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Outline

* Experimental observations of poly- and single crystal tantalum behavior
under ramp wave loading.

* Objectives and approach.
* Dislocation-mechanics based continuum material model for polycrystal.

- Simulation of the single crystal experiments and insights gained from
the simulation.

» Extension of the polycrystal model to single crystals.

- Simulation of the single crystal experiments and insights gained from
the simulation.

 Conclusion.



Configuration Of The Ramp Wave Experiments On Veloce
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generate a structured wave with finite risetime in the very
high stress regime



Polycrystal Tantalum Under Ramp Wave Loading
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* Annealed samples:

- Elastic precursor showed a pronounced overshoot followed by a significant
velocity drop or stress relaxation

*The extent of the velocity drop increased with the sample thickness.

 precursor amplitude showed very little attenuation, even with the significant
stress relaxation behind the precursor

* Cold-Rolled:

* More dispersed elastic precursor.

* no rapid velocity drop or stress relaxation was observed behind the precursor



Single Crystal Tantalum Under Ramp Wave Loading
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Comparison of Annealed Polycrystal With Some Existing Models
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Objectives and Approach
Objectives:

 To gain insights into the mechanical behavior of tantalum,
particularly the elastic precursor behavior, and their implication
on the deformation mechanisms for tantalum.

* To gain an understanding of the dynamic inelasticity of poly-

and single crystal tantalum, including the material strength and
its evolution.

Approach:

 Develop a constitutive model that captures the material features
observed experimentally.

* Use numerical simulation to gain additional insight into the
inelastic behavior of tantalum.



Thermomechanical Constitutive Relation
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Strength Model
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Association of The Rate Egn. with Dislocation Motion
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* Little decay of precursor implies little
plastic deformation during precursor
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Dislocation model (Orowan Eqgn.):

y? = bp,v where y? : plastic strain rate;
b : Burgers vector;

Pn : mobile dislocation density;
v : stress dependent dislocation velocity

e’ =Alo

if

_ Gth )]1.5 }

—o, )1 =bp, {d

o

where
P.=/P, with p being the total dislocation density

p,=p,+C(") (Hahn, Acta Met. 1962)
f=f+(f,-f)1-¢*") (Yoshida et. al., |JP, 2008)



Velocity (m/s)

Simulated Polycrystal Velocity Histories
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Annealed vs Cold Rolled
Cold-Rolled
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Simulation of Single Crystal Tantalum With Polycrystal Model

» Use continuum model with different material constants for
different orientations to describe the single crystal behavior.

 The model is used as a data analysis tool to estimate the
material properties and their evolution.

e’ =Alo —-o,)I} ( y" =bp,v)

if

~0,)]" =bp, {d
where p,=/p, with P, being the total dislocation density

p,=p,+C(E")"  (Hahn, Acta Met. 1962)
f=f+(f,-f)1-¢*") (Yoshida et. al., |JP, 2008)

O,

« All the material constants are kept the same as for polycrystal
except for j

« A =25 for[100]; and A =60 for [110] orientation

- Smaller A results in a more rate sensitive beahvior
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Simulation of Single Crystal Tantalum With Polycrystal Model
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What is the physical justification for different rate sensitivity for
different orientations?



Single Crystal Model - Kinematics
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Single Crystal Model — Constitutive Relation

y“ =bp, v =bp ABl(t"|-7,)/t,1"}
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Single Crystal Model — Slip Systems

Slip System Considered: {110}<111> and {112}<111>
{112}<111> possesses twinning/anti-twinning asymmetry

1 (O11)[111] 13 (121)[111]
2 (110)[111] 14 (211)[111]
3 (101)[111] 15 (112)[111]
4 (01 [ 111] 16 (112)[111]
5 (101)[111] 17 1D[111]
6 (110)[111] 18 (12D)[111]
7 (O1D)[111] 19 (12D[111]
8 (110)[111] 20 Q1D[111]
9 (10D)[111] 21 (112)[111]
10 (O1D[111] 22 (112)[111]
11 (10 D)[111] 23 Q11)[111]
12 (110)[111] 24 (121)[111]

A =15 for the above slip systems

A =50 for the {112}<111> system along the twinning direction
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Simulation of Single Crystal Tantalum
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Longitudinal and Lateral Stresses (GPa)
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Simulation of Single Crystal Tantalum
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Velocity (m/s)

Simulation of Single Crystal Tantalum
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Conclusions

A dislocation-mechanics based model yields consistent description of the
behavior of both the poly- and single crystal tantalum under ramp wave
loading.

» The various features of the observed tantalum behavior can be interpreted
as a manifestation of the high rate sensitivity.

 Dislocation nucleation is used as a key mechanism for modeling the high
rate sensitivity.

* On the microscopic level, the anisotropy of rate sensitivity is assumed to
be attributed to the twinning/antitwinning asymmetry of the BCC crystals.



