B cylinder
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A simple two-bin analysis

 Initialize 2 windows, low and high

 Find the total number of bins in the spectrum

 Loop over all non-overlapping window ranges.
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Roughly 0.25 MeV to 1 MeV low window, and 1 MeV to 6 MeV high window

Analysis results indicate 
spectroscopy works!



Extrapolating detector rates to 
count time/counting uncertainty

Counting uncertainty vs. time 
for a 2” EJ-309 cells

Time (hrs) High-energy 
counts

Uncertainty

1 6.5 0.39

2 13 0.28

5 32.5 0.18

10 65 0.12

15 97.5 0.10

20 130 0.09

30 195 0.07

40 260 0.06

50 325 0.06

60 390 0.05

Time to 5% counting 
uncertainty vs. cell size, #

2" Cells Hours 3" Cells Hours 5“ Cells Hours

1 50 1 14.8 1 3.2

2 25 2 7.4 2 1.6

5 10 5 3.0 5 0.64

10 5 10 1.5 10 0.32

15 3.3 15 1.0 15 0.21

20 2.5 20 0.74 20 0.16
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Some challenges were revealed 
during this investigation

 Assaying cylinders using reasonable dwell times

 High gamma emissions of cylinders (technology choices help)

 High backgrounds from neighboring cylinders (separation is 
important—imaging could help, if practical)

 Isotopic challenges
 234U/235U ratio assumption

 Downblended Russian material
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Summary

 Direct measurement of neutron signatures for UF6 material 
accountancy appears to be a possible safeguards technique
 Two physical processes create neutrons with different energy spectra

 Simulations and experiments indicate enrichment can be extracted 
from emitted neutrons, even after full transport

 Advantages:
 Sensitive to entire cylinder volume

 Imaging (if possible) suppresses backgrounds from nearby cylinders, 
allows one to map material distribution within a cylinder

 Possible future work:
 Detector optimization (detection medium, segmentation) 

 Verify insensitivity to internal geometry

 Active interrogation?
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