

Hazards and Potential Consequences

Bangkok, Thailand

1 March 2011

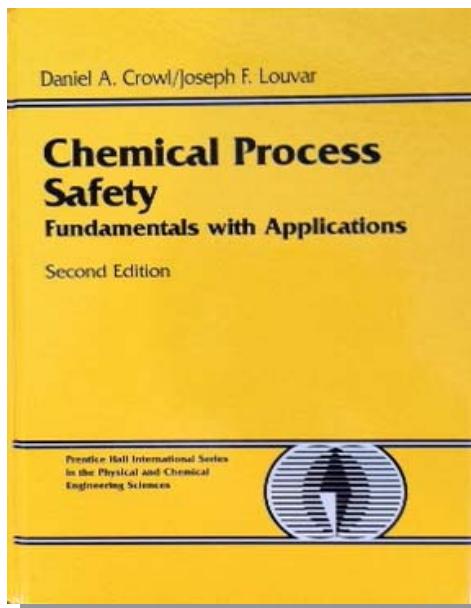
SAND No.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Key acronyms

BLEVE = *boiling-liquid-expanding-vapor explosion*

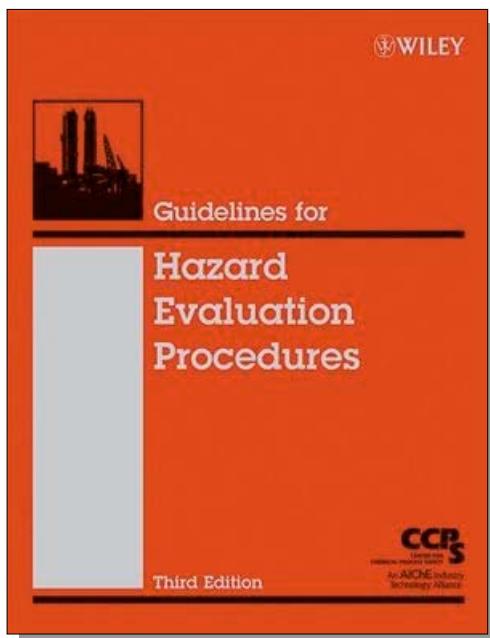
VCE = *vapor cloud explosion*


LFL = *lower flammable limit*

LOC = *limiting oxygen concentration*

Hazards/consequences resources

D.A. Crowl and J.F. Louvar 2001. *Chemical Process Safety: Fundamentals with Applications*, 2nd Ed., Upper Saddle River, NJ: Prentice Hall.

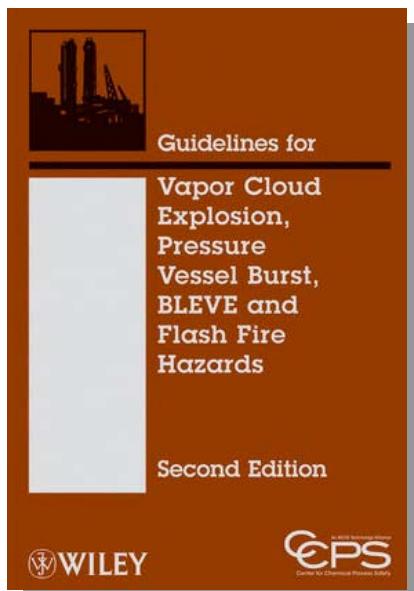

Chapter

- 2 • Toxicology**
- 4 • Source Models**
- 5 • Toxic Release and Dispersion Models**
- 6 • Fires and Explosions**
- 10 • Hazards Identification**

Hazards/consequences resources

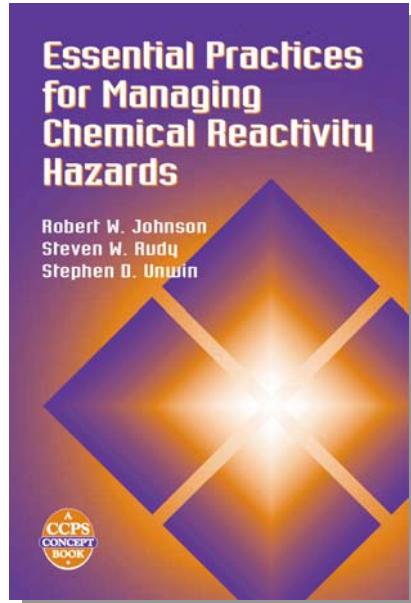
CCPS 2008a. Center for Chemical Process Safety, *Guidelines for Hazard Evaluation Procedures, Third Edition*, NY: American Institute of Chemical Engineers.

Chapter 3 • Hazard Identification Methods


- 3.1 Analyzing Material Properties and Process Conditions
- 3.2 Using Experience
- 3.3 Developing Interaction Matrixes
- 3.4 Hazard Identification Results
- 3.5 Using Hazard Evaluation Techniques to Identify Hazards
- 3.6 Initial Assessment of Worst-Case Consequences
- 3.7 Hazard Reduction Approaches and Inherent Safety Reviews

Hazards/consequences resources

**CCPS 2010. Center for Chemical Process Safety,
*Guidelines for Vapor Cloud Explosion, Pressure
Vessel Burst, BLEVE and Flash Fire Hazards, 2nd
Edition*, NY: American Inst. of Chem. Engineers.**



Hazards/consequences resources

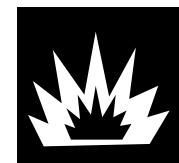
Johnson et al. 2003. *Essential Practices for Managing Chemical Reactivity Hazards*,
NY: American Institute of Chemical Engineers,
accessible free after registration on www.knovel.com.

Identification of Hazards and Potential Consequences

- “Process hazard” defined
- Types of hazards and potential consequences
- Approaches and methods for systematically identifying process hazards
- Chemical hazard data

Identification of Hazards and Potential Consequences

- “Process hazard” defined



“Process Hazard” Definition

*Presence of a
stored or connected*

*material or energy with
inherent characteristics*

*having the potential for
causing loss or harm.*

Identification of Hazards and Potential Consequences

- “Process hazard” defined
- **Types of hazards and potential consequences**

Types of process hazards and potential consequences

- **Toxicity and corrosivity hazards**
- **Asphyxiation hazards**
- **Combustion hazards**
- **Detonation hazards**
- **Chemical reactivity hazards**
- **Rapid phase transition hazards (BLEVEs)**
- **Bursting vessel explosion hazards**
- **Other physical hazards**

Note that these are not mutually exclusive categories

Types of process hazards and potential consequences

- **Toxicity and corrosivity hazards**
 - Simple asphyxiation hazards
 - Combustion hazards
 - Detonation hazards
 - Chemical reactivity hazards
 - Rapid phase transition hazards (BLEVEs)
 - Bursting vessel explosion hazards
 - Other physical hazards

Toxicity and corrosivity hazards

Nature of hazard

Potential exposure of people to materials having toxic and/or corrosive properties

What is required

Presence or generation of toxic/corrosive material **+** mechanism for physical contact

Typical examples

Chlorine used for water treatment; hydrogen sulfide as hydrocarbon impurity; sulfuric acid used for pH control

Consequences

Contact with toxic/corrosive material can cause various health effects, depending on material characteristics, concentration, route of exposure and duration of contact (see Day 1 information)

Toxicity and corrosivity hazards

Video example

www.youtube.com; search term
Seward ammonia spill

Area of effect

Liquid releases usually very localized; toxic vapor releases can extend many km

How calculated

- Toxic release dispersion models can be used to calculate release rates, downwind and cross-wind distances with various meteorological conditions
- Some models can also calculate indoors concentration as a function of time

Free program

<http://www.epa.gov/emergencies/content/cameo/aloha.htm>

Types of process hazards and potential consequences

- Toxicity and corrosivity hazards
- **Asphyxiation hazards**
- Combustion hazards
- Detonation hazards
- Chemical reactivity hazards
- Rapid phase transition hazards (BLEVEs)
- Bursting vessel explosion hazards
- Other physical hazards

Asphyxiation hazards

- An **asphyxiant** is a gas that can cause unconsciousness or death by suffocation (**asphyxiation**).
 - **Chemical asphyxiants** chemically interfere with the body's ability to take up and transport oxygen
 - **Physical asphyxiants** displace oxygen in the environment
- **Simple asphyxiants** have no other health effects
- Most simple asphyxiants are colorless and odorless.

Physical asphyxiation hazards

- Common industry asphyxiant: Nitrogen N_2
- Other simple asphyxiants:
 - Hydrogen H_2
 - Argon, helium, neon Ar
 - Hydrocarbon gases (e.g., methane, ethane, ethylene, acetylene, propane, propylene, butane, butylene) CH_4
 - Carbon dioxide CO_2

Physical asphyxiation hazards

What is required

Reduced-oxygen atmosphere + situation allowing breathing of the atmosphere

Typical examples

Entry into vessel inerted with nitrogen; oxygen depletion by rusting over time; oxygen depletion by combustion; natural gas leak into enclosed room or area

Video

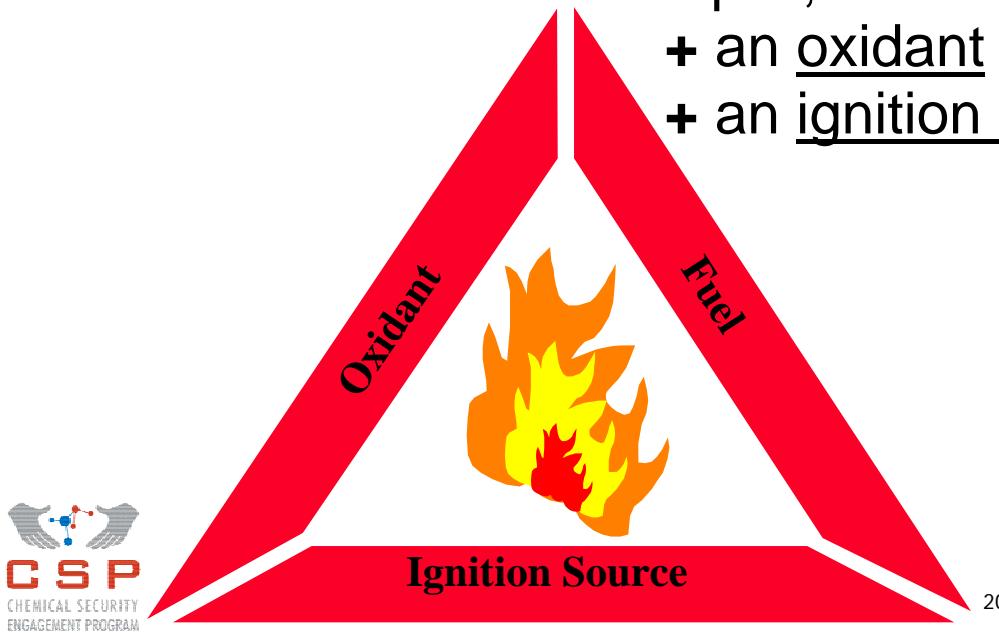
[http://www.csb.gov/videoroom/detail.aspx
?vid=11&F=0&CID=1&pg=1&F_All=y](http://www.csb.gov/videoroom/detail.aspx?vid=11&F=0&CID=1&pg=1&F_All=y)

Boundaries

- US OSHA: oxygen deficiency exists if concentration is less than 19.5%
- ACGIH®: deficiency exists below 18% oxygen at 1 atm (equivalent to a partial pressure pO_2 of 135 torr)

Types of process hazards and potential consequences

- Toxicity and corrosivity hazards
- Asphyxiation hazards
- **Combustion hazards**
- Detonation hazards
- Chemical reactivity hazards
- Rapid phase transition hazards (BLEVEs)
- Bursting vessel explosion hazards
- Other physical hazards


Combustion hazards

Nature of hazard

Potential for uncontrolled release of the heat of combustion upon rapid oxidation of a combustible material

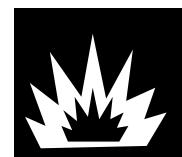
What is required

A fuel (pyrophoric or flammable gas; pyrophoric, flammable or combustible liquid; or finely divided combustible solid)
+ an oxidant (usually atmospheric O₂)
+ an ignition source (unless pyrophoric)

20

Combustion hazards

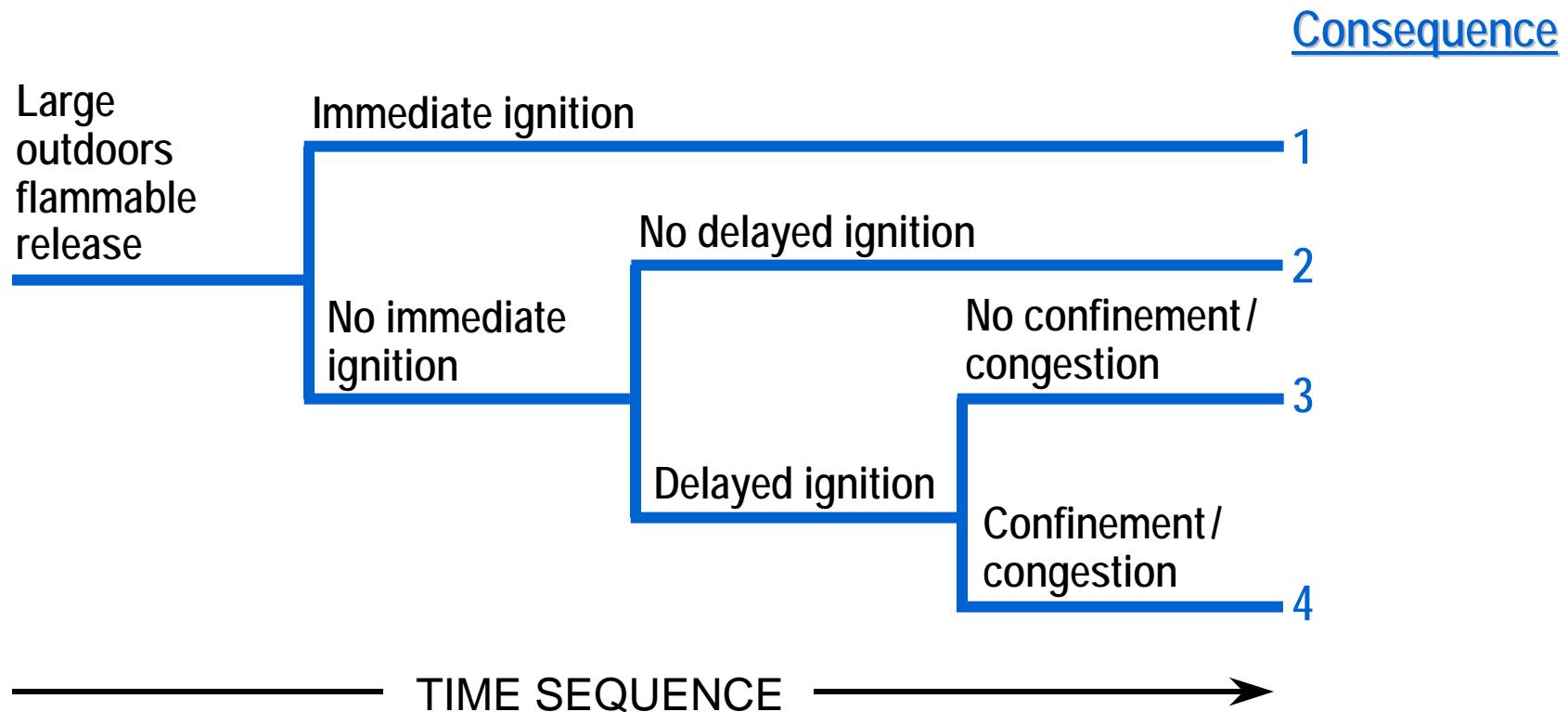
Nature of hazard


Potential for uncontrolled release of the heat of combustion upon rapid oxidation of a combustible material

What is required

A fuel (pyrophoric or flammable gas; pyrophoric, flammable or combustible liquid; or finely divided combustible solid)
+ an oxidant (usually atmospheric O₂)
+ an ignition source (unless pyrophoric)

Possible consequences


- **Flash fire, pool fire and/or jet fire**
- **Confined vapor explosion**
- **Vapor cloud explosion**
- **Dust or mist explosion**
- **Toxic combustion products**

EXERCISE

Describe each of the four possible outcomes.

Combustion hazards - Some definitions

Combustion A propagating rapid oxidation reaction.

Oxidation In this context, a reaction in which oxygen combines chemically with another substance.

Oxidizer Any material that readily yields oxygen or other oxidizing gas, or that readily reacts to promote or initiate combustion of combustible materials.

Explosion A rapid or sudden release of energy that causes a pressure discontinuity or blast wave.

Some definitions (continued)

Spontaneously combustible

Capable of igniting and burning in air without the presence of an ignition source.

Pyrophoric

Capable of igniting spontaneously in air at a temperature of 130°F (54.4°C) or below.

Hypergolic

Hypergolic behavior is characterized by immediate, spontaneous ignition of an oxidation reaction upon mixing of two or more substances.

Reference: Johnson et al. 2003

Combustion hazards

Area of effect

Small fires usually have very localized effects; a large fire or a combustion-related explosions can destroy an entire facility and affect nearby surroundings

How calculated

Available combustion energy:

Mass of combustible \times heat of combustion *or*
Mass rate of combustion \times heat of combustion

E.g., Ethanol pool fire in a 50 m^2 dike:

$$[\text{Pool area} \times \text{burning rate} \times \text{liquid density}] \times \text{heat of combustion}$$
$$= (50\text{ m}^2) (0.0039\text{ m/min}) (789\text{ kg/m}^3) (26900\text{ kJ/kg}) = \underline{4 \times 10^6\text{ kJ/min}}$$

Note: Only $\sim 20\%$ of this will be released as thermal radiation.

Combustion hazards

Free program www.epa.gov/emergencies/content/cameo/aloha.htm
(can be used to calculate release rates, extent of a flammable vapor cloud, and vapor cloud explosion effect distances)

Online reference Gexcon Gas Explosion Handbook, www.gexcon.com/handbook/GEXHBcontents.htm

Other references **CCPS 2010; Crowl and Louvar 2001**
(See also the Chemical Data Sources at the end of this presentation)

Flammability limits

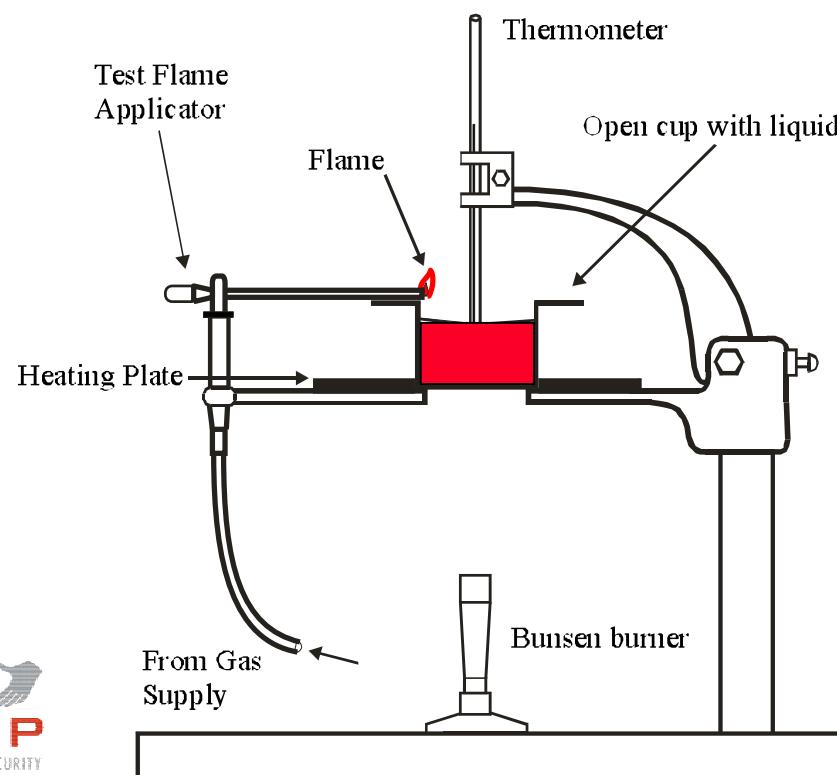
LFL Lower flammability limit

Below LFL, mixture will not burn, it is too lean.

UFL Upper flammability limit

Above UFL, mixture will not burn, it is too rich.

- Defined only for gas mixtures in air
- Both UFL and LFL defined as volume % fuel in air



Flash point

Flash Point

Temperature above which a liquid produces enough vapor to form an ignitable mixture with air

(Defined only for liquids at atmospheric pressure)

Example values

	<u>LFL</u>	<u>UFL</u>
Methane	5%	15%
Propane	2.1%	9.5%
Butane	1.6%	8.4%
Hydrogen	4.0%	75%

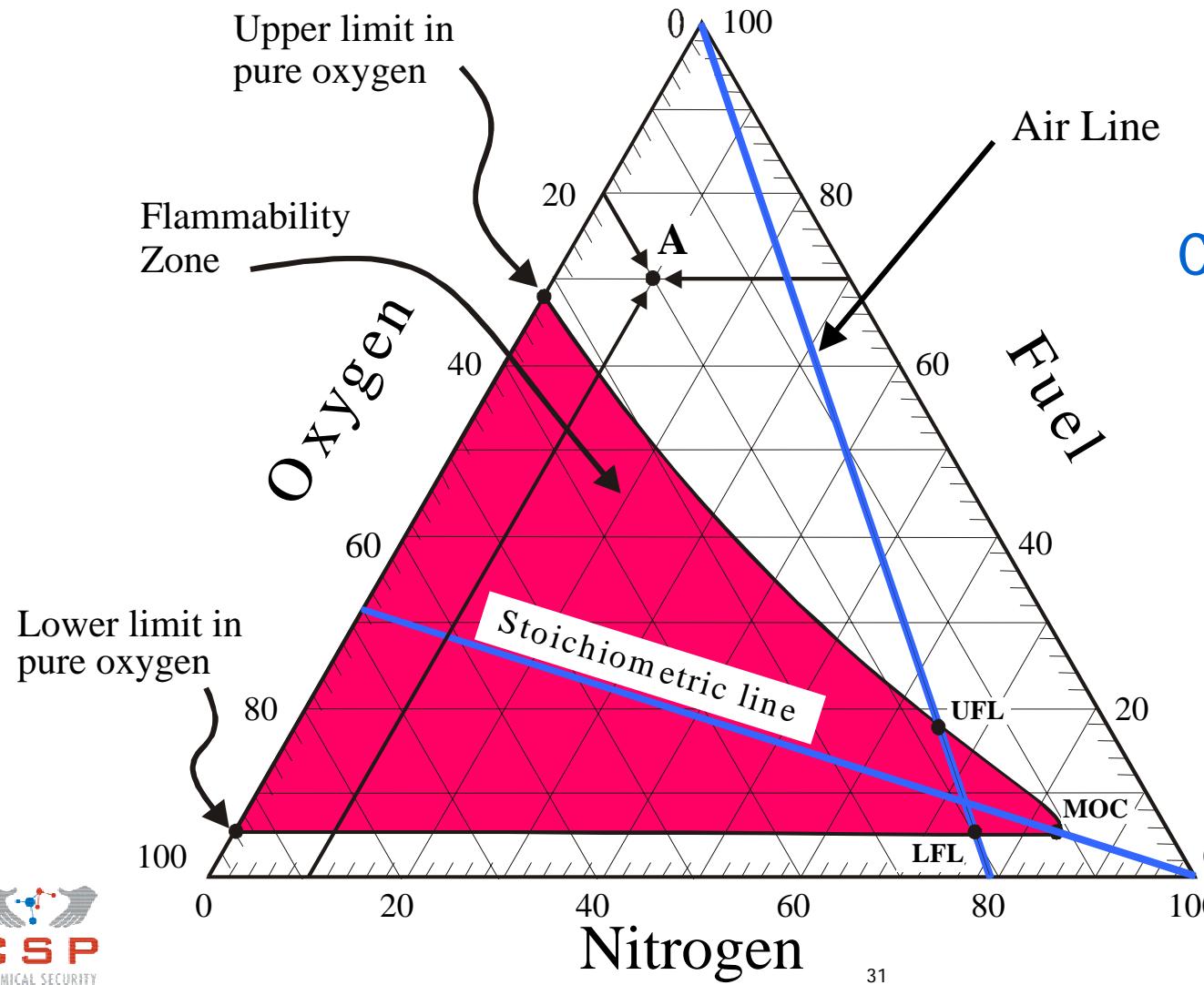
Flash point

Methanol	12.2 °C
Benzene	-11.1 °C
Gasoline	-40 °C
Styrene	30.5 °C

Limiting oxygen concentration

Limiting oxygen concentration (LOC):

Oxygen concentration below which combustion is not possible, with any fuel mixture, expressed as volume % oxygen.


Also called: Minimum Oxygen Concentration (MOC)
Max. Safe Oxygen Concentration (MSOC)

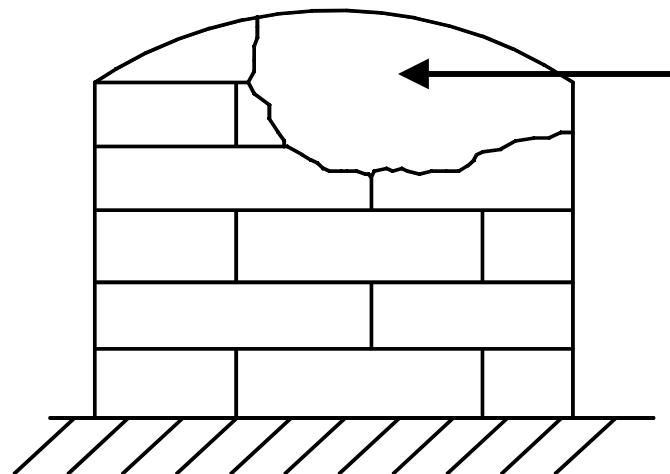
Examples:

<u>LOC (volume % oxygen)</u>	
Methane	12 %
Ethane	11 %
Hydrogen	5 %

Flammability diagram

Chapter 6 of Crowl
and Louvar 2002
shows how to
prepare and use
flammability
diagrams

Design Criteria



- 1 Avoid flammable mixtures**
- 2 Eliminate ignition sources**

Inerting and purging

Purpose: To reduce the oxygen or fuel concentration to below a target value using an inert gas (e.g., nitrogen, carbon dioxide)

E.g., reduce oxygen concentration to < LOC

Inerting and purging options


- **Vacuum Purge** - evacuate and replace with inert
- **Pressure Purge** - pressurize with inert, then relieve pressure
- **Sweep Purge** - continuous flow of inert
- **Siphon Purge** - fill with liquid, then drain and replace liquid with inert
- **Combined** - pressure and vacuum purge; others

See Chapter 7 of Crowl and Louvar 2002 for details

Flammability diagram

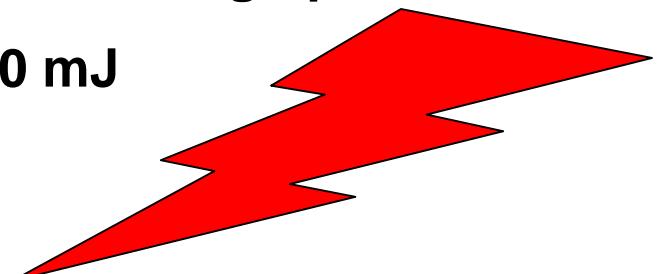
OBJECTIVE:
*Stay out of
Flammability Zone!*

Ignition sources

- Obvious (e.g., flames, welding, hot surfaces)
- Spontaneous ignition at moderate temp's
- Electrical sources
 - Powered equipment
 - Static electricity
 - Stray currents
 - Radio-frequency pickup
 - Lightning
- Chemical Sources
 - Catalytic materials
 - Pyrophoric materials
 - Thermite reactions
 - Unstable chemical species formed in system
- Physical sources
 - Adiabatic compression
 - Heat of adsorption
 - Friction
 - Impact

Minimum ignition energy

Minimum ignition energy (MIE)


The electrical energy discharged from a capacitor that is just sufficient to ignite the most ignitable mixture of a given fuel-mixture under specific test conditions.

Typical values: **(wide variation expected)**

Vapors **0.25 mJ**

Dusts **about 10 mJ**

- **Dependent on test device, so not a reliable design parameter**
- **Static spark that you can feel: about 20 mJ**

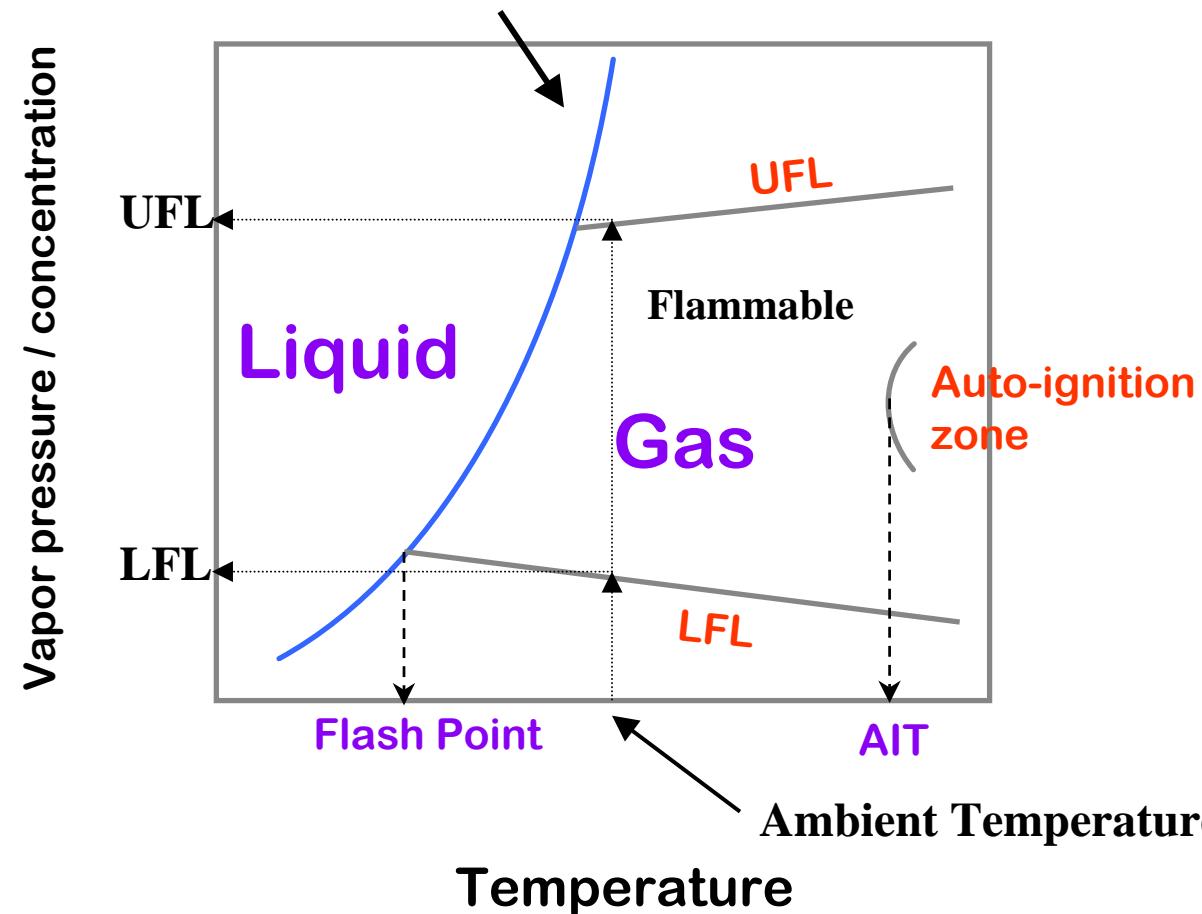
Autoignition temperature

Autoignition Temperature (AIT): Temperature above which adequate energy is available from the environment to start a self-sustaining combustion reaction.

Example values:

AIT

Methane	632 °C
Ethane	472
1-Pentene	273
Toluene	810
Acetaldehyde	185


*There is great variability
in reported AIT values!
Use lowest reported value.*

See Appendix B of Crowl and Louvar 2002 for a table of AITs

Flammability relationships

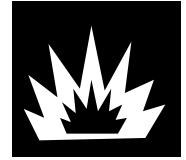
Saturation Vapor Pressure Curve

Ignition source control

- **Identify Ignition Sources**
 - Continuous ignition sources; e.g., fired equipment
 - Potential/intermittent ignition sources; e.g., traffic
- **Identify What Could Be Ignited**
 - Flammable atmospheres
 - Potentially flammable atmospheres
 - Likely leak/release locations
 - Avenues to unexpected locations; e.g., drains, sumps
- **Analyze for Adequate Control**

DISCUSSION

Which of these two design criteria can be more easily and reliably attained?


- 1 Avoid flammable mixtures**
- 2 Eliminate ignition sources**

Types of process hazards and potential consequences

- Toxicity and corrosivity hazards
- Asphyxiation hazards
- Combustion hazards
- **Detonation hazards**
- Chemical reactivity hazards
- Rapid phase transition hazards (BLEVEs)
- Bursting vessel explosion hazards
- Other physical hazards

Detonation hazards

Nature of hazard	Potential for generating a damaging blast wave by extremely fast chemical reaction
What is required	<p>One of two typical mechanisms:</p> <ul style="list-style-type: none">(1) Direct initiation of a solid or liquid explosive material or mixture, or(2) Acceleration of a propagating gas-phase reaction to detonation velocity
Typical examples	<ul style="list-style-type: none">(1) TNT; picric acid; unstable peroxides; commercial explosives(2) Vapor cloud explosion; flame acceleration in a long pipeline containing a flammable mixture

Detonation hazards

Possible consequences

- **Blast wave** (sometimes more than one)
- Shrapnel (usually small fragments)
- Toxic decomposition products

See calculation example for Bursting vessel explosion hazards

Video

www.youtube.com; search term **Pepcon explosion**

Detonation hazards - Some definitions

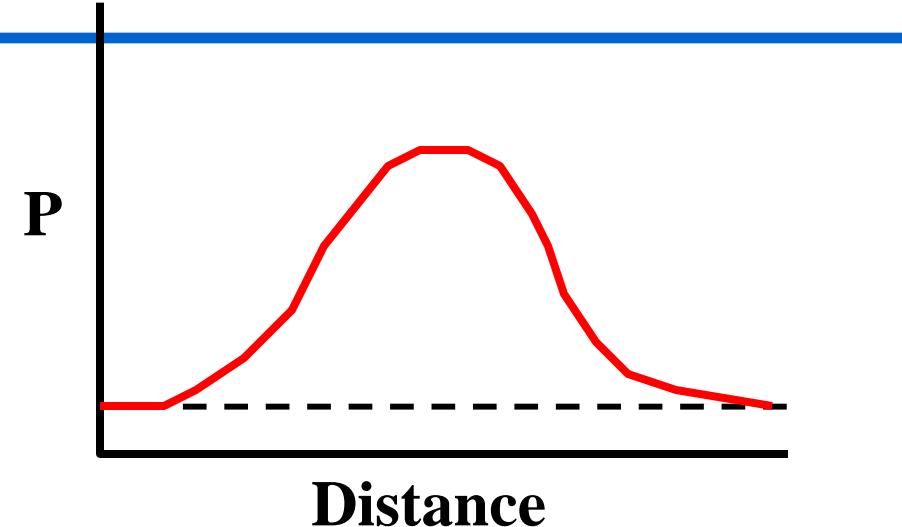
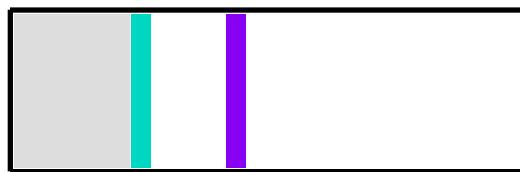
Deflagration

A chemical reaction propagating at less than the speed of sound relative to the unreacted material immediately ahead of the reaction front.

Detonation

A chemical reaction propagating at greater than the speed of sound relative to the unreacted material immediately ahead of the reaction front.

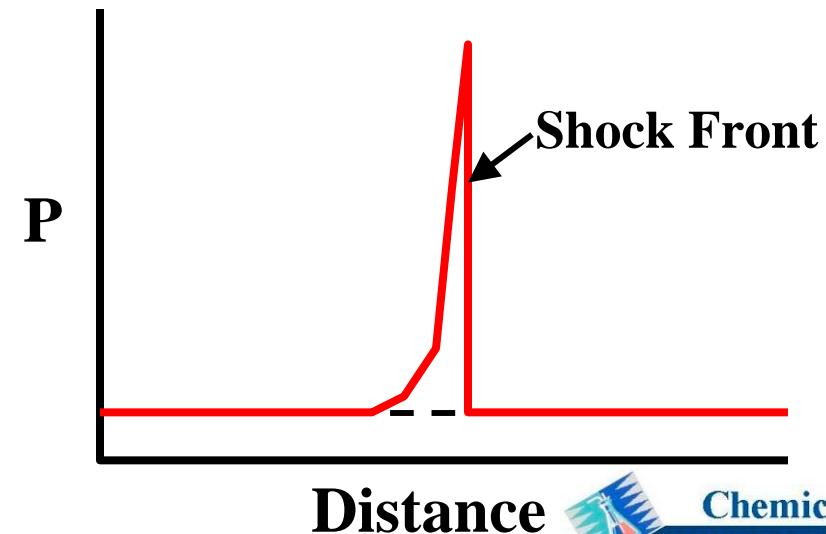
Deflagration-to-Detonation Transition (DDT)



Increase in the propagating velocity of a chemical reaction until the velocity exceeds the speed of sound relative to the unreacted material immediately ahead of the reaction front.

Deflagration vs Detonation

Deflagration:

Ignition



Detonation:

Ignition

- Reacted gases
- Reaction / Flame Front
- Pressure Wave
- Unreacted gases

Types of process hazards and potential consequences

- Toxicity and corrosivity hazards
- Asphyxiation hazards
- Combustion hazards
- Detonation hazards
- **Chemical reactivity hazards**
 - Rapid phase transition hazards (BLEVEs)
 - Bursting vessel explosion hazards
 - Other physical hazards

Chemical reactivity hazards

Nature of hazard	Potential for an uncontrolled chemical reaction that can result in loss or harm
Also known as	<i>Reactive chemical hazards</i>
What is required	Any situation where the energy and/or products released by a chemical reaction are not safely absorbed by the reaction environment
Typical examples	<ul style="list-style-type: none">• Loss of control of an <u>intended</u> reaction• Initiation of an <u>unintended</u> reaction
Consequences	Fire, explosion, toxic gas release and/or hot material release

Chemical reactivity hazards

Video

"Introduction to Reactive and Explosive Materials"

Types of chemical reactivity hazards

- Water-reactive
- Oxidizing
- Spontaneously combustible / pyrophoric
- Peroxide forming
- Polymerizing
- Decomposing
- Rearranging
- Interacting (i.e., incompatible)

Reference

Johnson et al. 2003

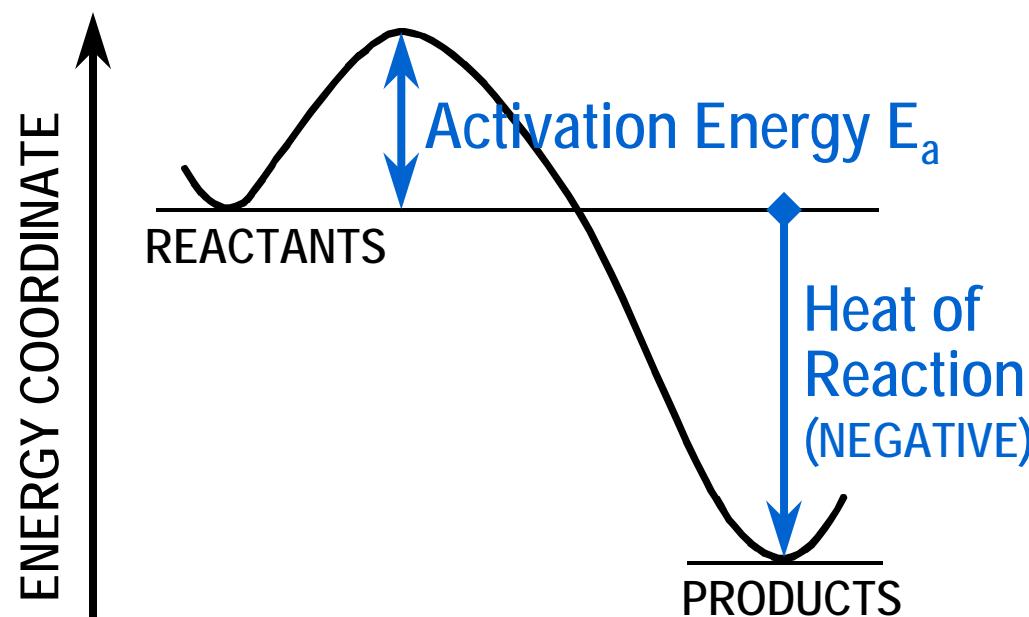
Chemical reactivity hazards

Some chemicals have more than one reactive property.

For example, organic peroxides can be any or all of:

- **Oxidizing**
- **Decomposing** (shock-sensitive/thermally unstable)
- **Flammable or combustible**
- **Interacting** (incompatible with many other chemicals)

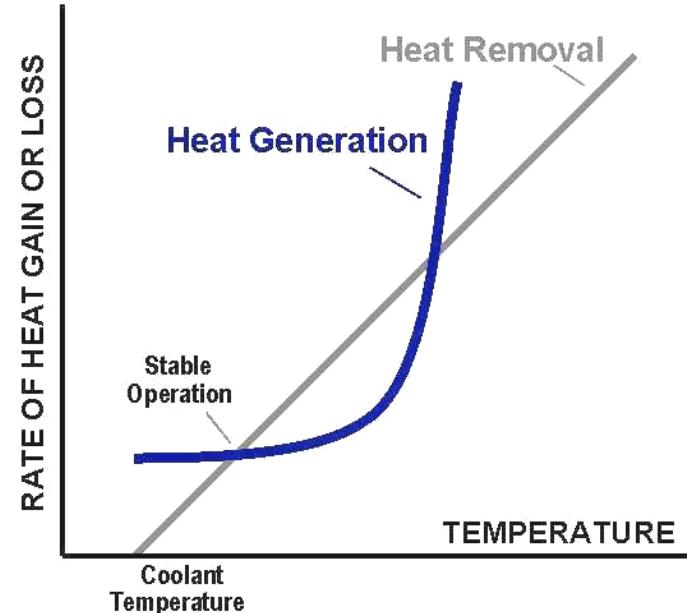
Chemical reactivity hazards


Some types of molecular structures tend to increase chemical reactivity, such as:

- Carbon-carbon double bonds not in benzene rings (ethylene, styrene, etc.)
- Carbon-carbon triple bonds (e.g., acetylene)
- Nitrogen-containing compounds (NO₂ groups, adjacent N atoms ...)
- Oxygen-oxygen bonds (peroxides, hydroperoxides, ozonides)
- Ring compounds with only 3 or 4 atoms (e.g., ethylene oxide)
- Metal- and halogen-containing complexes (metal fulminates; halites, halates; etc.)

Chemical reactivity hazards

Energy diagram for exothermic chemical reaction:



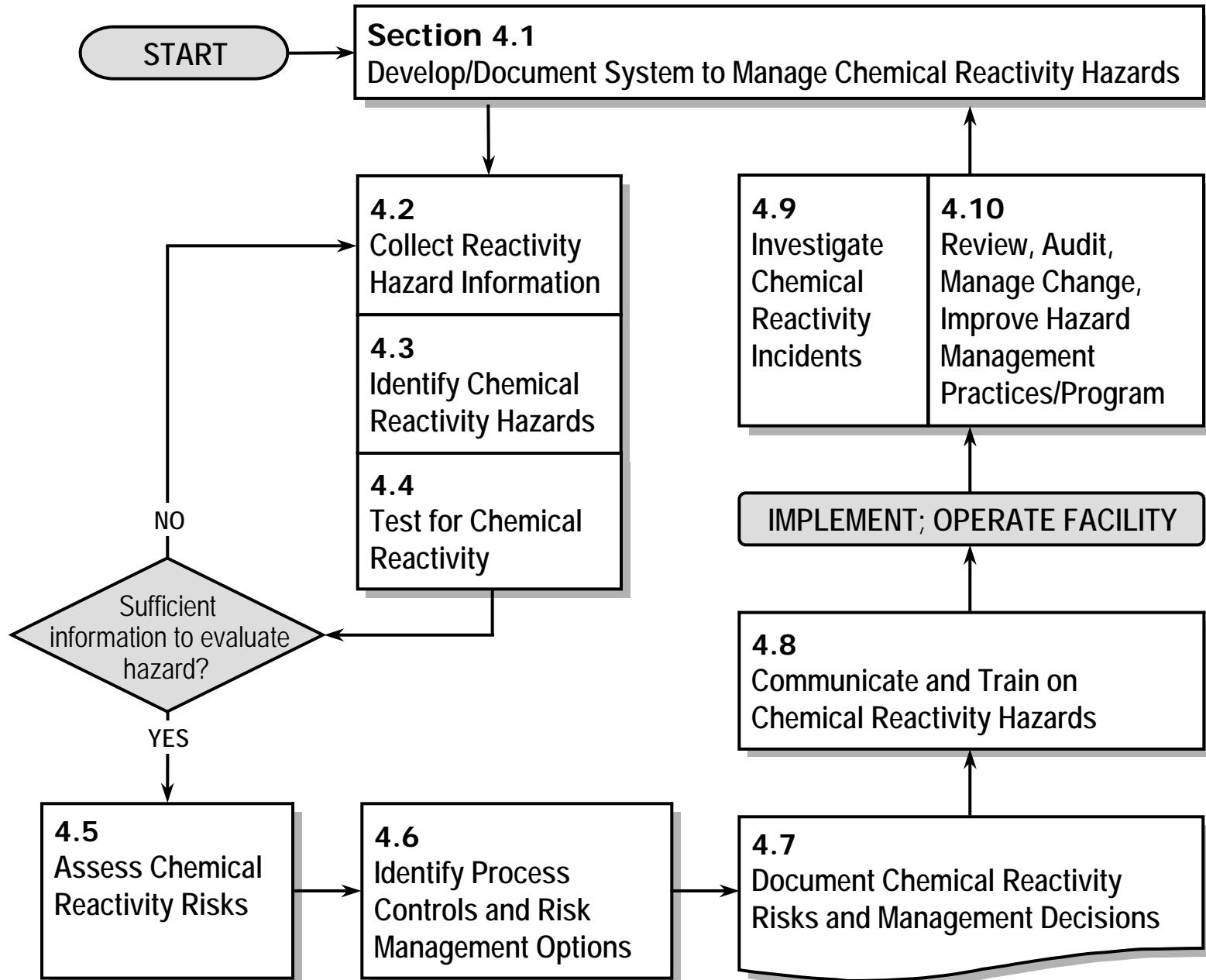
- Lower activation energy barrier → faster reaction
- Larger heat of reaction → more energy released

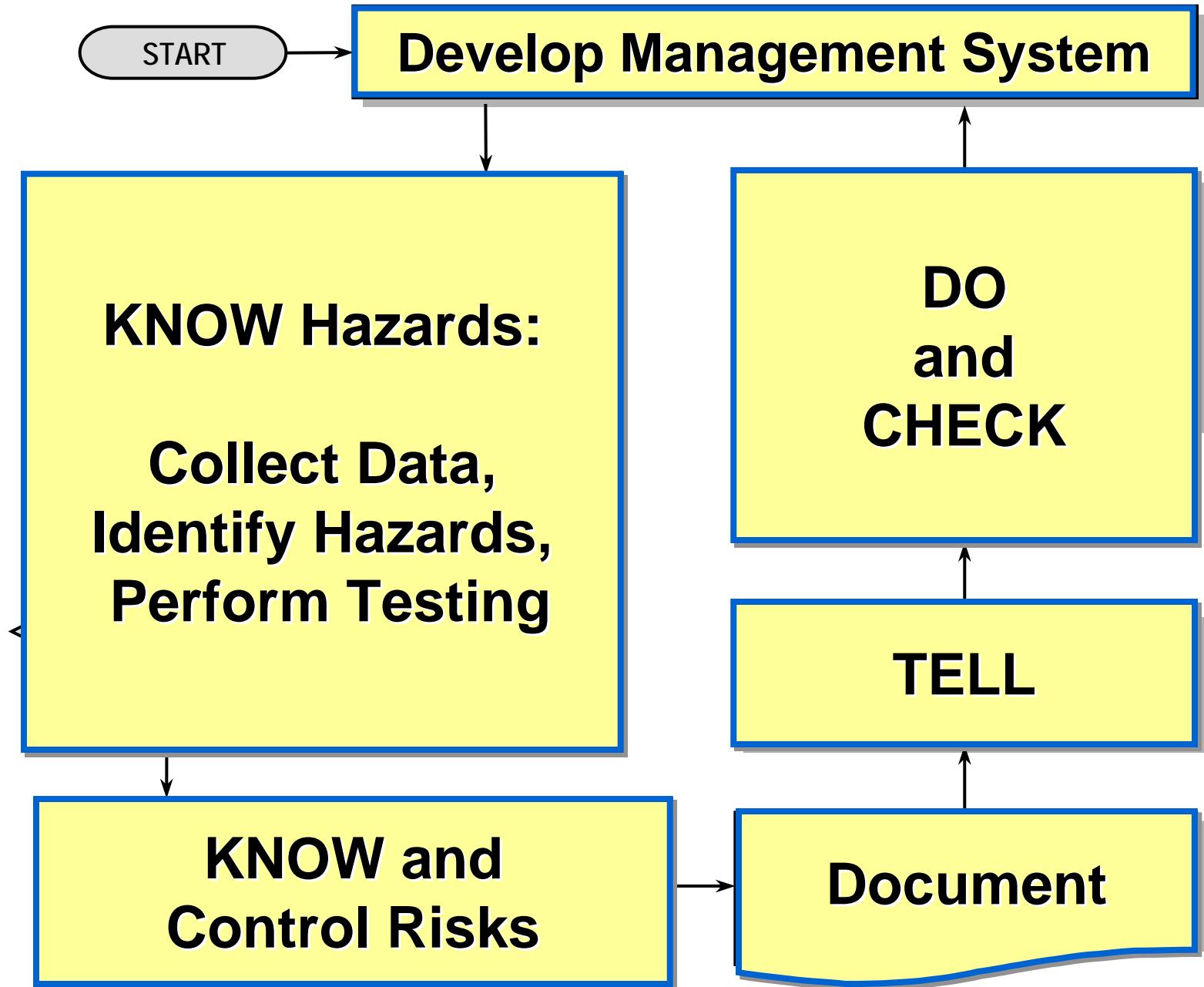
Key term to understand:

“Runaway reaction”

For an exothermic chemical reaction:

- Reaction rate is exponential $f(\text{temperature})$ **FIRST-ORDER KINETICS**
- If reaction temperature increases, rate increases and more heat is released by exothermic reaction
- If this heat is not removed, it further increases the reaction rate
- Then even more heat is released, etc.
- Temperature can rise hundreds of °C per minute!
- Pressure is generated by product gases and/or liquid boiling
- Reactor may rupture if pressure not safely vented


Chemical reactivity hazards


Managing chemical reactivity hazards

- **More effort is required to identify and characterize the reactivity hazards**
- **This may require small-scale testing**
- See flowchart on next page

Flowchart for Implementing Chemical Reactivity Hazard Management (Johnson et al. 2003)

Flowchart for Implementing Chemical Reactivity Hazard Management (Johnson et al. 2003)

Chemical reactivity hazards

Key steps to avoid unintended chemical reactions

- Train all personnel to be aware of reactivity hazards and incompatibilities and to know maximum storage temperatures and quantities
- Design storage / handling equipment with all compatible materials of construction
- Avoid heating coils, space heaters, and all other heat sources for thermally sensitive materials
- Avoid confinement when possible; otherwise, provide adequate emergency relief protection
- Avoid the possibility of pumping a liquid reactive material against a closed or plugged line
- Locate storage areas away from operating areas in secured / monitored locations

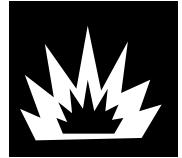
Chemical reactivity hazards

Key steps to avoid unintended chemical reactions (continued)

- ❑ Monitor material and building temperatures where feasible with high temperature alarms
- ❑ Clearly label and identify all reactive materials, and what must be avoided (e.g., heat, water)
- ❑ Positively segregate and separate incompatible materials using dedicated equipment if possible
- ❑ Use dedicated fittings and connections to avoid unloading a material into the wrong tank
- ❑ Rotate inventories for materials that can degrade or react over time
- ❑ Pay close attention to housekeeping and fire prevention around storage/handling areas

Chemical reactivity hazards

Key steps to control intended chemical reactions


- ❑ Scale up very carefully! – Heat generation increases with the system volume (by the cube of the linear dimension), whereas heat removal capability increases with the surface area of the system (by the square of the linear dimension).
- ❑ Ensure equipment can handle the maximum pressure and maximum adiabatic temperature rise of uncontrolled reactions
- ❑ Use gradual-addition processes where feasible
- ❑ Operate where the intended reaction will be fast
- ❑ Avoid using control of reaction mixture temperature as a means for limiting the reaction rate
- ❑ Use multiple temperature sensors in different locations
- ❑ Avoid feeding a material above the reactor contents' boiling point

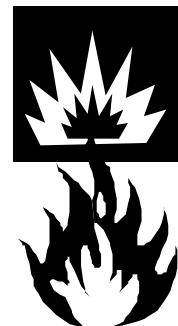
Types of process hazards and potential consequences

- Toxicity and corrosivity hazards
- Asphyxiation hazards
- Combustion hazards
- Detonation hazards
- Chemical reactivity hazards
- **Rapid phase transition hazards (BLEVEs)**
- Bursting vessel explosion hazards
- Other physical hazards

Rapid phase transition hazards

Nature of hazard	Near-instantaneous phase transition from liquid to gas, with large volume increase
Also known as	Boiling-liquid-expanding-vapor explosion (BLEVE)
What is required	<u>Any</u> liquefied gas stored under pressure above its boiling point
Typical example	Propane storage tank engulfed in fire with flame impinging on vapor space of tank, weakening the metal to point of failure
Consequences	Blast energy from both phase transition and bursting vessel; large tank fragments; huge fireball also if flammable liquid

Rapid phase transition hazards


Videos

www.youtube.com; search term **BLEVE**

Area of effect

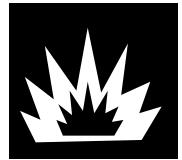
Can be 1 km or more, depending on size of storage tank(s)

How calculated

Calculate each mechanism separately and determine which has greatest effect; multiple mechanisms increases severity:

- Bursting vessel explosion
- Phase transition volume expansion
- Missiles / flying debris
- Fireball thermal radiation if flammable
- Follow-on (“domino”) effects

Reference


CCPS 2010

Types of process hazards and potential consequences

- Toxicity and corrosivity hazards
- Asphyxiation hazards
- Combustion hazards
- Detonation hazards
- Chemical reactivity hazards
- Rapid phase transition hazards (BLEVEs)
- **Bursting vessel explosion hazards**
- Other physical hazards

Bursting vessel explosion hazards

Nature of hazard	Near-instantaneous release of energy stored by a compressed vapor or gas
Also known as	Containment overpressurization; Vessel rupture explosion
What is required	Vapor or gas at elevated pressure inside some form of containment
Typical examples	Overpressurization of a reaction vessel from an unrelieved runaway reaction; ignition of flammable vapors in a tank
Consequences	Blast energy from bursting vessel; large vessel fragments thrown; expelling of remaining tank contents; follow-on effects

Bursting vessel explosion hazards

Videos

www.csb.gov; several examples in Video Room, including **Explosion at T2 Labs**

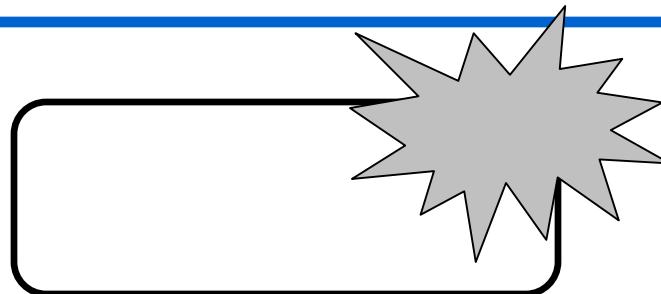

Area of effect

Highly dependent on amount of stored energy at time of rupture

How calculated

Calculate each mechanism separately and determine which has greatest effect; multiple mechanisms increases severity:

- Bursting vessel explosion (gas/vapor volume expansion)
- Missiles / flying debris
- Release of vessel contents
- Follow-on (“domino”) effects

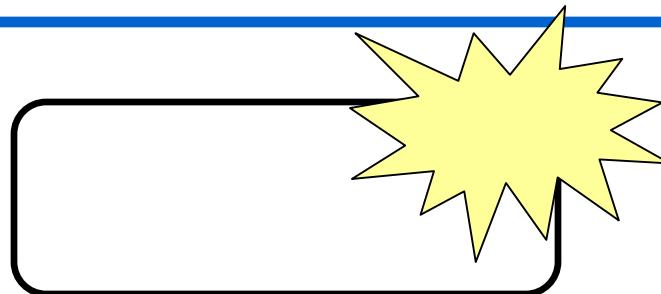


References

CCPS 2010; Crowl and Louvar 2002

Bursting vessel explosion hazards

One equation used for calculating blast energy:


$$W_e = R_g T \left[\ln\left(\frac{P}{P_E}\right) - \left(1 - \frac{P_E}{P}\right) \right]$$

**Maximum
Mechanical
Energy**

where W_e is the energy of explosion, P is absolute gas pressure in vessel, P_E is abs. ambient pressure, T is absolute temperature.

Bursting vessel explosion hazards

Another equation used for calculating blast energy:

$$W_e = \frac{(P - P_E) V}{\gamma - 1}$$

Brode's Equation

where W_e is the energy of explosion, P is absolute gas pressure in vessel, P_E is abs. ambient pressure, V is vapor volume, and γ is the ratio of specific heats

Bursting vessel explosion hazards

EXAMPLE

- The vapor space of a 30 m³ flammable liquid storage tank is nitrogen-inerted.
- The nitrogen regulator fails open, exposing the tank vapor space to the full 4 bar gauge nitrogen supply pressure. The tank relief system is not sized for this failure case.
- If the tank ruptures at 4 bar gauge when it is nearly empty of liquid, how much energy is released?

Bursting vessel explosion hazards

Data

P = 4 bar gauge = 400 Pa gauge = 501325 Pa abs

P_E = 0 bar gauge = 0 Pa gauge = 101325 Pa abs

V = 30 m³

γ = 1.4 for nitrogen (dimensionless)

Bursting vessel explosion hazards

Calculation

Using Brode's equation:

$$W_e = \frac{(501325 \text{ N/m}^2 - 101325 \text{ N/m}^2) \cdot 30 \text{ m}^3}{1.4 - 1}$$

$$W_e = 3 \times 10^7 \text{ N-m} = 3 \times 10^7 \text{ Joules}$$

Bursting vessel explosion hazards

Comparison

TNT (trinitrotoluene) has a heat of explosion of 4686 J/g, so a blast energy of 3×10^7 J is equivalent to

$$3 \times 10^7 / 4686 = 6400 \text{ g TNT} = 6.4 \text{ kg TNT}$$

Bursting vessel explosion hazards

Consequences

Figure 6-23 in Crowl and Louvar 2001 (page 268) gives a correlation of scaled overpressure vs scaled distance.

If a control room building is 30 m away from the storage tank, the scaled distance is

$$z_e = 30 \text{ m} / (6.4 \text{ kg TNT})^{1/3} = 16.2$$

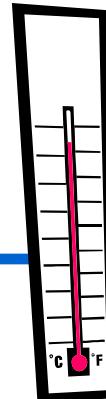
From Figure 6-23, the scaled overpressure $p_s = 0.1$, and the resulting overpressure is $(0.1)(101 \text{ kPa}) = \underline{10 \text{ kPa}}$

Bursting vessel explosion hazards

Consequences

Table 6-9 of Crowl and Louvar 2001 (page 267) indicates that 10 kPa is sufficient to e.g.

- break windows
- cause serious damage to wood-frame structures
- distort the steel frame of clad buildings


Types of process hazards and potential consequences

- Toxicity and corrosivity hazards
- Simple asphyxiation hazards
- Combustion hazards
- Detonation hazards
- Chemical reactivity hazards
- Rapid phase transition hazards (BLEVEs)
- Bursting vessel explosion hazards
- **Other physical hazards**

Other physical hazards

Physical hazard Typical examples

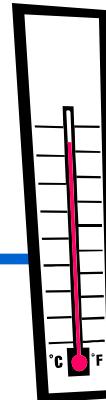
Hydraulic pressure **High-pressure hydraulic fluid:**
Jet spray from pinhole leak can cause severe cuts

Vacuum **Contained sub-atmospheric pressure:**
Pumping out of a tank or condensing steam with inadequate venting can cause tank implosion

A railcar steam cleaning team went to lunch - but before they left, they put the manway back on the car on a cool and cloudy day. The steam condensed and created a vacuum.

February 2007

Vacuum Hazards - Collapsed Tanks



The tank on the left collapsed because material was pumped out after somebody had covered the tank vent to atmosphere with a sheet of plastic. Who would ever think that a thin sheet of plastic would be stronger than a large storage tank? But, large storage tanks are designed to withstand only a small amount of *internal* pressure, not vacuum (external pressure on the tank wall). It is possible to collapse a large tank with a small amount of vacuum, and there are many reports of tanks being collapsed by something as simple as pumping material out while the tank vent is closed or rapid cooling of the tank vapor space from a thunder storm with a closed or blocked tank vent. The tank in the photograph on the right below collapsed because the tank vent was plugged with wax. The middle photograph shows a tank vent which has been blocked by a nest of bees! The February 2002 Beacon shows more examples of vessels collapsed by vacuum.

Other physical hazards

Physical hazard

Elevated temperature

Typical examples

High gas, liquid or surface temperature:
Contact with hot surface or leaking hot material can cause severe burns; prolonged exposure to high area temperature can cause heat exhaustion

Cryogenic temperature

Liquid nitrogen; flashing liquefied gas:
Skin contact can cause cryogenic burns

Other physical hazards

Physical hazard

Mass storage

Typical examples

Very large liquid storage tanks, silos:
Catastrophic failure can lead to fatalities

The Great Boston Molasses Flood of 1919

May 2007

Before ↑

After ↓

On January 15, 1919, people in north Boston, Massachusetts heard a loud rumbling noise and watched in horror as a 50 foot (15 m) high tank containing 2.3 million US gallons (8700 cubic meters) of molasses suddenly broke apart, releasing its contents into the city. A wave of molasses over 15 feet (5 m) high and 160 feet (50 m) wide surged through the streets. How slow is molasses in January? This wave traveled at an estimated speed of 35 miles per hour (60 km/hour) for more than 2 city blocks. 21 people were killed, over 150 injured, and the damage estimate was equivalent to over 100 million US dollars in today's currency.

What caused this catastrophic tank failure? Some of the causes identified by the investigation included:

- The tank was not properly inspected during construction.
- The tank was not tested after construction and before filling it with molasses.
- The tank had been observed to be leaking at the welds between the tank's steel plates before the failure, but no action had been taken.

CCPS Process Safety Beacon (continued)

Do you know?

- You might think that an incident that occurred over 80 years ago is not relevant to today's industry. But, we still have catastrophic failures of storage tanks today (see pictures below), and for similar reasons.
- A large quantity of any liquid, even a non-hazardous material such as molasses or water, can be dangerous if rapidly released in large quantities, simply because of its volume and mass.

January 1988 – Floreffe, Pennsylvania, USA, tank failure releases over 4 million US gallons (15,000 cu. m) of diesel oil into the Monongahela River.

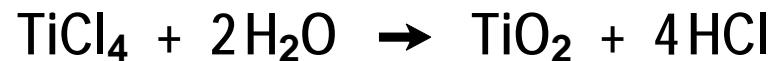
January 2000 – Cincinnati, Ohio, USA, tank failure releases 365,000 gallons (1400 cu. m) of fertilizer solution into the Ohio River.

What You Can Do

- If you observe leakage, corrosion, or other indication of potential failure in a storage tank, report it immediately to management.
- Make sure that any new tank, or one being returned to service following repair or inactivity, is properly inspected and tested before filling.
- Ensure you know the operating capacities of your tanks and double check the level before filling.
- Don't throw out your old incident reports. Read them again, and remember the lessons. We can learn a lot from things that happened a long time ago.

Remember the lessons of the past!

Other physical hazards



Physical hazard

Obscuring vapor cloud

Typical examples

Acid gases, titanium tetrachloride, cryogenic liquids:
Dense vapors, dust or condensed humidity can obscure vision and lead to e.g. vehicle collisions

Identification of Hazards and Potential Consequences

- “Process hazard” defined
- Types of hazards and potential consequences
- **Approaches and methods for systematically identifying process hazards**

Approaches and methods for systematically identifying process hazards

Some “HAZID” approaches and methods:

- Analyze material properties
- Analyze process conditions
- Use company and industry experience
 - Knowledge of the process chemistry
 - Experience at a smaller scale e.g. pilot plant
 - Examination of relevant previous incidents
 - Use relevant checklists e.g. CCPS 2008a Appx B
- Develop chemical interaction matrices

Approaches and methods for systematically identifying process hazards

Typical hazard identification results:

- List of flammable/combustible materials
- List of toxic/corrosive materials and by-products
- List of energetic materials and explosives
- List of explosive dusts
- List of hazardous reactions; chemical interaction matrix
- Fundamental hazard properties e.g. flash point, toxic endpoint
- Others e.g. simple asphyxiants, oxidizers, etc.
- Total quantities of each hazardous material
- List of chemicals and quantities that would be reportable if released to the environment
- List of physical hazards (e.g., pressure, temperature, etc.) associated with a system
- List of contaminants and process conditions that lead to a runaway reaction

Reference: CCPS 2008a, Table 3.4

One format for a “hazard inventory”

Last Updated:	PROCESS HAZARDS					
CHEMICAL PROCESS HAZARDS						Inherent Safety: Recommendation No.
Chemical, Concentration*	Quantity Stored or Rate Processed	Volatility	Health Hazards	Flammability; Fire Hazards	Chemical Reactivity; Other Hazards	
*Include materials that may have dust or mist explosion hazards, as well as toxicity, fire, explosion, and other reactivity hazards						
PHYSICAL PROCESS HAZARDS						Inherent Safety: Recommendation No.
Contained and Controlled Process Energy	Location Within or Connected To Process	Units of Measure	Range	Design	Comment	
Pressurized Gas						
Hydraulic Pressure						
Vacuum						
Thermal Energy						
Radiant Energy						
Cryogenic Liquid						
Liquefied Gas						
Kinetic Energy; Material Movement						
Potential Energy; Mass Storage or Elevated Material						

One format for a “chemical interaction matrix”

Identification of Hazards and Potential Consequences

- “Process hazard” defined
- Types of hazards and potential consequences
- Approaches and methods for systematically identifying process hazards
- **Chemical hazard data**

Chemical hazard data

Some sources of chemical hazardous property data:

- **Safety Data Sheets from chemical supplier**
- **Chemical-specific sources** (e.g., Chlorine Institute)
- **Many books and handbooks** (e.g., Sax, Brethericks)

Chemical hazard data

Some internet-accessible data sources:

- **International Chemical Safety Cards**
www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/index.htm
- **CAMEO Chemicals**
cameochemicals.noaa.gov
- **Chemical Reactivity Worksheet**
response.restoration.noaa.gov/CRW
- **NIOSH Pocket Guide to Chemical Hazards**
www.cdc.gov/niosh/npg
- **Wireless Information System for Emergency Responders**
wiser.nlm.nih.gov

DISCUSSION

- Select a familiar type of simple chemical process
- Identify what *process hazards* are present; i.e., generate a hazard inventory
- Discuss what could happen if the hazards were not contained and controlled