
System Software (SSW) Report fromSystem Software (SSW) Report from
ASC/CSSE‐FOUS Exascale Planning

W k hWorkshop,
Washington DC, June 15‐16, 2010

Outbrief Questions

Ron Minnich
Bob Ballance, Ron Brightwell, Chris Dunlap, Jim
Garlick, Maya Gokhale, Pam Hamilton, Sue Kelly, y y

Mike Lang, Scott Pakin

SAND2011-0681P

1) SSW Scope

System software encompasses:

kernel communication libraries job scheduler systems healthkernel, communication libraries, job scheduler, systems health
and systems monitoring

(t f il th lib)(out of scope: compilers, math libs)

• Dependencies
h– Architecture

• Close collaboration needed with
– Programming models

I/O– I/O
– Tools
– Data/Viz

2) SSW Current State of the Art

• Large‐scale Systems (petaflop class)
• Cray’s XT6, IBM’s BG/P, IBM/LANL Roadrunner

Current SSW– Current SSW
• Linux on 2 out of 3 – and arguably on all 3
• Lightweight Kernel on XT6 and BG/P
• Plan 9 on BG/P

Wh k– What works
• Most features are borderline at Petascale, not likely to work for exascale
• Statically allocated resources work but not reliable at petascale

– What doesn’t
• Reliability/resilience
• Dynamic resources
• ? I/O – filesystems ?
• Memory management• Memory management
• Power management

• Hardware features may be offline for power reasons
• Posix/Pthreads API needs to go
• Heterogeneity everywhere processors network• Heterogeneity everywhere, processors, network

3) SSW Exascale Needs

System software that manages millions of nodes is
fundamentally different from SSW that manages thousands of
nodesnodes
• Need tighter tie‐in with programming models
• Standard Linux will not be a good fit at exascale
• Global/Regional Power management/ g g
• Better access to hardware info
• Reliability/resilience

– Good HW notification
– Run‐time and application need to expect and react to failuresRun time and application need to expect and react to failures

• Dynamic management of resources
• I/O – filesystems ?
• Memory management

Hardware features may be offline for power reasons– Hardware features may be offline for power reasons
– 3D Memory

• A defined access method; cache, app managed, coherent?

• Posix/Pthreads API needs to go, not a good fit for exascale
• Heterogeneity everywhere processors network• Heterogeneity everywhere, processors, network

4) SSW Technology Gaps
• Research Needs (in house)

– Scalability (all)
– Resilience (all)

• SSW, runtime, apps all assume checkpoint for solving resilience
d b ld h f f l h h k• How do we build systems that survive in presence of constant failure, without using checkpoints

– Power (Sandia, LLNL)
• Runtimes/applications could be a lot smarter but the information is frequently not available
• Requires a change in thinking about power management

– Direct research in new kernel models beyond current lightweight kernels and Linux (Sandia, LANL)
– Direct research in runtime systems, task schedulers, communications layers, i.e. software that ties into y , , y ,

programming models
• Scalable Services (LLNL, LANL)
• Communication Layers (Sandia, LANL)

– File system virtual layer (LANL, LLNL)
– Strong co‐design impact on vendors and platforms

h d (d)• Research Needs (academia)
– Data Movement API in collaboration with in house researchers (Institution TBD)

• Development Needs (in house)
– APIs for power, resilience, 3D Memory (all)

• Development Needs (FastForward)Development Needs (FastForward)
– Architectural controls for power (AMD, Intel, other processor and chipset vendors)
– 3D Memory controls (US supplier)
– Management and control systems (Vendors supporting ConMan, Cray, ?)
– Failure management support (Chip, network, I/O vendors)

5) Proposed technology to
dd i h i haddress gaps with time phases

Technology FY11‐15

Simulation/codesign

FY16‐20

Move to real systems

FY21‐25

/ g y

APIs Data Movement, resilience,
power, Post‐posix file system
interface

K l E l ti (Li ?) d S h d l ith N VFS lKernels Evolutionary (Linux++?) and
revolutionary framework

‐Scheduler, with new
philosophy on what’s
valuable (it’s not the CPU
anymore)

‐Memory manager

New VFS layer, new
security model

Memory manager

Run time systems Resiliency Dynamic node and other
resource allocation,
Heterogeneity, support
new programming

“Fix all the stuff we got
wrong” a.k.a. refactor

p g g
models

Data Movement Evolutionary – MPI3 – and
revolutionary – resilient data
movement framework

Testing on real systems

Control Systems Resilient, distributed, self‐
healing, autonomous,
power‐aware

6) SSW Co‐design and Cross‐
i icutting issues

• Tools and other needs to facilitate co‐design
– Need good simulators and early access to test bed for new and

proposed architecture designs
– Virtualization to explore new hardware and scalability
– Mini applications and/or synthetic workload– Mini applications and/or synthetic workload

• Interface and interdependencies addressed
– Need well defined requirements from programming models and

architecture
– Need to provide interfaces for tools and programming models
– Need APIs for data movement, resilience, power, and control

systems
N d ll d fi d i t f i li ti d l i– Need well defined requirements for visualization and analysis

• Interface and interdependencies NOT addressed
– ?

7) SSW Partnerships

• Technical Coordination
– DOE

• ASCR funded OS research• ASCR funded OS research
– Industry examples

• FAST‐OS research on BG/P (IBM)
• Cray Linux Environment (Cray)
• New OS work from Bell Labs• New OS work from Bell Labs

– Academia examples
• Boston University research on very large scale virtualization on Blue Gene

(funded on ASCR X‐stack)
• Tesselation group at BerkeleyTesselation group at Berkeley
• “Self‐healing OS” at MIT

• Co‐Funding Coordination
– DARPA – OHPC, UHPC

OFFICE OF SCIENCE X STACK– OFFICE OF SCIENCE – X‐STACK
• Academic Fellowships

– Place professors/students at National Labs

Set of questionsSet of questions

• DAM questionsDAM questions

• Codesign (what does it mean for SSW?)

• PM

• How does SSW API change for IO?
– How do we incorporate incoherent storage

– Data base model – how do we use it – SSW
change

– If data base scales to exascale – do we use that for
operation of HPC

What services does DAM
need

– Does app see a fault or just runtime? (ASCI RED
experience)

– “lost rank” example – what fraction can we lose
b f i i (d h d d)before it is game over (and what do we do)

– How to deal with “approximate” resource specs
th t h tithat change over time
(min/desired/max/hotspare)
(memory cpus IO powermem hierarchy)(memory,cpus,IO,power,mem hierarchy)

– PGAS?

– X10? Fortress? Chapel? Any others?– X10? Fortress? Chapel? Any others?

• It won’t be just two levelsIt won t be just two levels

• It will be 4 or more
Ri h t d l (ti)– Rich cost model (time, power)

• Will apply to all resources
– Memory, file system, messages, etc.

• How much should be visible

DAM questions (cont)DAM questions (cont)

• Do you want a “virtual perfect machine?”Do you want a virtual perfect machine?
– How much would you pay? (you pay 20% for
SECDED)SECDED)

– All run as slow as worst case (HP Superdome)

• What would you consider reasonable• What would you consider reasonable

• And what would you abstract if so

• How important are BSP/collectives
– Can we do async collectives/domains/

DAMDAM

• Are your needs a fundamental property of theAre your needs a fundamental property of the
algorithm or the implementation?

• Example: move to cell based algorithms• Example: move to cell‐based algorithms
– How might SSW change to support cell‐based
algorithms? (not IBM Cell)algorithms? (not IBM Cell)

– Convergence/data integrity/recovery from node
disappearing (“punch a hole in the grid”)disappearing (punch a hole in the grid)

• How configurable software stack?
Y k l/ i i i /– Your own kernel/message primitives/

HardwareHardware

– TM?TM?

– Power knobs (besides ACPI)

– Local persistent storage (Big disk? Big FLASH?)Local persistent storage (Big disk? Big FLASH?)
How do we use it/ Security issues?

– Is it realistic to have “perfect networks” a la BG?Is it realistic to have perfect networks a la BG?
• And if so how would that be done

– Cache coherence between cores?ac e co e e ce be ee co es

– How is core failure/restart handled?

– How much future is there for x86?How much future is there for x86?

HardwareHardware

• How much hardware support for resilience?How much hardware support for resilience?
– Should we look at cloud on a chip

• What if a core e g wedges the bus what do• What if a core, e.g. wedges the bus – what do
we need to do?

• Given that we have no influence
– How do we get influence?

• If we have tens of thousands of threads per
core how would future hardware support it

HardwareHardware

• What does 3D really look like?
– Super cache? Software managed? L4?

– SRAM? DRAM? Hybrid? y

• How much can we influence the
module/board/system level?module/board/system level?

• What do interconnects look like
Flat/hierarchy/PGAS/free space optics/– Flat/hierarchy/PGAS/free space optics/

• Does IO/CPU node differentiation continue?
– Can IO nodes get more memory?

Programming modelsProgramming models

• Review DAM questionsReview DAM questions

Programming modelsProgramming models
– Does app see a fault or just runtime? (ASCI RED
experience)

– “lost rank” example – what fraction can we lose
b f i i (d h d d)before it is game over (and what do we do)

– How to deal with “approximate” resource specs
th t h tithat change over time
(min/desired/max/hotspare)
(memory cpus IO powermem hierarchy)(memory,cpus,IO,power,mem hierarchy)

– PGAS?

– X10? Fortress? Chapel? Any others?– X10? Fortress? Chapel? Any others?

– Does PM subsume SSW?

• It won’t be just two levelsIt won t be just two levels

• It will be 4 or more
Ri h t d l (ti)– Rich cost model (time, power)

• Will apply to all resources
– Memory, file system, messages, etc.

• How much should be visible

• What services does PM need to manage this
hierarchy?hierarchy?

PM questions (cont)PM questions (cont)

• Do you want to provide a “virtual perfectDo you want to provide a virtual perfect
machine?”
– What do you need from SSW in that case– What do you need from SSW in that case

• And what would you abstract if so

/• How important are BSP/collectives
– Can we do async collectives/domains/

More PMMore PM

• How configurable software stack?How configurable software stack?
– Your own kernel/message primitives/

• What functions might move from PM to SSW• What functions might move from PM to SSW

• What functions might move from SSW to PM

• Does OS bypass make sense in 100M CPU
world? If not, what?

ToolsTools

• What is needed for debugging?What is needed for debugging?

• How do we monitor 100M CPUs

h ld lik f SS ?• What would you like to see from SSW?

System Software (SSW) Report fromSystem Software (SSW) Report from
ASC/CSSE‐FOUS Exascale Planning

W k hWorkshop,
Albuquerque September 14‐16, 2010

Outbrief

Ron Minnich
Bob Ballance, Chris Dunlap, Jim Garlick, Maya
Gokhale, Pam Hamilton, Sue Kelly, Mike Langy g

PEM key points

• Hardware events must NOT be hidden, must
be available to the SSW and it MUST bebe available to the SSW, and it MUST be
possible to drive those errors to the very
highest levels in the applicationhighest levels in the application.

• Quality of service for IO would be helpful.

• SSW must provide
– High performance and efficient thread
management (M;N or N:N?)

– Richer set of communication alternatives (typed
h l)channels)

PEM key points
• Performance need not be predictable, as long
as the app can measure it and reactpp
– Information should be preserved as it goes up
software levels, i.e. information hiding is “bad”

– This is counter to a common OS (Linux) design
pattern

• Don’t see an end to use of bulk synchronous
parallel programmingp p g g

PEM key pointsPEM key points

• Interrupt‐based vs Polling‐based notificationInterrupt based vs. Polling based notification
– Polling is preferred for non‐fatal events

Interrupts still have a role– Interrupts still have a role

PEM key points
• Collective power management

– More hysterisis (i.e. don’t change it 2x/second)y (g /)

• Uses for NVRAM
– Defensive I/O– Defensive I/O

– Extension of DRAM

Inter job scratch space– Inter job scratch space

– Debug, performance, staging data for debug

Willi i 10% f• Willing to invest up to 10% of system
resources for resilience

IC key points

• Some apps expect to take on the challenge of
dealing with failuredealing with failure

• Jobs can specify min/desired/max i.e. range of
reso rce fl ct ationresource fluctuation
– Frequency‐dependent (see:PEM hysteresis note)

– Every couple hours is doable today (via
checkpoint)

SSW h ld f i if i d d– SSW should force exit if a required resource drops
below min

IC key points
• Programming models present an ideal
machine
– Apps have to implement “programming model
bypass”

• Depending on the type of failure
– Want the information at the app levelpp

– Want the underlying infrastructure to solve the
problem, this may impact performance so the app
still wants notification

V&V key points

• Python is the glue that holds the runs
togethertogether
– Sets up the runs

Initiates them as an ensemble– Initiates them as an ensemble

– Handles post processing

h “b fi ” d ld• Python on “beefier” node could steer 1000
“compute nodes”
– Hence we need more heterogeneity than we get
with BG/P and XT

– E.g. some fraction of CPU nodes with big memory

V&V key points

• Macro level exascale simulator seen as useful
Near term task for SSW could be to develop such a– Near term task for SSW could be to develop such a
simulator to run on HPC resource

• Forces further development of SSWForces further development of SSW

– Simulator can be used be used to try out design
alternatives e.g. NVRAM and how it fits ing

– Note: we need to make trilab HPC systems
available for SSW research (as ANL does today)(y)

– Counting on DST is not an answer

V&V key pointsV&V key points

• Residency between multiple app runsResidency between multiple app runs

HW/Tools key points

• SSW must be able to take cores offline
Bringing them back online would be nice– Bringing them back online would be nice

• App can “Park” cores for power savings and
BW i ith t l t llBW saving without long system call
– Dynamic – very dynamic – in a loop

• SSW needs to assume that core offline/online
transition will be quick (hardware changes)

• Fine grain power control of core subsystems

HW/Tools key points

• Re‐examine hardware privilege boundary
i e user level halt of a core– i.e. user‐level halt of a core

• 3D: another level in the memory hierarchy
– Some NVRAM, some not, may be user‐managed
fast memory subset

f• Semantics of NVRAM are not quite memory,
but we would not like them to be a disk

HW/Tools key pointsHW/Tools key points

• Tools would like as much info as possibleTools would like as much info as possible
– Both polling and interrupts

• Need to provide more info with less overhead• Need to provide more info with less overhead
– That might have been considered privileged

– Information on resources in use, PTEs, etc.

– Health/status memory segment

• Taxonomy of errors needed

HW/Tools key pointsHW/Tools key points

• (software) Broadcast/reduction overlay(software) Broadcast/reduction overlay
networks for efficient data collection and
distributiondistribution

• There are two levels of OS
O d– On node

– Internode

OtherOther

• Quick reminder that you want to add a pointQuick reminder that you want to add a point
about resource managers needing to support
more dynamic allocations I agree that themore dynamic allocations. I agree that the
RMs really need to be rearchitected.

