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Outline

• Experimental observations of poly- and single crystal tantalum behavior 
under ramp wave loading.

• Objectives and approach.

• Dislocation-mechanics based continuum material model for polycrystal.

• Simulation of the single crystal experiments and insights gained from 
the simulation.

• Extension of the polycrystal model to single crystals. 

• Simulation of the single crystal experiments and insights gained from 
the simulation.

• Conclusion.



Configuration Of The Ramp Wave Experiments On Veloce

generate a structured wave with finite risetime in the very 
high stress regime

(Source: Ao et al. Rev. Sci. Instr. 2008)



Polycrystal Tantalum Under Ramp Wave Loading

Annealed Cold-Rolled (26%)

• Annealed samples: 

• Elastic precursor showed a pronounced overshoot followed by a significant 
velocity drop or stress relaxation

•The extent of the velocity drop increased with the sample thickness.

• precursor amplitude showed very little attenuation, even with the significant 
stress relaxation behind the precursor

• Cold-Rolled:

• More dispersed elastic precursor.

• no rapid velocity drop or stress relaxation was observed behind the precursor



Single Crystal Tantalum Under Ramp Wave Loading
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• Similar elastic precursor behavior as 
polycrystal.

• Strong orientation dependence

• [100] orientation showed slight decay 
of the precursor , but no apparent trend 
for [110] orientation.

• [100] orientation is more rate sensitive than 
[110].



Comparison of Annealed Polycrystal With Some Existing Models



Objectives and Approach 

• To gain insights into the mechanical behavior of tantalum, 
particularly the elastic precursor behavior, and their implication 
on the deformation mechanisms for tantalum.

• To gain an understanding of the dynamic inelasticity of poly-
and single crystal tantalum, including the material strength and 
its evolution.

Objectives: 

Approach: 

• Develop a constitutive model that captures the material features 
observed experimentally.

• Use numerical simulation to gain additional insight into the 
inelastic behavior of tantalum.



Thermomechanical Constitutive Relation
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Strength Model
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(Steinberg, Cochran, and Guinan, JAP, 1980)

: effective stress, a measure of material strength  



Association of The Rate Eqn. with Dislocation Motion

Dislocation model (Orowan Eqn.):
p

mb v  where
p : plastic strain rate; 

b : Burgers vector; 

m : mobile dislocation density; 
v : stress dependent dislocation velocity 

' 1.5 ' 1.5[ )] { [ )] }p
ij th m ij thA b c        

where
m tf  with

t being the total dislocation density  
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• Little decay of precursor implies little 
plastic deformation during precursor 
loading

• Dislocation unlocking or multiplication at 
the precursor tip. 



Simulated Polycrystal Velocity Histories

Annealed Cold-Rolled (26%)



Annealed vs Cold Rolled 

Annealed Cold-Rolled



Annealed vs Cold Rolled 

Annealed Cold-Rolled

highly rate 
sensitive 

response

less rate 
sensitive 

response



Simulation of Single Crystal Tantalum With Polycrystal Model 
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• Use continuum model with different material constants for 
different orientations to describe the single crystal behavior.

• The model is used as a data analysis tool to estimate the 
material properties and their evolution. 

• All the material constants are kept the same as for polycrystal 
except for 

• for [100]; and                for [110] orientation

• Smaller      results in a more rate sensitive beahvior



25  60 





Simulation of Single Crystal Tantalum With Polycrystal Model 

What is the physical justification for different rate sensitivity for 
different orientations?



Single Crystal Model - Kinematics  
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Single Crystal Model – Constitutive Relation
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Single Crystal Model – Slip Systems

Slip System Considered: {110}<111> and {112}<111> 

{112}<111> possesses twinning/anti-twinning asymmetry  

1 (011)[111] 13 (121)[111]

2 (1 10)[111] 14 (211)[111]

3 (101)[111] 15 (112)[111]

4 (01 1)[111] 16 (112)[ 111]

5 (10 1)[ 111] 17 (211)[111]

6 (1 10)[111] 18 (121)[ 111]

7 (011)[1 11] 19 (121)[1 11]

8 (110)[1 11] 20 (2 11)[1 11]

9 (10 1)[1 11] 21 (112)[ 1 11]

10 (0 1 1)[1 11] 22 (1 12)[1 11]

11 (10 1)[1 11] 23 (2 11)[1 11]

12 (110)[111] 24 (121)[111]

for the above slip systems

for the {112}<111> system along the twinning direction

15 

50 



Simulation of Single Crystal Tantalum

[100] [110]



Simulation of Single Crystal Tantalum



Simulation of Single Crystal Tantalum



Conclusions

• A dislocation-mechanics based model yields consistent description of the 
behavior of both the poly- and single crystal tantalum under ramp wave 
loading.

• The various features of the observed tantalum behavior can be interpreted 
as a manifestation of the high rate sensitivity.

• Dislocation nucleation is used as a key mechanism for modeling the high 
rate sensitivity.

• On the microscopic level, the anisotropy of rate sensitivity is assumed to 
be attributed to the twinning/antitwinning asymmetry of the BCC crystals.   


