

Exceptional service in the national interest

Technical Document on Polymers for Hydrogen Infrastructure

Rachel Barth¹ and Kevin Simmons²

September 12, 2013

¹SNL, ²PNNL

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No XXXX-XXXX

Introduction

- We receive continued requests for information on polymers similar to Technical Reference for metals
- We are compiling a document on properties of polymers used in hydrogen vehicles and delivery infrastructure
 - Relevant applications and materials
 - Technical data
 - Gap analysis

Differences between polymers and metals in the context of hydrogen compatibility

- Framework for metals is well developed
 - ASTM specification of materials
 - Agreement on property definitions
 - Hydrogen compatibility of metals: Technical Reference
- Polymers are different
 - Not subject to hydrogen embrittlement in the same ways
 - Affected by hydrostatic pressure
 - Viscoelastic behavior
 - Temperature dependencies, e.g. glassy/rubbery transitions
 - Rate dependencies

Properties are highly dependent on molecular weight, processing history

Structure of Document

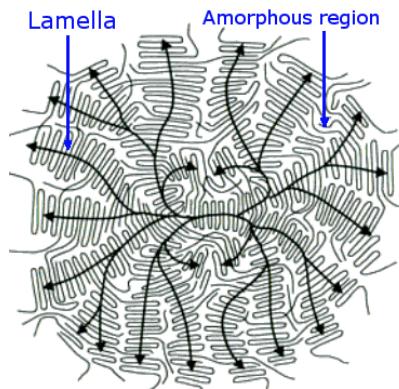
- Section 1: Applications and Materials
 - Fueling station
 - On board vehicle
 - Pipelines
- Section 2: Technical Data
 - Materials properties
 - Pressure effects (up to 100 MPa)
 - Temperature effects
 - gaseous H₂: -40°C to 85°C
 - liquid H₂: ~20K
 - hot seals in compressors: up to 200°C
 - Hydrogen effects
 - Gas transport properties (permeability, diffusivity, solubility)
 - Decompression effects
 - Test methods
- Section 3: Gap Analysis

Scope

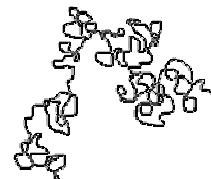
- Within scope
 - Polymer properties at relevant operating temperatures/pressures
 - Not structures (e.g., pipes or pressure vessels)
 - Constituents of multicomponent systems only
 - Published, peer-reviewed data
- Out of scope
 - Fuel cell components (e.g., membranes)
 - Polymers for solid state hydrogen storage
 - Experimental (non-standard) copolymers, blends, treatments, processing conditions
- Excluded for lack of evidence
 - Chemical reactions between polymer and hydrogen
 - Effects of impurities (CO, CO₂, O₂, H₂O in gas; agents in the polymer)

Materials for hydrogen components

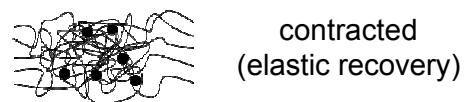
Ion Materials for Hydrogen Components


Material Type	Check Valves	Control Valves	Tanks and Pipes
Viton	X	X	
Buna-N	X	X	
Teflon	X	X	
EPR	X	X	
Fluorosilicone	X		
Silicone	X		
Neoprene	X		
PEEK	X	X	
PEEK	X	X	
Nylatron		X	
Vespel		X	
PCTFE		X	
Epoxy		X	
Fiberglass			X
Carbon Fiber			X
HDPE			X

, PNLL 509-375-3651, kevin.simmons@pnnl.gov


Proudly Operated by Battelle Since 1965

Categories of materials


- Thermoplastics
 - Semicrystalline (e.g., HDPE, PTFE)
 - Liners
 - Valve seats
 - Seals
 - Amorphous (e.g., PVC, CPVC)
 - Low-pressure applications
- Crosslinked polymers
 - Elastomers
 - O-rings
 - Seals
 - Hoses
 - Epoxies
 - Containment

Semicrystalline polymer spherulite
(Wikipedia, *Crystallization of polymers*)

Amorphous coil
<http://www.pslc.ws/macrog/ps5.htm>

(Wikipedia, *Elastomer*)

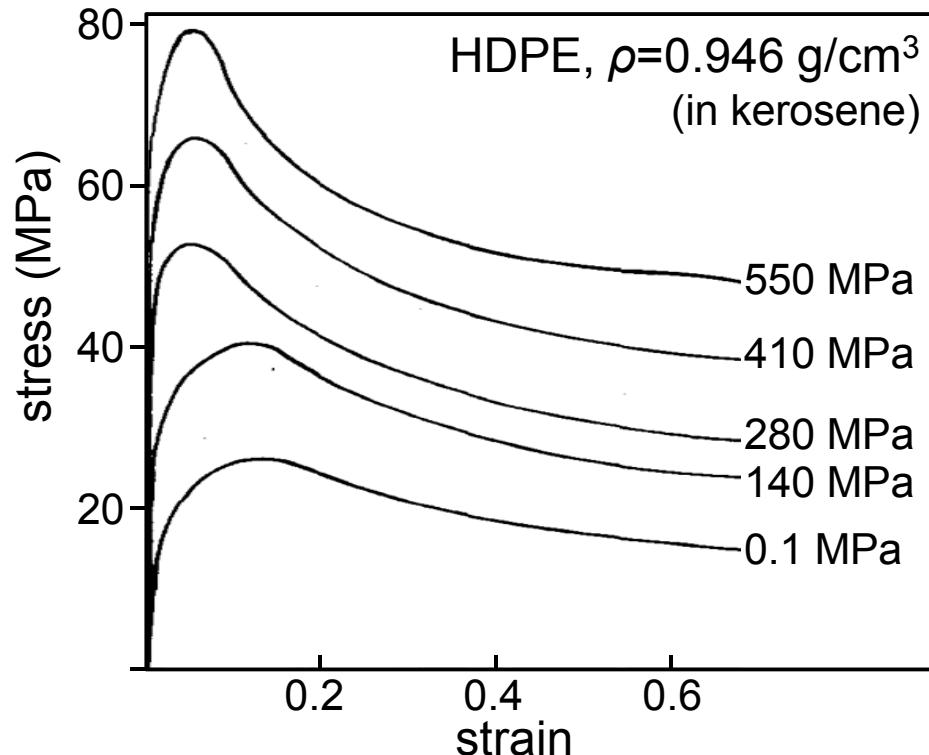
Organization of technical data section

- Introductory matter
- For each property of interest:
 - Description and definitions
 - Applicable ASTM specifications
 - Review of existing literature
 - Data (separately for each polymer category)

Table 3.1 Smooth tensile properties of semicrystalline polymers under hydrostatic pressure

Material	Description	Strain rate (min ⁻¹)	Pressure medium	Pressure (MPa)	Tensile strength ^a (MPa)	Elongation at max stress (%)	Modulus of elasticity (MPa)	Ref.
HDPE	$\rho=0.946$	0.20	kerosene	0.1	26.1	14	1200	
				69			1800	
				140	40.1	12	2400	
				210	48.1		3000	
				280	51.7	5.4	3200	[8]
HDPE	$\rho=0.950$	0.04	castor oil + 20% methanol	0.1	25	15	1100	
				140	34	14	2000	
				280	55	9.2	2700	[7]
HDPE	$\rho=0.96$	0.30	castor oil	0.1	32			
		0.14		770	92			[2]
PA 6,6	cold drawn	0.14	silicone fluid MS200	0.1	51			
				200	72			[2]
PA11	$\alpha=22\%$ (Arkema)	0.52	air, 26°C N ₂ , 26°C H ₂ , 26.5°C	0.1	29.8		730	
				3	31.1		780	
				3	27.8		700	[9]
PTFE		0.20	kerosene	0.1	17 ^b	130		
				210	47 ^b	60		
				410	62 ^b	27		[10]
PTFE	Halon G-80 $\rho=2.17$ $\alpha\sim57\%$	0.26	water	0.1	13.6	80		
				280	61.7 ^b	110		
				550	79.7 ^b	65		
				830	96.5 ^b	63		[3]

^aStrength at yield unless otherwise indicated.

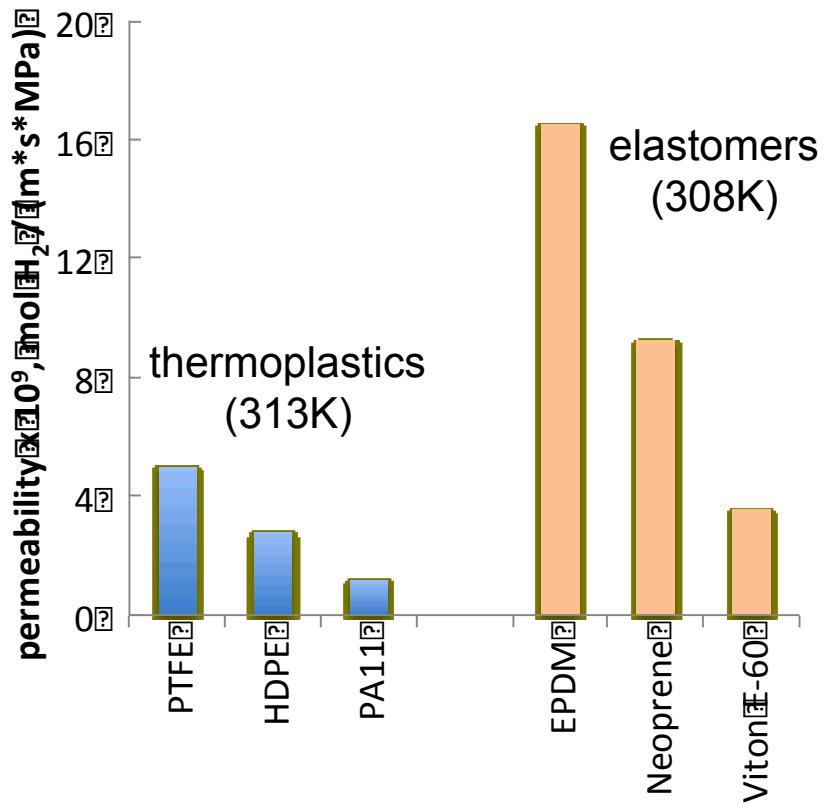

Example data and trends

- Glass transition temperature
 - Affects amorphous fraction
 - Generally, increases with pressure
 - However, certain pressure media may reduce T_g (we don't know about H_2)

Elastomer	T_g , °C (1 atm, 1 Hz)	Shift, °C per 100 MPa	Ref.
Natural rubber	-50	24	[1]
	-50	29	[2]
	-50	16	[3]
Silicone rubber	-50	16	[3]
Fluorosilicone rubber	-50	16	[3]

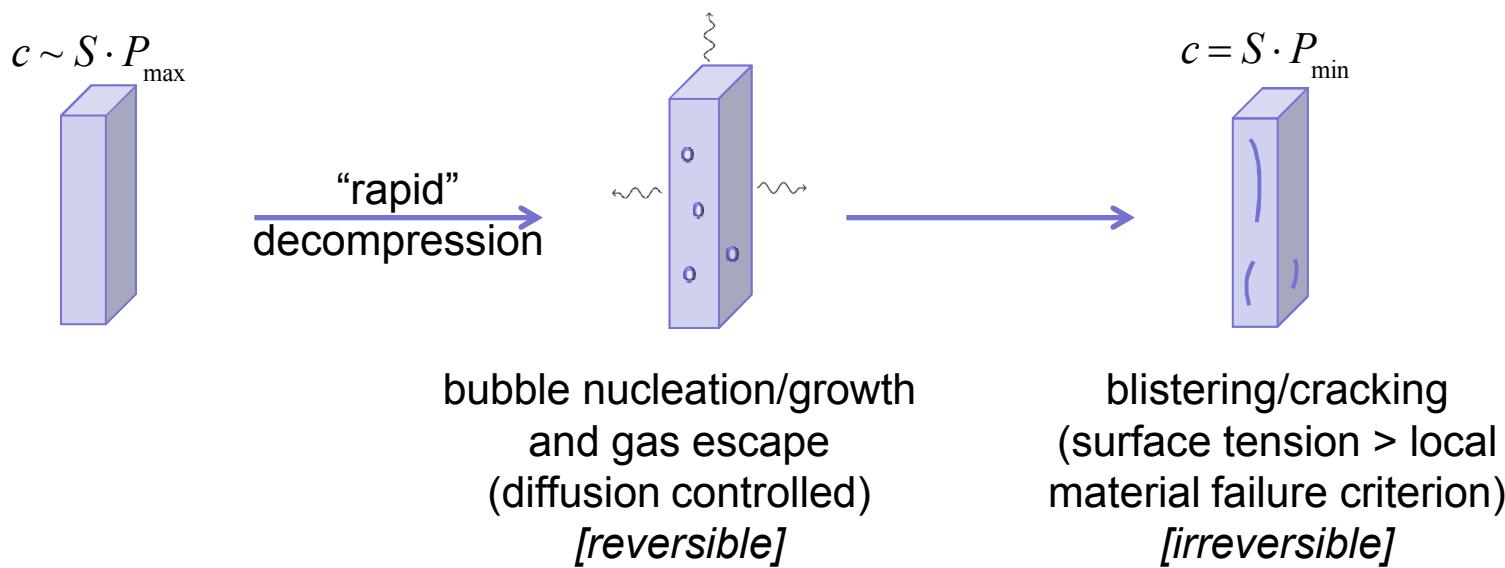
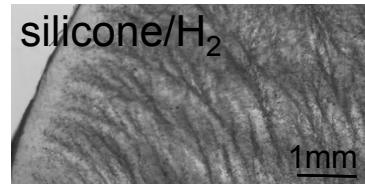
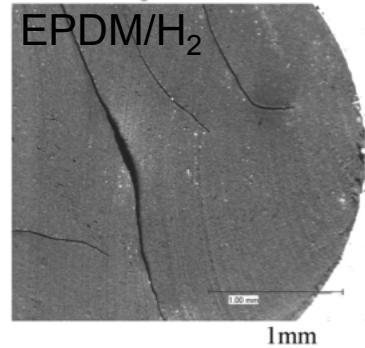
Tensile behavior under high hydrostatic pressure

- Little to no data available in gaseous hydrogen



Mears et al., *J. Appl. Phys.* 40, 4229 (1969)

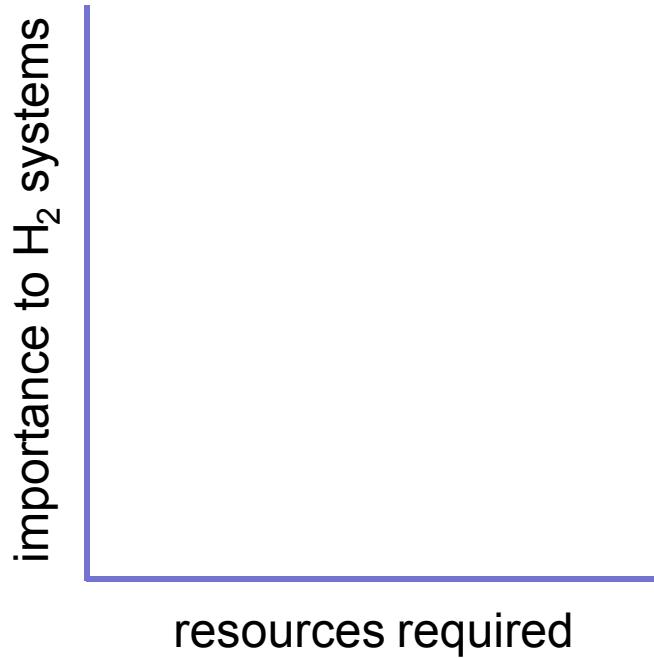
- Trends
 - Tensile strength at yield increases with pressure




Hydrogen permeability

- Arrhenius temperature dependence

Rapid gas decompression

- A small dataset exists, primarily for elastomers
 - Mostly CO₂, N₂, Ar
 - Two groups have published work with H₂
 - Test methods are rarely directly comparable
- Strong dependence on temperature, decompression rate, gas solubility and diffusivity, material strength



Gaps

- Fundamental
 - Polymer-H₂ interactions largely unexplored at P > 10 MPa
 - Plasticization? Degradation?
 - Neither of the above expected to be significant, but this has not been shown
 - Pressure effect on H₂ solubility, permeability
- Incomplete characterization of materials of interest
 - Durability
 - Long-term physical and chemical compatibility of trace contaminants
 - Fuel additives, agents in polymer
 - Permeation coefficient units
- Large amounts of unpublished data exist
- Test methods
 - Decompression testing inconsistent

Gap analysis

- Organization of gaps

