

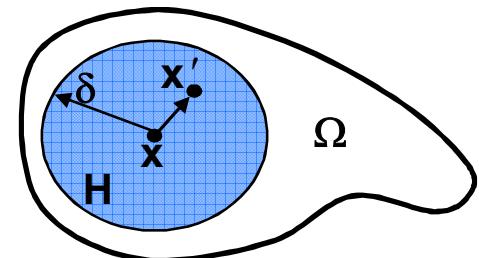
Computational Peridynamics

Non-standard Methods and Tools for Computational Modeling
SIAM Conference on Computational Science & Engineering

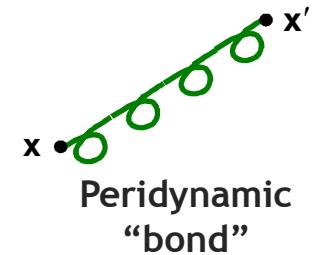
February 28, 2011

Michael Parks

Computing Research Center
Sandia National Laboratories
Albuquerque, New Mexico


What is Peridynamics?

- Peridynamics is a nonlocal extension of classical solid mechanics that permits discontinuous solutions
- Peridynamic equation of motion (integral, nonlocal)


$$\rho \ddot{u}(x, t) = \int_{\mathcal{H}} f(u' - u, x' - x) dV' + b(x, t)$$

- Replace PDEs with integral equations
- Utilize same equation everywhere; nothing “special” about cracks
- No assumption of differentiable fields (admits fracture)
- When bonds stretch too much, they break
- No obstacle to integrating nonsmooth functions
- $f(\cdot, \cdot)$ is “force” function; contains constitutive model
- $f = 0$ for particles x, x' more than δ apart (like cutoff radius in MD!)
- PD is “continuum form of molecular dynamics”

“In peridynamics, cracks are part of the solution, not part of the problem.”
- F. Bobaru

Peridynamic Domain

Peridynamic
“bond”

□ Impact

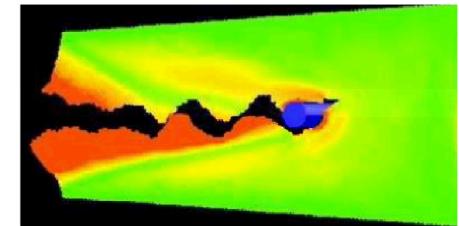
- Larger solution space (fracture)
- Account for material behavior at small & large length scales (multiscale material model)

□ Ancestors

- Kröner, Eringen, Edelen, Kunin, Rogula, etc.

□ Foresighting

- Algorithms and numerical methods for nonlocal models are fundamentally different (and generally more expensive!) than local (classical) models.


Part I

Codes and Applications

Peridynamic Codes...

EMU (Silling) (F90)

- First Peridynamic code
- Research code
- EMU has many features, but export controlled...

Instability in slow tearing of
elastic membrane*
(EMU)

PDLAMMPS (Peridynamics-in-LAMMPS) (Parks) (C++)

- Discretize PD with same computational structure as MD
- Core set of features, massively parallel

Peridigm (Parks, Littlewood, Mitchell) (C++)

- Production peridynamic code
- Multiphysics
- Component-based
- Massively parallel
- UQ/Optimization/Calibration, etc.

Fragmentation of metal ring
(Peridigm)

Peridynamics in SIERRA/SM (Littlewood)

- Utilizes Sandia's LAME material library

Peridynamics-in-LAMMPS (PDLAMMPS)

□ Goals

- Provide **open source** peridynamic code (distributed with LAMMPS; lammps.sandia.gov)
- Provide (nonlocal) continuum mechanics simulation capability within MD code
- Leverage portability, fast parallel implementation of LAMMPS
(Stand on the shoulders of LAMMPS developers)

□ Capability

- Prototype microelastic brittle (PMB), Linear peridynamic solid (LPS) models
- Viscoplastic, microplastic models
- General boundary conditions
- Material inhomogeneity
- LAMMPS highly extensible; easy to introduce new potentials and features
- More information & user's guide at
www.sandia.gov/~mlparks (Click on "software")

□ Papers

- M.L. Parks, P. Seleson, S.J. Plimpton, R.B. Lehoucq, and S.A. Silling, *Peridynamics with LAMMPS: A User Guide*, Sandia Tech Report SAND 2010-5549.
- M.L. Parks, R.B. Lehoucq, S.J. Plimpton, and S.A. Silling, *Implementing Peridynamics within a molecular dynamics code*, Computer Physics Communications 179(11) pp. 777-783, 2008.

□ A *personal observation...*

- Time from starting implementation to running first experiment: Two weeks
- Time for same using XFEM, other approaches: ????
- Conclusion: Peridynamics is an expedient approach for fracture modeling

Multiphysics Peridynamics via Agile Components

Agile components: World-class algorithms delivered as reusable libraries

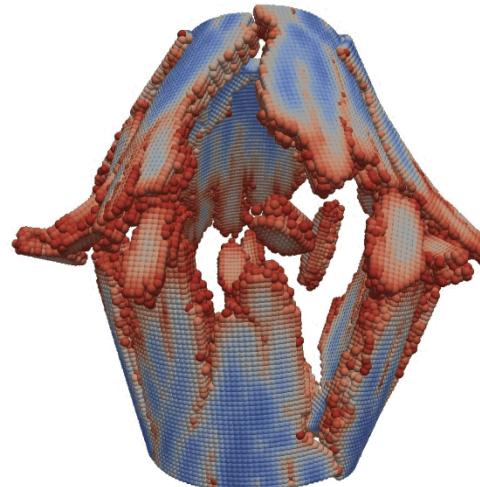
- Full range of **independent** yet **interoperable** software components
- Interfaces *and* capabilities
- Choose capabilities a-la-carte (toolkit, not monolithic framework)
- Software quality **tools** and **practices**

Rapid production strategic goals

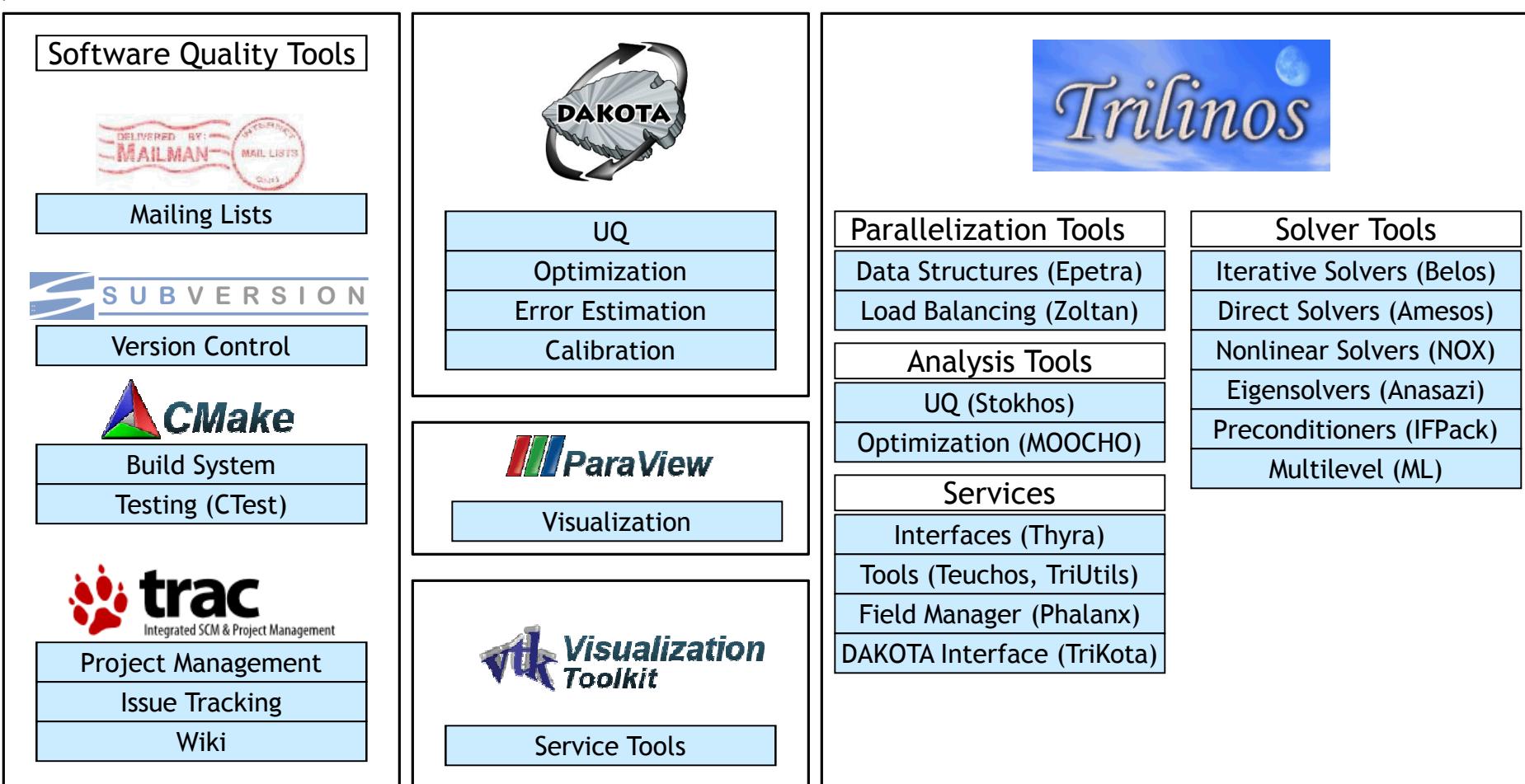
- Enable rapid development of new production codes;
Reduce redundancy

Prototype application: **Peridigm**

- Particle-based, not mesh based (like FEM)
- Multi-physics
- Scalable
- Optimization-enabled
- Born-in UQ
- Interface with SIERRA mechanics


Collaborators:

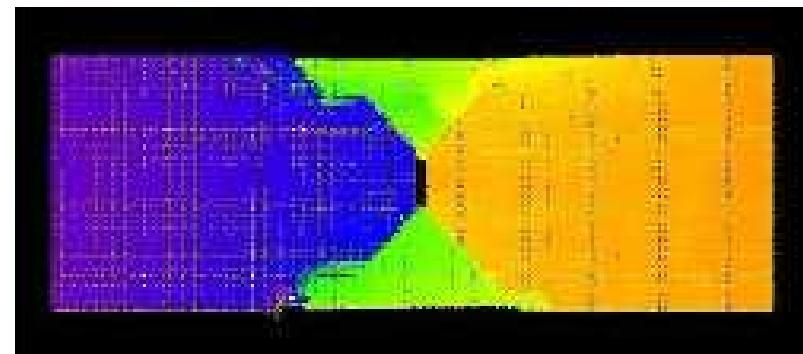
- Dave Littlewood (1444)
- Stewart Silling (1444)
- John Mitchell (1444)
- John Aidun (PM, 1425)


Peridigm Planned FY11 Development

- Exodus reader (CUBIT)
- Multiple material blocks
- Implicit time integration
- Plasticity model
- Viscoelastic model
- UQ, calibration, etc. (DAKOTA)

Fragmenting Brittle Cylinder
(Peridigm)

Multiphysics Peridynamics via Agile Components



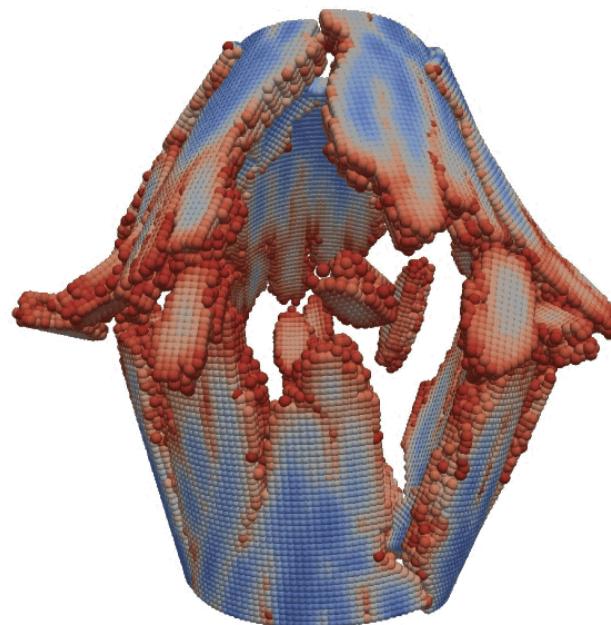
Some Applications...

- Example Simulation: **Failure of composite laminate***
 - Splitting and fracture mode changes in fiber-reinforced composites*
 - Fiber orientation between plies strongly influences crack growth

Typical crack growth in notched laminate
(photo courtesy Boeing)

Peridynamic Model

* E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, O. Weckner, Peridynamics for multiscale materials modeling, in SciDAC 2008, Seattle, Washington, vol. 125 of Journal of Physics: Conference Series, (012078) 2008.


Some Applications...

□ Example Simulation: Fragmenting Brittle Cylinder

□ Motivated by tube fragmentation experiments of Winter (1979), Vogler (2003)*

Before

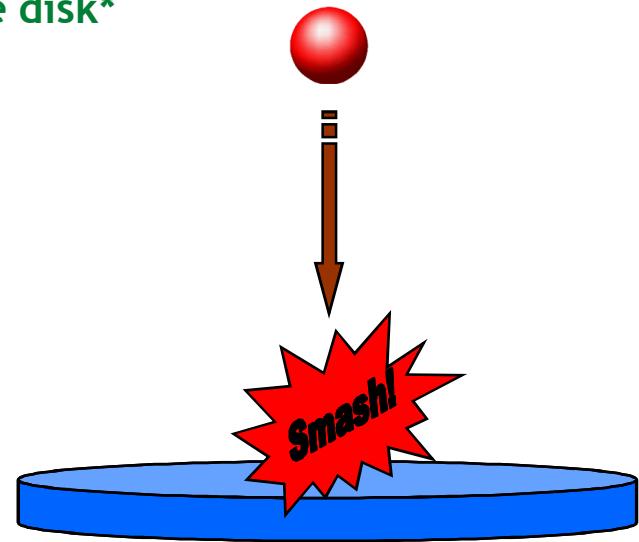
After

* D. Grady, Fragmentation of Rings And Shells: The Legacy of N.F. Mott, Springer, 2006.

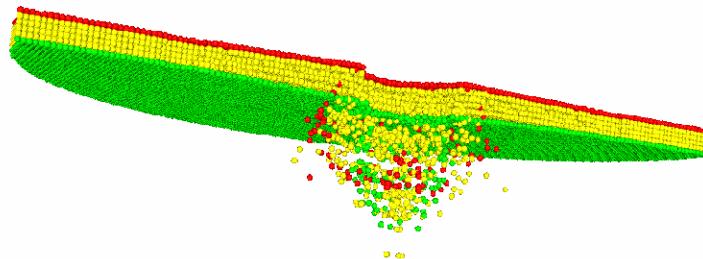
Some Applications...

Example Simulation: Hard sphere impact on brittle disk*

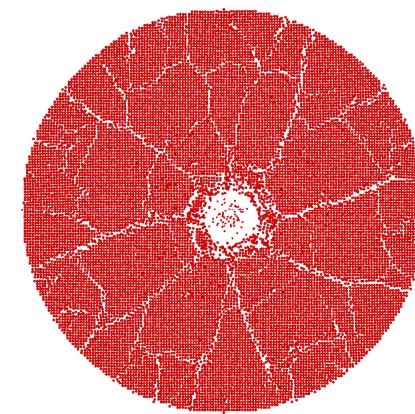
Spherical Projectile


- Diameter: 0.01 m
- Velocity: 100 m/s

Target Disk


- Diameter: 0.074 m,
- Thickness: 0.0025 m
- Elastic modulus: 14.9 Gpa
- Density: 2200 kg/m³

Discretization


- Mesh spacing: 0.005 m
- 100,000 particles
- Simulation time: 0.2 milliseconds

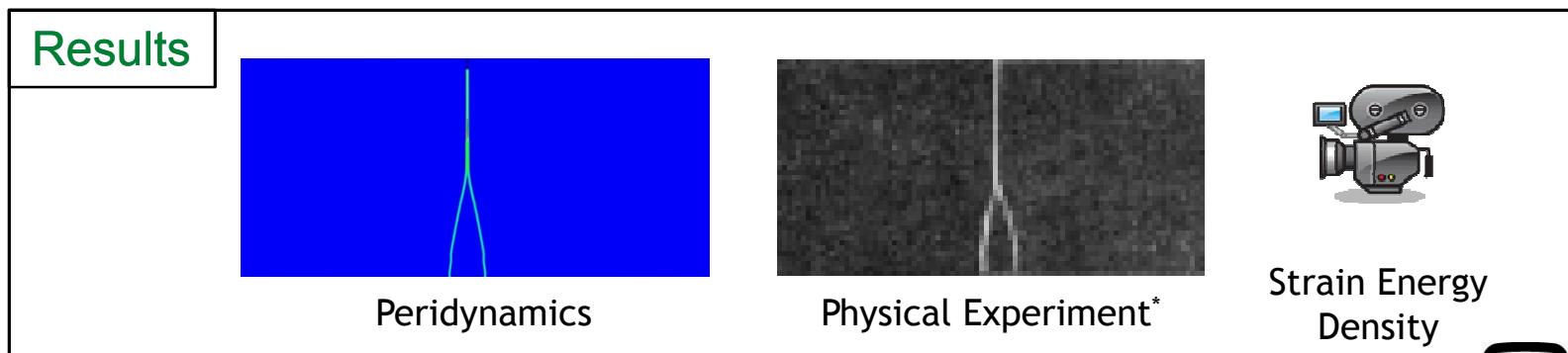
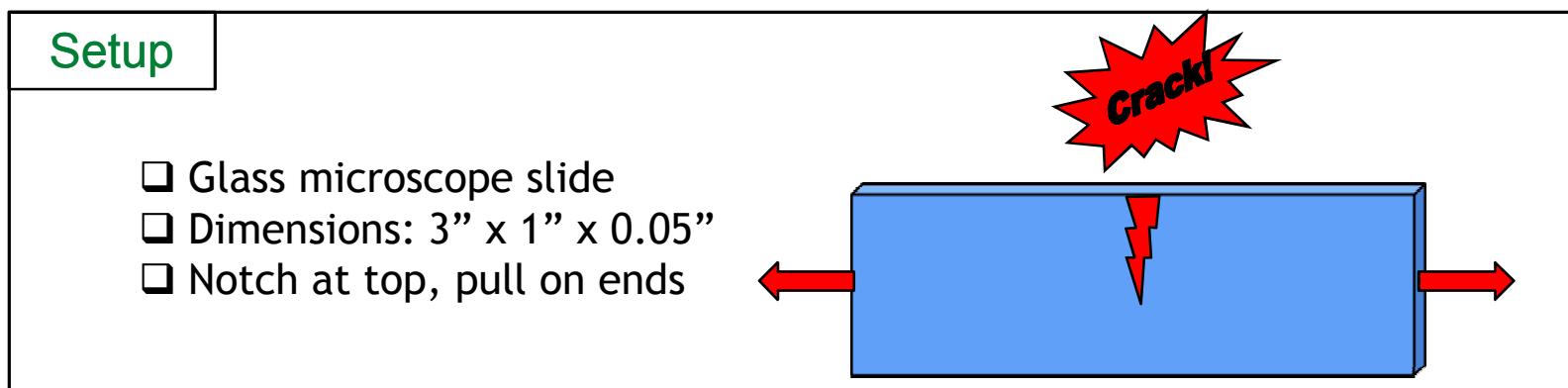
Results

Side View

Top Monolayer

Sandia
National
Laboratories

Some Applications...



- Example simulation: **Dynamic brittle fracture in glass**
 - Joint with Florin Bobaru, Youn-Doh Ha (Nebraska), & Stewart Silling (SNL)

- **Soda-lime glass plate (microscope slide)**

- Dimensions: 3" x 1" x 0.05"
 - Density: 2.44 g/cm³
 - Elastic Modulus: 79.0 Gpa

- **Discretization (finest)**

- Mesh spacing: 35 microns
 - Approx. 82 million particles
 - Time: 50 microseconds (20k timesteps)

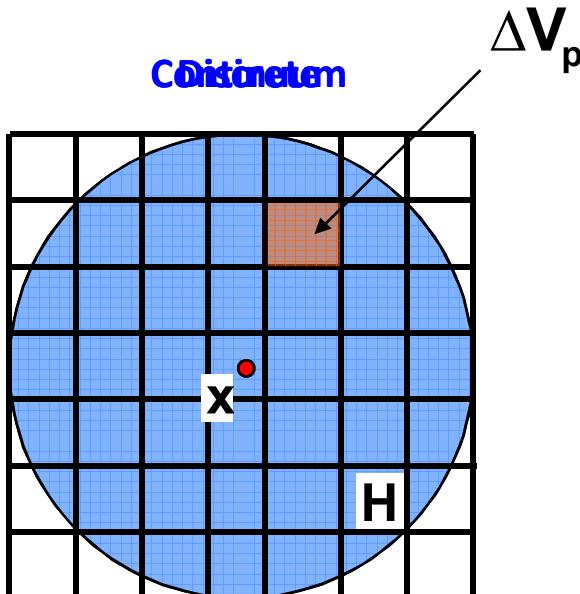
Some Applications...

- Dawn (LLNL): IBM BG/P System
 - 500 teraflops; 147,456 cores
- Part of Sequoia procurement
 - 20 petaflops; 1.6 million cores
- Discretization (finest)
 - Mesh spacing: 35 microns
 - Approx. 82 million particles
 - Time: 50 microseconds (20k timesteps)
 - 6 hours on 65k cores
- Largest peridynamic simulations in history

Dawn at LLNL

Weak Scaling Results

# Cores	# Particles	Particles/Core	Runtime (sec)	T(P)/T(P=512)
512	262,144	4096	14.417	1.000
4,096	2,097,152	4096	14.708	0.980
32,768	16,777,216	4096	15.275	0.963

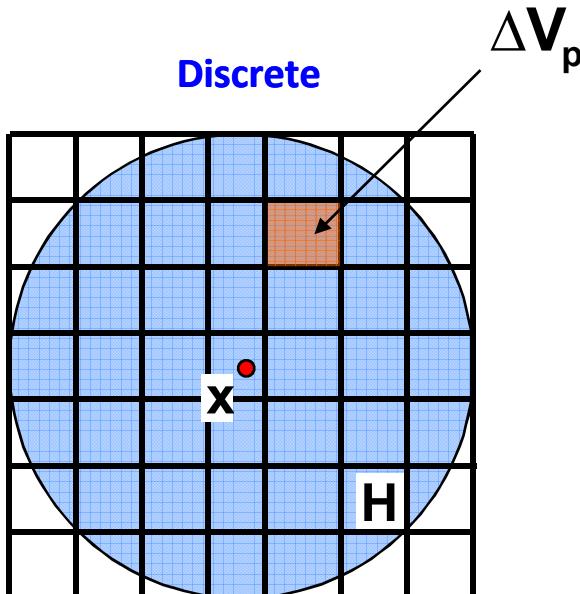

Part II

Discretizations and Numerical Methods

Discretizing Peridynamics

□ Spatial Discretization

- Approximate integral with sum*
- Midpoint quadrature
- Piecewise constant approximation



$$\sum_{p \in H} f(u(x_p', t) - u(x, t), x_p - x) \Delta V_p$$

Discretizing Peridynamics

□ Spatial Discretization

- Approximate integral with sum*
- Midpoint quadrature
- Piecewise constant approximation

$$\sum_p f(u(x_p, t) - u(x_i, t), x_p - x_i) \Delta V_p$$

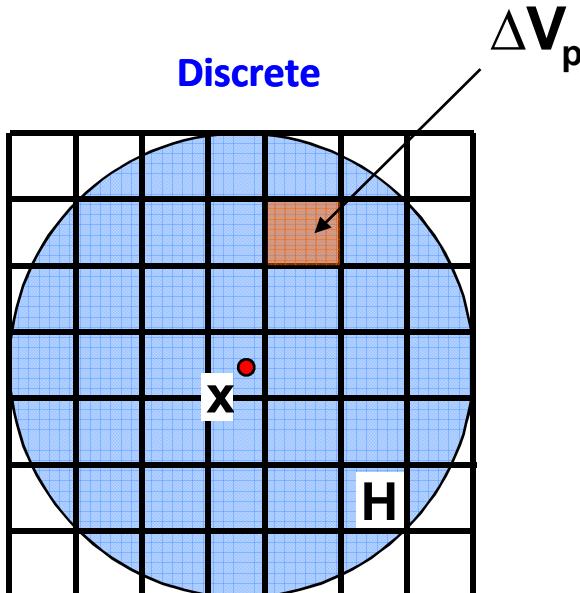
□ Temporal Discretization

- Explicit central difference in time

$$\ddot{u}(x, t) \approx \ddot{u}_i^n = \frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{\Delta t^2}$$

- Velocity-Verlet

$$v_i^{n+1/2} = v_i^n + \left(\frac{\Delta t}{2m} \right) f_i^n$$


$$u_i^{n+1} = u_i^n + (\Delta t) v_i^{n+1/2}$$

$$v_i^{n+1} = v_i^{n+1/2} + \left(\frac{\Delta t}{2m} \right) f_i^{n+1}$$

Discretizing Peridynamics

□ Spatial Discretization


- Approximate integral with sum*
- Midpoint quadrature
- Piecewise constant approximation

$$\sum_p f(u(x_p, t) - u(x_i, t), x_p - x_i) \Delta V_p$$

- This approach is sometimes called the “EMU” numerical method (Silling)

Discretizing Peridynamics

- This approach is simple but expedient. What more can we do?
- Temporal discretization
 - Implicit time integration (Newmark-beta method, etc.)
- Spatial discretization (strong form)
 - Midpoint quadrature (EMU method)
 - Gauss quadrature*
- Spatial discretization (weak form)
 - Nonlocal Galerkin finite elements (1D)*
 - Nonlocal integration-by-parts*
 - Nonlocal mass & stiffness matrices, force vector*
- Let's explore Peridynamic finite elements...

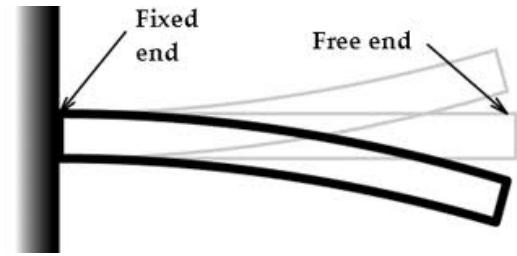
Part III

Peridynamic Finite Elements*

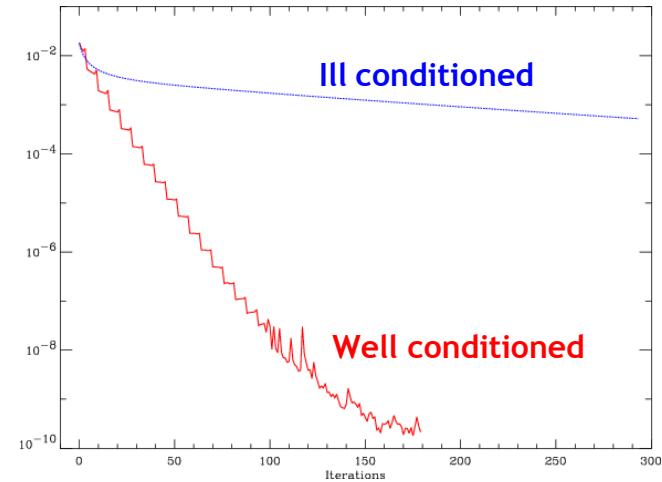
Why is Conditioning Important?

- What is the condition number of a matrix?

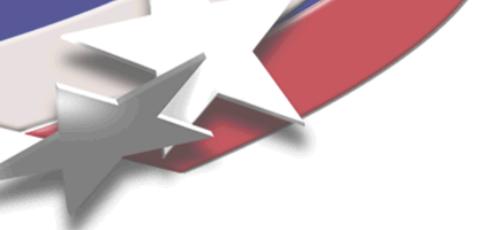
$$\kappa(A) = \|A\| \cdot \|A^{-1}\|$$


- Why do we care?

- Condition number dictate convergence rates of linear solvers
- Condition numbers dictate the accuracy of computed solution
- Rule of thumb:
If $\kappa(A) = 10^{16-d}$, then computed solution has d digits of accuracy.


If $\kappa(A) = 10^{16}$, expect zero digits of accuracy!

- Old saying: “***You get the answer you deserve...***”

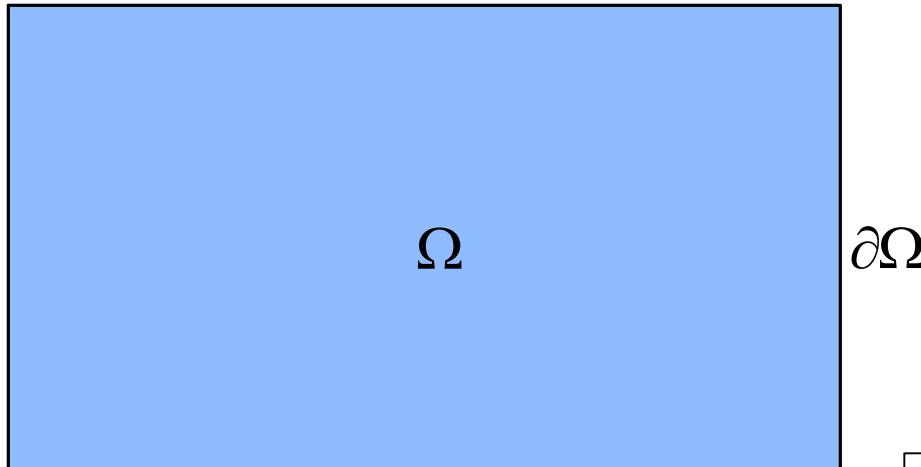

- Driving motivation for effective preconditioners

Cantilevered beam

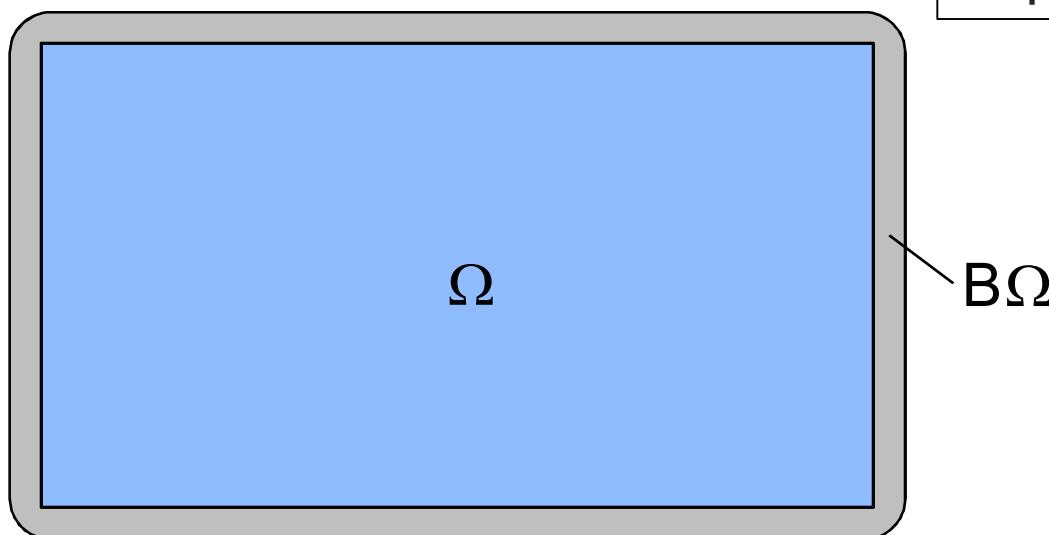
Convergence curves for optimal Krylov methods

Why is Conditioning Important?

- Why do I care about condition numbers of peridynamic models?
 - First step towards **scalable** preconditioners
 - First step towards effective utilization of leadership class supercomputers for peridynamic simulations
- New component in nonlocal modeling is peridynamic horizon δ
 - How does δ affect the conditioning?
 - Develop preconditioners/solvers optimized for nonlocal models at extreme scales
- DOE current computing platforms
 - Jaguar (ORNL)
 - 2.595 petaflops (~2.5 quadrillion calculations per second)
 - 224,162 cores



- DOE future computing platforms
 - **Exaflop machines by 2018**



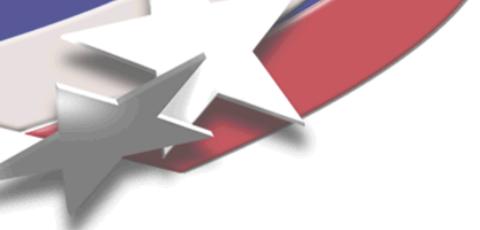
Nonlocal Boundaries

- Classical domain and boundary: $\bar{\Omega} = \Omega \cup \partial\Omega$

- Nonlocal domain and boundary: $\bar{\Omega} = \Omega \cup B\Omega$

Nonlocal Weak Form

- EMU/PDLAMMPS discretize strong form of equation (like finite differences)
- What about nonlocal finite elements?
- Prototype operator


$$\mathcal{L}\{u\}(x) = - \int_{\bar{\Omega}} C(x, x') [u(x') - u(x)] dx' \quad \begin{aligned} C(x, x') &= C(x', x) \\ C(x, x') &= 0 \text{ if } \|x - x'\| > \delta \end{aligned}$$

- Need nonlocal weak form* → Multiply by test function and “integrate by parts”

$$\begin{aligned} a(u, v) &= - \int_{\bar{\Omega}} \int_{\bar{\Omega}} C(x, x') [u(x') - u(x)] v(x) dx' dx \\ &= \frac{1}{2} \int_{\bar{\Omega}} \int_{\bar{\Omega}} C(x, x') [u(x') - u(x)] [v(x') - v(x)] dx' dx \end{aligned}$$

- Compare with local Poisson operator

$$-\nabla^2 u(x) \longrightarrow \frac{1}{2} \int \nabla u \cdot \nabla v \, dx$$

Nonlocal Quadrature

- Review: Local Quadrature
 - One integral required
 - Compute products of *gradients* of shape functions and apply Gauss quadrature
 - Gradient *drops* polynomial order
(lower order quadrature scheme required)

- Nonlocal Quadrature
 - *Two* integrals required
 - Compute products of differences of shape functions and integrate
 - No gradient → higher polynomial order (higher order quadrature needed)
 - Nonlocality generates substantially more work over each element
 - Discontinuous integrands a challenge for quadrature routines (more later...)

$$a(u, v) = \frac{1}{2} \int \nabla u \cdot \nabla v \, dx$$

$$\begin{aligned} a(u, v) &= - \iint_{\bar{\Omega} \bar{\Omega}} C(x, x') [u(x') - u(x)] v(x) dx' dx \\ &= \frac{1}{2} \iint_{\bar{\Omega} \bar{\Omega}} C(x, x') [u(x') - u(x)] [v(x') - v(x)] dx' dx \end{aligned}$$

- Integration by parts is standard in local (classical) FEM
 - *Unnecessary in nonlocal FEM*

Spectral Equivalence

- For simplicity, assume

$$C(x, x') = \chi_\delta(x - x') \equiv \begin{cases} 1 & \text{if } \|x - x'\| \leq \delta \\ 0 & \text{otherwise} \end{cases}$$

“Canonical”
Kernel Function

- Principle Theorem*

$$\lambda_1(\bar{\bar{\Omega}})\delta^{d+2} \leq \frac{a(u, u)}{\|u\|_{L_2(\bar{\bar{\Omega}})}} \leq \lambda_2(\bar{\bar{\Omega}})\delta^d \quad u \in L_{2,0}(\bar{\bar{\Omega}})$$

- Let K be a finite element discretization of $a(u, u)$. Then,

$$\kappa(K) \square O(\delta^{-2})$$

- This is not tight!

- Consider $\lim \delta \rightarrow 0$. Cond # estimate $\rightarrow \infty$, true $\kappa(K) \rightarrow h^{-2}$.
- Condition number not mesh independent (bound is mesh independent).
- In practice, observe **very** weak mesh dependence.
- Bound descriptive when $h < \delta$.
- Alternative approach: Zhou & Du[†]

- Dominant length scale in nonlocal model set by δ .
- Contrast with local model, where length scaled introduced by h

*B. Aksoylu and M.L. Parks, *Variational Theory and Domain Decomposition for Nonlocal Problems*. Applied Mathematics and Computation. To Appear. 2011.

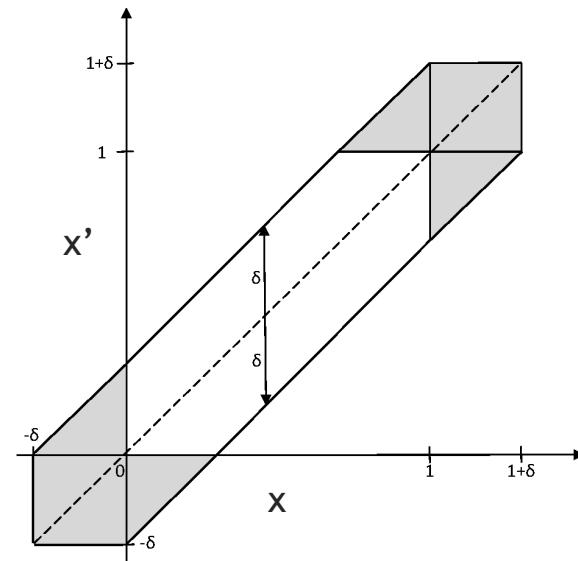
[†]K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, *SIAM J. Num. Anal.*, 48(5), pp. 1759–1780, 2010.

[†]Q. Du and K. Zhou. Mathematical analysis for the peridynamic nonlocal continuum theory. *Mathematical Modelling and Numerical Analysis*, 2010. doi:10.1051/m2an/2010040.

Conditioning Results – 1D

□ Let $\Omega = (0,1)$, $\tilde{\Omega} = [-\delta, 0] \cup [1, \delta]$.

□ $u=0$ on $\tilde{\Omega}$


□ Let $C(x, x') = \begin{cases} 1 & \text{if } \|x - x'\| \leq \delta \\ 0 & \text{otherwise} \end{cases}$

□ Weak form becomes

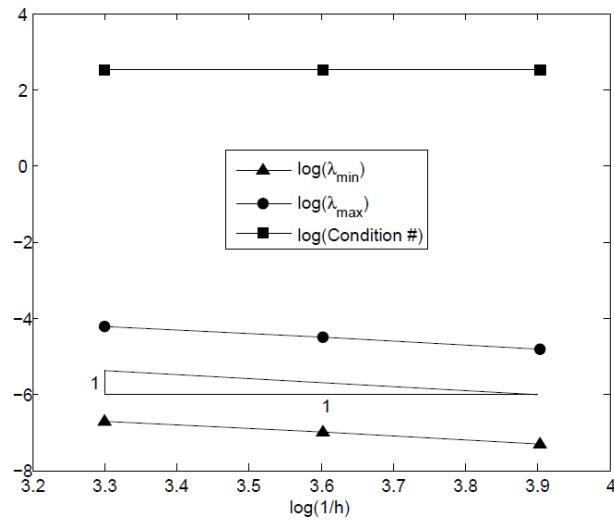
$$a(u, v) = - \int_0^{x-\delta} \int_{x-\delta}^{x+\delta} [u(x') - u(x)] v(x) dx' dx$$

□ Numerical Study

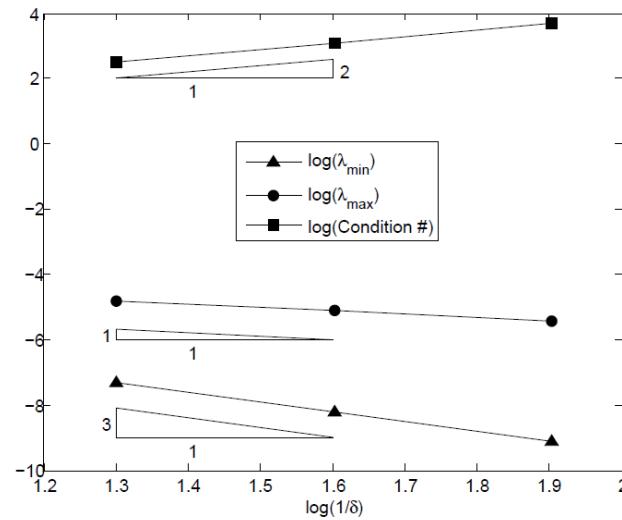
- PW constant and PW linear SFs
- Hold δ fixed, vary h
- Hold h fixed, vary δ

Integration
Domain in (x, x')
(grey = outside Ω)

Conditioning Results – 1D

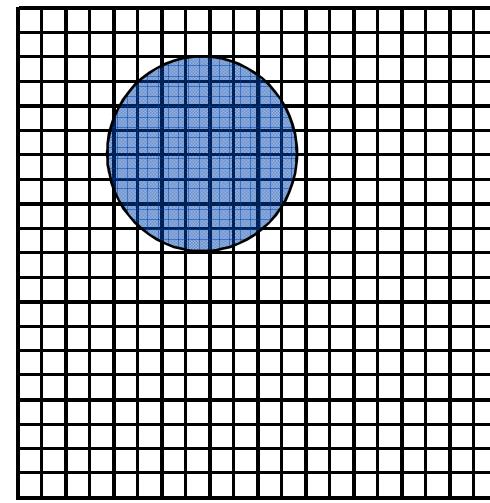

- Observations: $\kappa(K) \sim O(\delta^{-2})$, only weak h -dependence
 - At most weak h -dependence; No preconditioner!

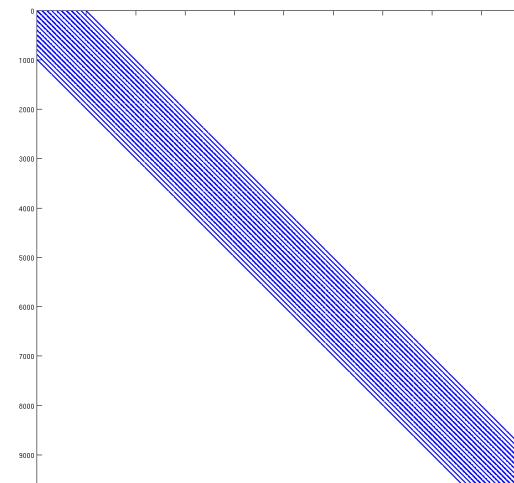
(a) Constant δ , vary h .


$1/h$	$1/\delta$	Piecewise Constant Shape Functions			Condition #	Piecewise Linear Shape Functions		
		λ_{\min}	λ_{\max}	Condition #		λ_{\min}	λ_{\max}	Condition #
2000	20	1.94E-07	6.07E-05	3.13E+02	1.94E-07	6.07E-05	3.13E+02	
4000	20	9.69E-08	3.04E-05	3.13E+02	9.69E-08	3.04E-05	3.14E+02	
8000	20	4.84E-08	1.52E-05	3.14E+02	4.84E-08	1.52E-05	3.14E+02	

(b) Constant h , vary δ .

$1/h$	$1/\delta$	Piecewise Constant Shape Functions			Condition #	Piecewise Linear Shape Functions		
		λ_{\min}	λ_{\max}	Condition #		λ_{\min}	λ_{\max}	Condition #
8000	20	4.84E-08	1.52E-05	3.15E+02	4.84E-08	1.52E-05	3.14E+02	
8000	40	6.24E-09	7.61E-06	1.22E+03	6.24E-09	7.60E-06	1.22E+03	
8000	80	7.92E-10	3.80E-06	4.80E+03	7.91E-10	3.80E-06	4.80E+03	


(a) Constant δ , vary h .


(b) Constant h , vary δ .

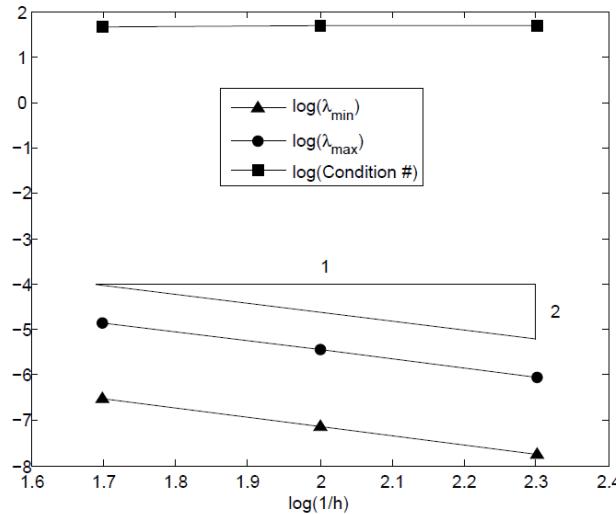
Conditioning Results – 2D

- Let $\Omega = (0,1) \times (0,1)$, $\partial\Omega = [-\delta, 0] \cup [1, \delta]$.
- $u=0$ on $\partial\Omega$
- Let $C(x, x') = \begin{cases} 1 & \text{if } \|x - x'\| \leq \delta \\ 0 & \text{otherwise} \end{cases}$
- Weak form requires quadruple quadrature
- Integrand discontinuous!
 - Gauss quadrature not accurate
 - Adaptive quadrature (expensive)
 - Break up integral into many separate integrals where integrand continuous over each subregion
- Numerical Study
 - PW constant SFs
 - Hold δ fixed, vary h
 - Hold h fixed, vary δ

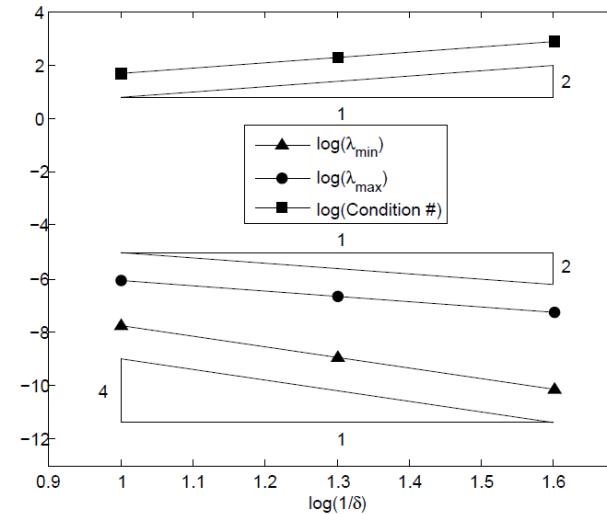
Integrand discontinuous over elements

Sparsity Pattern
(2D, 10,000 unknowns, 3.4M nnz)

Conditioning Results – 2D


- Observations: $\kappa(K) \sim O(\delta^{-2})$, only weak h -dependence
 - At most weak h -dependence; No preconditioner!

(a) Constant δ , vary h .


$1/h$	$1/\delta$	λ_{\min}	λ_{\max}	Condition #
50	10	2.95E-07	1.40E-05	4.77E+01
100	10	7.11E-08	3.54E-06	4.97E+01
200	10	1.75E-08	8.86E-07	5.05E+01

(b) Constant h , vary δ .

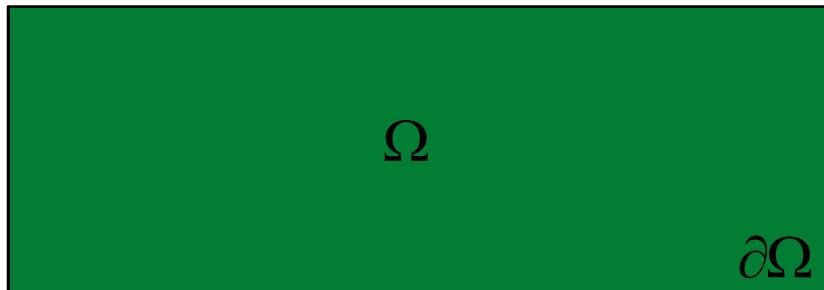
$1/h$	$1/\delta$	λ_{\min}	λ_{\max}	Condition #
200	10	1.75E-08	8.86E-07	5.05E+01
200	20	1.17E-09	2.22E-07	1.90E+02
200	40	7.63E-11	5.50E-08	7.21E+02

(a) Constant δ , vary h .

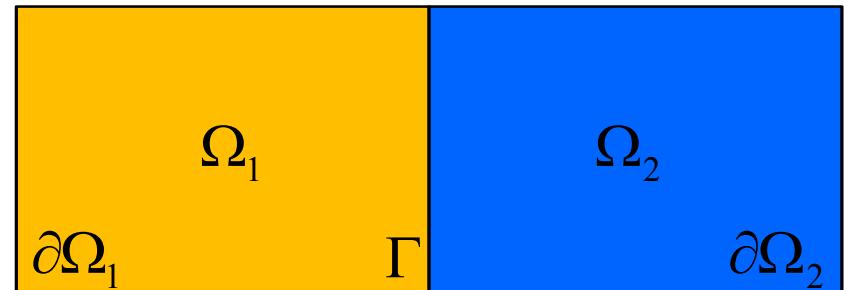
(b) Constant h , vary δ .


Part IV

Nonlocal Substructuring*


Why is Domain Decomposition (DD) Important?

- ❑ DD is the mathematical and computational technology allowing us to map our problems onto parallel computers
- ❑ Cut problem into pieces, assign each piece to a core.
- ❑ Example: $-\nabla^2 u(x) = f(x)$
 - ❑ Standard DD approach: $\kappa \approx (Hh)^{-1}$
 - ❑ h = mesh size, H = subdomain size
 - ❑ As # cores increases, H decreases, κ increases!
 - ❑ **Not scalable!**
- ❑ Ideal preconditioner
 - ❑ $\kappa \approx O(1)$
- ❑ Scalable preconditioner (weak scalability)
 - ❑ $\kappa \approx O((1+\log(H/h))^2)$
- ❑ **Nonlocal domain decomposition theory is critical path for utilization of massively parallel leadership class supercomputers for peridynamic modeling and simulation on static & quasistatic problems.**


Review: Classical Substructuring

- One, two domain strong formulations

$$-\nabla^2 u(x) = f \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \partial\Omega$$

$$-\nabla^2 u_1(x) = f \quad \text{in } \Omega_1 \quad -\nabla^2 u_2(x) = f \quad \text{in } \Omega_2$$

$$u_1 = 0 \quad \text{on } \partial\Omega_1$$

$$u_2 = 0 \quad \text{on } \partial\Omega_2$$

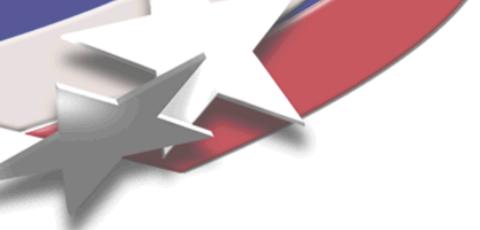
One domain and two domain
formulations equivalent

(assuming f sufficiently regular)

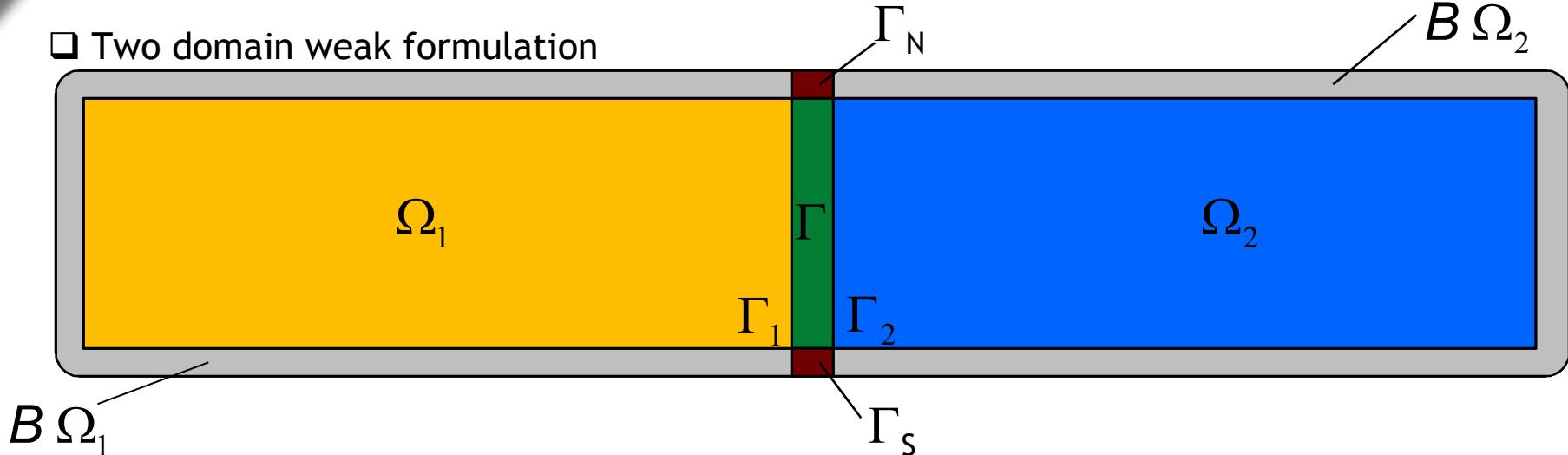
$$\begin{aligned} u_1 &= u_2 \quad \text{on } \Gamma \\ \frac{\partial u_1}{\partial n} &= -\frac{\partial u_2}{\partial n} \quad \text{on } \Gamma \end{aligned}$$

Transmission Conditions

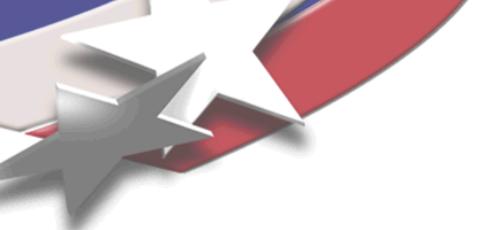
Nonlocal Domain Decomposition


□ Two domain weak formulation

$$a_{\Omega^{(i)}}(u^{(i)}, v_i) = a_{\Omega_i}(u^{(i)}, v_i) + a_{\Gamma}(u, v)$$


$$a_{\Omega_i}(u, v) = - \int_{\Omega_i} \left\{ \int_{\Omega^{(i)} \cup B\Omega^{(i)}} \chi_{\delta}(x - x') [u(x') - u(x)] dx' \right\} v(x) dx'$$

$$a_{\Gamma}(u, v) = - \int_{\Gamma} \left\{ \int_{\bar{\Omega}} \chi_{\delta}(x - x') [u(x') - u(x)] dx' \right\} v(x) dx'$$


Nonlocal Domain Decomposition

- Two domain weak formulation

- **Differences from classical (local) DD**

- Interface region is volumetric (of width δ) to decompose domains
- Flux balance transmission condition also contains governing equation for interface region

Nonlocal Domain Decomposition

- Linear algebraic representation unchanged (interpretation different)
- Stiffness matrix takes familiar block arrowhead form

$$Ku = \begin{bmatrix} K_{11} & 0 & K_{13} \\ 0 & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{\Gamma\Gamma} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_{\Gamma} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_{\Gamma} \end{bmatrix}$$

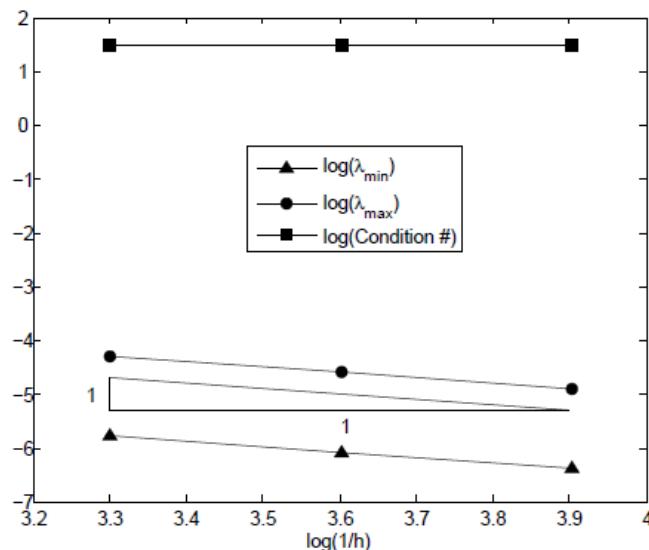
- Schur complement

$$S_{\Gamma}u_{\Gamma} = \tilde{f} \quad S_{\Gamma} = S^{(1)} + S^{(2)}$$

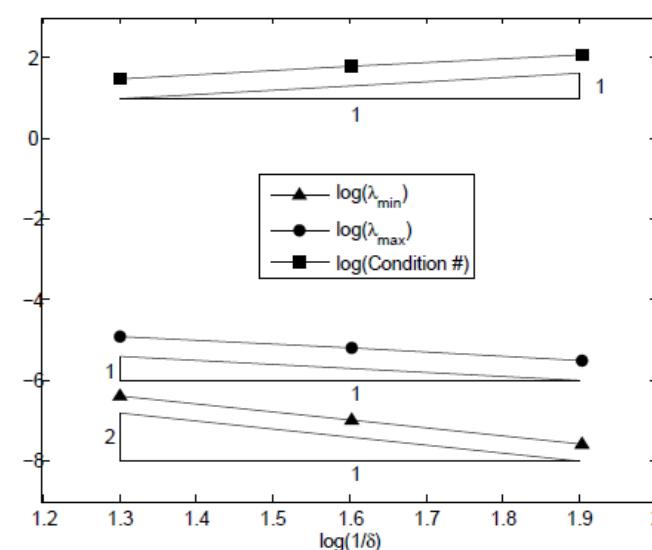
$$S^{(i)} = K_{\Gamma\Gamma}^{(i)} - K_{\Gamma i} (K_{ii})^{-1} K_{i\Gamma} \quad i=1,2$$

$$\tilde{f} = f_{\Gamma} - K_{\Gamma 1} (K_{11})^{-1} f_1 - K_{\Gamma 2} (K_{22})^{-1} f_2$$

Conditioning Results – 1D


□ Observations: $\kappa(S) \sim O(\delta^{-1})$, only weak h -dependence

(a) Fixed δ , vary h .


$1/h$	$1/\delta$	Piecewise Constant Shape Functions			Piecewise Linear Shape Functions		
		λ_{\min}	λ_{\max}	Condition #	λ_{\min}	λ_{\max}	Condition #
2000	20	1.64E-06	5.01E-05	3.06E+01	1.63E-06	4.97E-05	3.04E+01
4000	20	8.21E-07	2.50E-05	3.05E+01	8.21E-07	2.49E-05	3.03E+01
8000	20	4.12E-07	1.25E-05	3.04E+01	4.12E-07	1.25E-05	3.03E+01

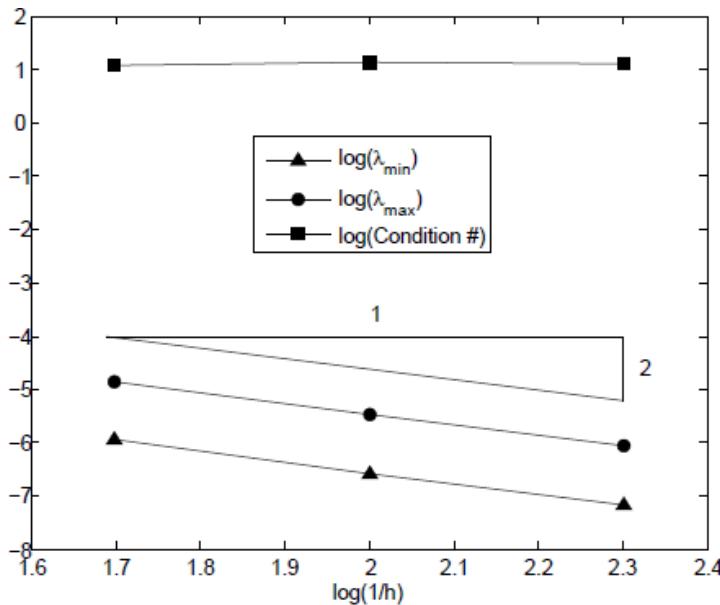
(b) Fixed h , vary δ .

$1/h$	$1/\delta$	Piecewise Constant Shape Functions			Piecewise Linear Shape Functions		
		λ_{\min}	λ_{\max}	Condition #	λ_{\min}	λ_{\max}	Condition #
8000	20	4.12E-07	1.25E-05	3.04E+01	4.12E-07	1.25E-05	3.03E+01
8000	40	1.03E-07	6.26E-06	6.07E+01	1.03E-07	6.23E-06	6.04E+01
8000	80	2.57E-08	3.13E-06	1.22E+02	2.57E-08	3.11E-06	1.21E+02

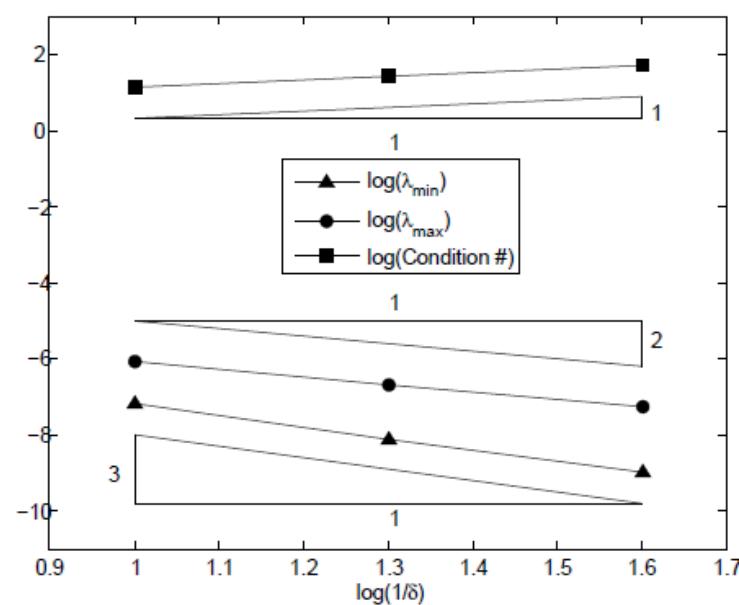
(a) Constant δ , vary h .

(b) Constant h , vary δ .

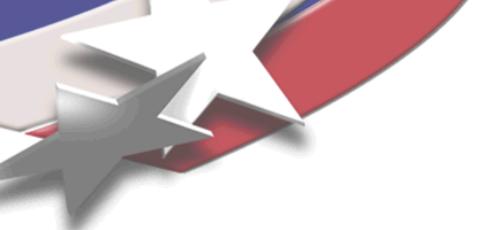
Conditioning Results – 1D


- Observations: $\kappa(S) \sim O(\delta^{-1})$, only weak h -dependence

(a) Constant δ , vary h .


$1/h$	$1/\delta$	λ_{\min}	λ_{\max}	Condition #
50	10	1.14E-06	1.38E-05	1.21E+01
100	10	2.57E-07	3.48E-06	1.36E+01
200	10	6.61E-08	8.70E-07	1.32E+01

(b) Constant h , vary δ .


$1/h$	$1/\delta$	λ_{\min}	λ_{\max}	Condition #
200	10	6.61E-08	8.70E-07	1.32E+01
200	20	7.87E-09	2.18E-07	2.77E+01
200	40	1.09E-09	4.51E-08	4.96E+01

(a) Constant δ , vary h .

(b) Constant h , vary δ .

Summary

- ❑ Mercifully brief review of peridynamics
- ❑ Applications
 - ❑ Fracture, fragmentation, failure
- ❑ Codes
 - ❑ EMU, PDLAMMPS, Peridigm, more
- ❑ Discretizations & Numerical Methods
 - ❑ Particle-like discretization of strong form
- ❑ Peridynamic Finite Elements
 - ❑ Peridynamic weak forms
 - ❑ Conditioning results
- ❑ Peridynamic Domain Decomposition
 - ❑ Peridynamic Schur Complement
 - ❑ Conditioning results
- ❑ Thank you!