
Predicting Performance Margins:
Linking the microscale to the macroscale

Elizabeth A. Holm, Project PI

Joe Puskar, Project PI

Jonathan Zimmerman and Chris Weinberger, Task 1 Team Leaders

Brad Boyce, Task 2 Team Leader

Corbett Battaile, Task 3 Team Leader

February 3, 2011

SAND2011-0569P



Introduction and Overview

• A series of events led to the creation of this project:

– In spring and summer 2010, MS&T leadership worked with NW Science 
campaign leadership to create FY11 material science directed research 
areas. 

– In August 2010, the Laboratory President, Paul Hommert, requested new, 
materials science based projects to support Sandia’s Annual Assessment 
Review (AAR).

– Science and Technology Vice President, Steve Rottler, directed MS&T 
leadership to develop and support these projects.

– MS&T leaders scoped the problem area, developed a project plan, 
assembled a team, and identified funding for an October 1, 2010 start 
date.

• Overarching project goals:

– Develop and maintain the MS&T science base and identity.

– Provide science-based models and data to support engineering 
judgments in the AAR and the Nuclear Weapons campaigns.

– Provide growth opportunities for early- and mid-career staff members.



• Materials are intrinsically inhomogeneous, but the relationship between 
microstructural variability and property statistics is unknown.

• A science-based, probabilistic underpinning for existing analysis capabilities 
must include microstructural effects.

Current analysis models do not incorporate microstructural variability.
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Including microstructure 
in design and analysis

Single crystal 
behavior

crystal plasticity

XRD, EBSD,
µmachining, µtesting

Microstructural 
effects
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Advantages of the microstructural 
variability approach

• Acknowledges intrinsic materials variability at the microstructural scale

• Creates a link between structural variability and property variability

• Offers a path to include property statistics in performance models

• Provides a science-based, probabilistic underpinning for existing analysis 
capabilities

…. Paradigm shift, from the idealistic view that all parts are created equal, 
to the realistic view that structure, properties, and performance are 
probabilistic.
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Project team structure enables 
collaboration, scientific advances, and impact
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Proof-of-principle:
Plasticity in BCC metals

• BCC metals provide a platform for microstructural 
variability studies 

• Technologically important.

• Refractories: W, Mo, Ta

• High energy applications: W, Ta

• Steel

• Underrepresented in computational materials 
science studies.

• Complex response, compared to FCC

• Most models are phenomenological

• Favorable properties for experimental studies.

• Can prepare microstructures ranging from 
single crystal to nanocrystalline.

• Favorable properties for microscopy and 
EBSD analysis.

Polycrystalline Ta

Single-crystal Ta

304L stainless weldment



Atomic Scale: Physical model for dislocation 
motion in BCC metals

• Atomic scale simulations show dislocation core spreading onto adjacent 
(110) planes in BCC metals.

– Core spreading creates a significant Peierls barrier to dislocation motion.

– Because the dislocation spreads onto three planes, motion can be 
affected by stress components outside the preferred slip plane, 
i.e. non-Schmid stresses.

[111] zone depiction of a relaxed 
screw dislocation core in Mo

Groger, Vitek et al. Acta Mat. 56 (2008) 5412 

Distortion of the dislocation core 
under an applied shear stress



Single crystal behavior:
BCC crystal plasticity model

The atomic results can be fit to a yield criterion given by:

Which leads to a single-crystal constitutive law:

We use this form to derive the generalized 
stress state on a slip system:

Which gives the plastic strain rate:
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Single Crystal Results:
BCC single crystal yield surfaces

• BCC yield surfaces are considerably different from FCC yield surfaces.

• The yield surfaces of W and Mo are quite distinct.

• Tension/compression asymmetry is apparent.

100(010) orientation
highly symmetric

 5  4  3  2  1 1 2 3 4 5
�11��cr

 5

 4

 3

 2

 1

1

2

3

4

5
�22��cr

 5  4  3  2  1 1 2 3 4 5
�11��cr

 5

 4

 3

 2

 1

1

2

3

4

5
�22��cr

-0.180,0.575,0.798,(0,-0.811,0.585) orientation
asymmetric

111{011} dislocation glide

+ non glide component in Mo
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•Polycrystal plasticity models reveal how individual grains to take part in 
polycrystalline deformation

Polycrystal plasticity

Each grain responds via the 
orientation-dependent 

constitutive law



Results
Overall mechanical response

Individual grain response 
(rotation, stress, etc.)

Extending single crystal behavior to capture 
microstructural effects

Single crystal plasticity

Constitutive law
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Microstructural Results: 
Continuum response of BCC polycrystals

• In plasticity simulations of single-
and polycrystalline Mo:

– Single crystal and polycrystal 
response differ considerably.

– Single crystals show 
considerable 
tension/compression asymmetry.

– Polycrystals do not exhibit 
tension/compression asymmetry.

– There is no grain size 
dependence in this model.



Microstructural Results:
Grain scale stress and strain partitioning

Polycrystal plasticity reveals 
the complex interdependence 
of local stress and strain in 
BCC metals.

• Local strains are partitioned to 
accommodate global 
deformation.

 Grain-scale stresses adjust to 
produce the required local 
strain.

compression tension
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tension/compression asymmetry 
affects local stress distribution. 

s
tr

a
in

• Grain structure influences the 
distribution of local strains, but 
tension/compression asymmetry 
does not. 



Summary and Conclusions

• We have recently developed and commenced a new project to connect 
microscale variability to performance uncertainty in BCC metals.

– Science-based effort spanning length and time scales.

– Project team includes staff, customers, and external collaborators.

• Early results illustrate the value of the multiscale, multidisciplinary approach.

– Plasticity in BCC metals depends on atomic, single crystal, and 
microstructural variables.

– Traditional continuum approaches cannot capture deformation physics.

• The long-term goal of the project is to integrate these results into a 
probabilistic model for component deformation and failure.


