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i Introduction and Overview

» A series of events led to the creation of this project:

— In spring and summer 2010, MS&T leadership worked with NW Science
campaign leadership to create FY11 material science directed research
areas.

— In August 2010, the Laboratory President, Paul Hommert, requested new,
materials science based projects to support Sandia’s Annual Assessment
Review (AAR).

— Science and Technology Vice President, Steve Rottler, directed MS&T
leadership to develop and support these projects.

— MS&T leaders scoped the problem area, developed a project plan,
assembled a team, and identified funding for an October 1, 2010 start
date.

» Overarching project goals:
— Develop and maintain the MS&T science base and identity.

— Provide science-based models and data to support engineering
judgments in the AAR and the Nuclear Weapons campaigns.

— Provide growth opportunities for early- and mid-career staff mem@s
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Motivation: Connecting microstructural
variability to properties

« Materials are intrinsically inhomogeneous, but the relationship between
microstructural variability and property statistics is unknown.

» A science-based, probabilistic underpinning for existing analysis capabilities
must include microstructural effects.

=Current analysis models do not incorporate microstructural variability.
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Advantages of the microstructural
variability approach

Acknowledges intrinsic materials variability at the microstructural scale
Creates a link between structural variability and property variability
Offers a path to include property statistics in performance models

Provides a science-based, probabilistic underpinning for existing analysis
capabilities

.... Paradigm shift, from the idealistic view that all parts are created equal,

to the realistic view that structure, properties, and performance are
probabilistic.
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_ o
Project team structure enables
collaboration, scientific advances, and impact

Task 1: Nanoscale framework for crack initiation and growth in Ta and Ta

alloys
[J. Zimmerman (8246), C. Weinberger (1814)]

Task 2: Microscale effects of defect fields in Ta and Ta alloys
[B. Boyce (1831)]

Task 3: Connecting microstructural variability to performance margins in
structural metals
[C. Battaile (1814)]

Technical Advisory Council
[S Foiles (1814), D Medlin (8656), J Michael (1822), D Reedy(1526), C Robino
(1831), N Moody (8222)]

Customer Advisory Council
[B Paulsen (2211) (chair), T Mattsson (1641), D Balch (8224), S Whalen (2547), E
Fang (1524), S Harris (2141), B Oetken (8224), J McLaughlin (0425)]

External Collaborators
[LLNL, LANL, UT Austin, Georgia Tech, Michigan State University, Cal Tech,

Carnegie Mellon, etc.] @ Sandia
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Proof -of -principle:
Plasticity in BCC metals

« BCC metals provide a platform for microstructural |
variability studies
« Technologically important.

Single-crystal Ta

* Refractories: W, Mo, Ta
* High energy applications: W, Ta "wycrys 1 '”fa )

- Steel 3“ 4
 Underrepresented in computational materials —
science studies. % . x

« Complex response, compared to FCC
* Most models are phenomenological
» Favorable properties for experimental studies.

304L stainless weldment

« Can prepare microstructures ranging from
single crystal to nanocrystalline.

» Favorable properties for microscopy and
EBSD analysis.
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Atomic Scale: Physical model for dislocation
motion in BCC metals

« Atomic scale simulations show dislocation core spreading onto adjacent
(110) planes in BCC metals.

— Core spreading creates a significant Peierls barrier to dislocation motion.

— Because the dislocation spreads onto three planes, motion can be

affected by stress components outside the preferred slip plane,
i.e. non-Schmid stresses.

[111] zone depiction of a relaxed

_ _ _ Distortion of the dislocation core
screw dislocation core in Mo

under an applied shear stress
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Single crystal behavior:
BCC crystal plasticity model

The atomic results can be fit to a yield criterion given by:
c?,’?ﬂaom(”n(” +am®n0) 14, @(s) y m(s)),(s) +a3@<s> y m(s)),(s')J: -

. Y '

applied stress stress projection tensor, PC(;S ) yield stress
We use this form to derive the generalized (s) _ P(S) . __app
stress state on a slip system: T =t;".0

1
()| (8)|m

Which leads to a single-crystal constitutive law: }7@) =

T T

cr cr

Which gives the plastic strain rate: D= ZJ)[(S)m(S)
A

Sandia
National
Laboratories



Single Crystal Results:
BCC single crystal yield surfaces

cr
5| e (111){011} dislocation glide 5.

+ non glide component in W
+ non glide component in Mo

| -OT - O11T¢r
5 5 11%cr 5
5 L
(100)(010) orientation (-0.180,0.575,0.798),(0,-0.811,0.585) orientation
highly symmetric asymmetric

« BCC yield surfaces are considerably different from FCC yield surfaces.
» The yield surfaces of W and Mo are quite distinct.

. . : Sandia
« Tension/compression asymmetry is apparent. lNat}ionaI_
aboratories



xtending single crystal behavior to capture
microstructural effects

*Polycrystal plasticity models reveal how individual grains to take part in
polycrystalline deformation

Results

Overall mechanical response
150

Single crystal plasticity Polycrystal plasticity
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(rotation, stress, etc.)
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Each grain responds via the
orientation-dependent
constitutive law
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Microstructural Results:
Continuum response of BCC polycrystals

« In plasticity simulations of single- : o
and polycrystalline Mo: 2001 T L AN
. - g s
— Single crystal and polycrystal = L ¢ EFA :

response differ considerably. % 150F ’_1 : -
— Single crystals show g‘ : _
considerable 2 100k .
tension/compression asymmetry. & I « 464 grains, tension 1
i s L I e 464 grains, i i

— Polycrystals do not exhibit S s 70 arains, tonsion
tension/compression asymmetry. = 50f e 79 grains, compression -
] . . single crystal, <100> tension ]
— There is no grain size — single crystal, <100> compression |
dependence in this model. ) I
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Microstructural Results:
Grain scale stress and strain partitioning

« At the grain scale, Mo, 1.2% strain
tension/compression asymmetry compression tension
affects local stress distribution. S —

* Grain structure influences the
distribution of local strains, but
tension/compression asymmetry
does not.

stress

» Local strains are partitioned to
accommodate global
deformation.

» Grain-scale stresses adjust to
produce the required local
strain.

strain

Polycrystal plasticity reveals
the complex interdependence
of local stress and strain in

BCC metals. o -
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2l i Summary and Conclusions

 We have recently developed and commenced a new project to connect
microscale variability to performance uncertainty in BCC metals.

— Science-based effort spanning length and time scales.
— Project team includes staff, customers, and external collaborators.

« Early results illustrate the value of the multiscale, multidisciplinary approach.

— Plasticity in BCC metals depends on atomic, single crystal, and
microstructural variables.

— Traditional continuum approaches cannot capture deformation physics.

» The long-term goal of the project is to integrate these results into a
probabilistic model for component deformation and failure.
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