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Soft Body Armor
� Ballistic Vest

� A ballistic vest, bulletproof vest or bullet-resistant 
vest is an item of personal armor that helps 
absorb the impact from firearm-fired projectiles 
and shrapnel from explosions, and is worn on the 
torso (www.wikipedia.org).

� Soft vests are made from many layers of woven 
or laminated fibers and can be capable of 
protecting the wearer from small-caliber handgun
and shotgun projectiles, and small fragments from 
explosives such as hand grenades. Impact 
response of ballistic fabrics (www.wikipedia.org)

Ballistic Vest

Fabrics

Interaction

Fiber Yarns

Interaction

Single Fibers
Interaction
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Ballistic Performance
� Bullet/projectile should be stopped before the soft body armor is 

penetrated;
� The maximum displacement of the back surface of the soft body 

armor should not exceed 44 mm (NIJ Standard)

Energy Dissipation

Deformation Energy in Fibers

Localized Deformation & Failure

High-rate Stress-Strain Response

Material Characterization Structure Characterization
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Tensile Stress-Strain Response of Fibers

� Experimental Techniques
� Quasi-static Testing: Commercial Load Frames (MTS, Instron, etc)

� ASTM Standards
� Dynamic Testing: Kolsky Tension Bar (or Split Hopkin son Tension Bar)

� No Standard Available

� Challenges in Dynamic Experiments
� Stress wave propagation/Inertia effect

� Non-uniform stress and strain along the fiber gage length
� Size effect

� More challenging in dynamic testing of single fiber s
� Specimen gripping
� Small force measurement
� Non-uniformity in stress and strain

� Inaccurate Strain Measurement
� Failure strain ?
� Modulus of Elasticity ?
� Stress-strain curve ?
� Strain-rate effect ?

(Cheng et al. 2005)
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Mechanical Properties & Ballistic Performance

� Higher Failure Strength
� Higher Modulus of Elasticity
� Larger Failure Strain

σ

ε

Linear-elastic Brittle Fiber

It is difficult to directly correlate 
the tensile properties of the fibers to 
their ballistic performance.

What properties are critical 
to the ballistic performance? 

Fundamental research that has direct relation to ball istic performance

(Kim et al. 2008)

is desired.



August 2006 

Transverse Impact Response of Fiber Yarns

Characteristics
� High Rate
� Wave Propagation

� Longitudinal Wave
� Tension in the fiber yarn

� Transverse Wave
� Shape change of the fiber yarn

quasi-static

impact

Faster Transverse Wave Speed

More Fibers Involved 

More Impact Energy Dissipated 
&

Less Strain Localization 

Better Ballistic Performance 



August 2006 

Early Research: Transverse Impact 
Response of Fiber Yarns

� Research started from 1950s
� J. D. Cole et al.; 1953

� Analysis, modeling

� J. C. Smith et al.; 
1950s-1960s
� Analysis, modeling, 

experiments

� Diagnostic techniques
� High-speed Photography

� Speed
� Resolution

Smith et al. (1956) 6984 FPS

50000 FPSJ. E. Field and Q. Sun (1990)

L. Wang et al. (1992)
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Transverse Impact Techniques of Fiber Yarns

� Split Hopkinson Pressure Bar 

(SHPB)/Kolsky Bar

� ¾” diameter aluminum bar
� High-speed digital cameras

� Cordin 550
� Phantom V12.1
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Kolsky Bar for Transverse Impact Testing

V

Impact Speed V

( ) ( )( ) ( ) 000 2 VtCttCV iri ==−= εεε

V0

C0: elastic wave speed in the bar material
V0: striker velocity

For Aluminum 7075-T651:

V0 < 70 m/s
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Gas Gun for Transverse Impact Testing at 
Purdue University
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Transverse Impact Response of Kevlar ® KM2 
Fiber Yarn Taken from a Fabric

� 400 den. Kevlar ® KM2
� Taken from a plain 

woven fabric
� 10-15’’ long aligned 

fiber yarn

� Impact Speed
� 8 – 53 m/s (Hopkinson 

bar)
� 150-320 m/s (Gas gun)

� Pre-loading Condition
� Pre-tension: <0.5 N
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Kolsky Bar Testing of Kevlar ® KM2 Fiber 
Yarn Taken from a Fabric

V=53 m/s
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Wave Propagation in the Fiber Yarn

V=53 m/s

T
ran

sverse W
ave

Striking

γ=20.5˚

T = 20 30  40  50  60  70 µs

� Transverse wave
� Changes the shape of 

fiber yarn
� Produces a kink with 

triangle shape
� Produces a constant 

angle for a constant-
speed impact

� Longitudinal Wave
� Produces tension in 

the fiber yarn
� Propagates much 

faster than transverse 
wave 

Striking

T=20  30  40  50   60  70 µs

Lon
gitudin

al W
ave
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Displacement of Particles on the Fiber Yarn

V=53 m/s
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Particle Velocity in Y -Direction
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Euler Transverse Wave Speed
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Gas Gun Testing of Kevlar ® KM2 Fiber Yarn Taken 
from a Fabric

V=241 m/s
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Kevlar ® KM2 Fiber Yarn Taken from a Fabric:
Effect of Impact Speed 

18 m/s

53 m/s



August 2006 

Modeling of Transverse Impact Response of 
a Fiber Yarn

γtan
0V

cs =

UCT l0ρ=

εlCU =

00sin VCT sργ =

( ) UCc ss −+= ε1

( ) γε sin10 += sCV
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Tensile load

Yarn strain

Lagrangian longitudinal wave speed

Euler transverse wave speed

Lagrangian transverse wave speed
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Analytical Solutions
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(Kim et al. 2008)

Consistent with 

Cole et al. (1953)



August 2006 

Kevlar ® KM2 Fiber Yarn Taken from a Fabric:
Results
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Transverse Impact Response of Twisted 
Kevlar ® KM2 Fiber Yarn Taken from a Fabric

V=53 m/s
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Transverse Impact Response of a Twisted 
Kevlar ® KM2 Fiber Yarn Taken from a Fabric

Patent Pending
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Transverse Impact Response of DuPont 
600 Denier Kevlar ® KM2 Fiber Yarns

� 600 den. Kevlar ® KM2
� 10-15’’ long
� Fiber yarn conditions

� “As-received” Aligned 
� Twisted “As-received”
� UV/aged aligned 
� UV/aged pre-twisted
� Twisted UV/aged

� Impact Speed
� 11 – 52 m/s (Hopkinson 

bar)
� 150-320 m/s (Gas gun)

� Pre-loading Condition
� Pre-tension: <0.5 N

UV/aged: exposed under 
fluorescent lamps for 10 

months
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Testing Matrix of DuPont 600 Denier Kevlar ®

KM2 Fiber Yarns

Aligned –
UV/aged

UV/aged –
Twisted

1/3

Twisted –
UV/aged

2/3 4/31/3

Twisted –
As received

2/3 4/3 8/3 8/3

155

244

324

52

43

30

21

16

Aligned –
As received

Impact Speed 
(m/s)
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Transverse Impact Response of “As-
Received ” Aligned Fiber Yarns

V=244 m/sV=52 m/s
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Transverse Impact Response of Fiber Yarns 
under Various Conditions (V=53 m/s)

Twisted –
“As-received”

Aligned –
UV/aged

Twisted –
UV/aged

UV/aged –
pre-twisted
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Effect of Twist and UV/Aging on Euler 
Transverse Wave Speed

IM et al. 1989
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Effect of Striking Speed, Twist, UV/Aging on 
Euler Transverse Wave Speed
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Ballistic Performance

� Transverse Wave
� Transverse wave dissipates the impact energy subjec ted to the fiber 

yarn
� A fast transverse wave makes more fiber yarns in a fabric involve in 

energy absorption, therefore dissipating the impact  energy quickly

� Transverse Wave Speed depends on
� Loading Conditions

� Pre-tension load ( T0=0 here)
� Impact speed

� Material properties
� Longitudinal wave speed
� Important in ballistic performance

� Criterion for Material Selection and Optimization 
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Effect of Impact Speed on Euler Transverse 
Wave Speed (Data and Modeling)
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Parametric Study: 
Longitudinal Wave Speed Effect
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Parametric Study: Effects of Longitudinal Wave 
Speed and Impact Speed
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Predictable Failure Strain
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Parametric Study: Fiber Yarn Strain
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Highest Allowable Impact Speed

M5 Carbon 1140D K49 840D K129 600D KM2 1000D K29 E-glass
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Failure Strength and Density

M5 Carbon 1140D K49 840D K129 600D KM2 1000D K29 E-glass
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Summary (I)

� When a linear-elastic fiber yarn is 
subjected to transverse impact, both 
longitudinal and transverse wave are 
generated

� Longitudinal wave produces tension 
in the fiber yarn

� Transverse wave speed changes the 
shape of the fiber yarn

� Transverse wave speed is important 
in the ballistic performance of a fiber 
yarn.

� A faster transverse wave speed
� dissipates the impact energy 

faster;
� avoids significant localization 

of strain in the fiber yarn
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Summary (II)

� Longitudinal wave speed is a 
material constant, depending on

� Density
� Modulus of elasticity

� Transverse wave speed depends 
on

� Material properties
� Longitudinal wave

� Loading conditions
� Pre-tension load ( T0~0 in this 

study)
� Impact speed 

� Transverse wave speed 
increases with increasing 
impact speed
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Summary (II)

� Effect of material properties on transverse wave speed

Longitudinal Wave Speed

Density Modulus of Elasticity

Manufacturing & Processing Damage

UV/AgingTwisting…… ……

Transverse Wave Speed
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Summary (III)

� Effect of material properties on 
transverse wave speed

� Twisting
� Appropriate amount of twist may increase 

the transverse wave speed

� UV/aging
� Results show UV/aging may increase the 

transverse wave speed

� Aged pre-twisted fiber yarn shows a 
significant increase in the transverse wave 
speed

� Mechanism
� Changes in material properties
� Fiber interactions enhanced
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Summary (IV)

� Selection and Optimization of 
Fiber Yarns for Better Ballistic 
Performance

� Density
� Modulus of Elasticity
� Failure Strain
� Highest Allowable Impact Speed
� Failure Strength
� Others

� UV/aging Performance
� Twisting Performance
� Comfort

� Flexibility
� Formability
� Air Circulation
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Future Directions

� Quantitative Determination of Fiber Yarn under High -rate Tension
� Strain Rate Effects

� Modulus of Elasticity
� Failure Strain
� Failure Strength

� Effect of Twist and/or UV/Aging on Material Propert ies
� Modulus of Elasticity
� Failure Strain

� Failure Strength

� Effect of Interaction
� Fiber Yarns
� Fabric Layers

� Quantitative Optimization of Soft Body Armor
� Fiber Yarns
� Fabrics
� Armor 
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