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 Peridynamics is a nonlocal extension of classical solid 
mechanics that permits discontinuous solutions

 Peridynamic equation of motion (integral, nonlocal)

 Replace PDEs with integral equations 
 Utilize same equation everywhere; nothing “special” about cracks
 No assumption of differentiable fields (admits fracture)
 When bonds stretch too much, they break
 No obstacle to integrating nonsmooth functions
 f(·, ·) is “force” function; contains constitutive model
 f = 0 for particles x,x’ more than  apart (like cutoff radius in MD!)
 PD is “continuum form of molecular dynamics”

 Impact
Larger solution space (fracture)
 Account for material behavior at small & large length scales 

(multiscale material model)

 Ancestors
 Kröner, Eringen, Edelen, Kunin, Rogula, etc.

 Foreshadowing
 Algorithms and numerical methods for nonlocal models are fundamentally different 

(and generally more expensive!) than local (classical) models.

What is Peridynamics?What is Peridynamics?
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“In peridynamics, cracks 
are part of the solution, 

not part of the problem.”
- F. Bobaru



Part I
Codes and Applications



 EMU (Silling) (F90)

 First Peridynamic code

 Research code

 EMU has many features, but export controlled…

 PDLAMMPS (Peridynamics-in-LAMMPS) (Parks) (C++)

 Discretize PD with same computational structure as MD

 Core set of features, massively parallel

 Peridigm (Parks, Littlewood, Mitchell) (C++)

 Production peridynamic code

 Multiphysics

 Component-based

 Massively parallel

 UQ/Optimization/Calibration, etc.

 Peridynamics in SIERRA/SM (Littlewood)

 Utilizes Sandia’s LAME material library

Peridynamic Codes…Peridynamic Codes…

Instability in slow tearing of 
elastic membrane*

(EMU)

Fragmentation of metal ring
(Peridigm)

*S.A. Silling and F. Bobaru, “Peridynamic modeling of membranes and fibers”, International Journal of Non-Linear Mechanics, 40(2-3): 395-409 (2005).



 Goals
 Provide open source peridynamic code (distributed with LAMMPS; lammps.sandia.gov)
 Provide (nonlocal) continuum mechanics simulation capability within MD code
 Leverage portability, fast parallel implementation of LAMMPS

(Stand on the shoulders of LAMMPS developers)

 Capability
 Prototype microelastic brittle (PMB), Linear peridynamic solid (LPS) models
 Viscoplastic, microplastic models
 General boundary conditions
 Material inhomogenity
 LAMMPS highly extensible; easy to introduce new potentials and features
 More information & user’s guide at 

www.sandia.gov/~mlparks (Click on “software”)

 Papers
 M.L. Parks, P. Seleson, S.J. Plimpton, R.B. Lehoucq, and S.A. Silling, Peridynamics with 

LAMMPS: A User Guide, Sandia Tech Report SAND 2010-5549.
 M.L. Parks, R.B. Lehoucq, S.J. Plimpton, and S.A. Silling, Implementing Peridynamics within a 

molecular dynamics code, Computer Physics Communications 179(11)  pp. 777-783, 2008.

 A personal observation…
 Time from starting implementation to running first experiment: Two weeks
 Time for same using XFEM, other approaches: ????
 Conclusion: Peridynamics is an expedient approach for fracture modeling

PeridynamicsPeridynamics--inin--LAMMPS (PDLAMMPS)LAMMPS (PDLAMMPS)



 Agile components: World-class algorithms                           
delivered as reusable libraries

 Full range of independent yet 
interoperable software components

 Interfaces and capabilities
 Choose capabilities a-la-carte 

(toolkit, not monolithic framework)
 Software quality tools and practices

 Rapid production strategic goals
 Enable rapid development of new production codes; 

Reduce redundancy

 Prototype application: Peridigm
 Particle-based, not mesh based (like FEM)
 Multi-physics 
 Scalable 
 Optimization-enabled
 Born-in UQ  
 Interface with SIERRA mechanics

 Collaborators:  
 Dave Littlewood (1444)
 Stewart Silling (1444) 
 John Mitchell (1444)
 John Aidun (PM,1425) Fragmenting Brittle Cylinder

(Peridigm)

MultiphysicsMultiphysics Peridynamics via Agile Components  Peridynamics via Agile Components  

Peridigm Planned FY11 Development
• Exodus reader (CUBIT)
• Multiple material blocks
• Implicit time integration
• Plasticity model
• Viscoelastic model
• UQ, calibration, etc. (DAKOTA)



MultiphysicsMultiphysics Peridynamics via Agile Components  Peridynamics via Agile Components  

Software Quality Tools

Mailing Lists

Version Control

Build System

Testing (CTest)

Project Management

Issue Tracking

Wiki

UQ

Optimization

Error Estimation

Calibration

Load Balancing (Zoltan)

Parallelization Tools

Data Structures (Epetra)

Solver Tools

Iterative Solvers (Belos)

Direct Solvers (Amesos)

Eigensolvers (Anasazi)

Preconditioners (IFPack)

Multilevel (ML)

Nonlinear Solvers (NOX)Analysis Tools

UQ (Stokhos)

Optimization (MOOCHO)

Services

Interfaces (Thyra)

Tools (Teuchos, TriUtils)

Field Manager (Phalanx)

DAKOTA Interface (TriKota)

Visualization

Service Tools



 Example Simulation: Failure of composite laminate*
 Splitting and fracture mode changes in fiber-reinforced composites*
 Fiber orientation between plies strongly influences crack growth

Some Applications…Some Applications…

Typical crack growth in notched laminate 
(photo courtesy Boeing)

Peridynamic Model

* E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, O.Weckner, Peridynamics for multiscale materials 
modeling, in SciDAC 2008, Seattle, Washington, vol. 125 of Journal of Physics: Conference Series, (012078) 2008.

Simulation performed 
with EMU (Silling)



 Example Simulation: Fragmenting Brittle Cylinder
 Motivated by tube fragmentation experiments of Winter (1979), Vogler (2003)*

Some Applications…Some Applications…

* D. Grady, Fragmentation of Rings And Shells: The Legacy of N.F. Mott, Springer, 2006.

Simulation performed 
with Peridigm (P,L,M)

AfterBefore



 Example Simulation: Hard sphere impact on brittle disk*
 Spherical Projectile

 Diameter: 0.01 m
 Velocity: 100 m/s

 Target Disk 
 Diameter: 0.074 m, 
 Thickness: 0.0025 m
 Elastic modulus: 14.9 Gpa
 Density: 2200 kg/m3

 Discretization
 Mesh spacing: 0.005 m
 100,000 particles
 Simulation time: 0.2 milliseconds

Some Applications…Some Applications…

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Comp. and Struct., 83, pp. 1526-1535, 2005.

Side View Top Monolayer

ResultsResults

Simulation performed with 
PDLAMMPS (Parks) 



 Example simulation: Dynamic brittle fracture in glass
 Joint with Florin Bobaru, Youn-Doh Ha (Nebraska), & Stewart Silling (SNL)

 Soda-lime glass plate (microscope slide)
 Dimensions: 3” x 1” x 0.05” 
 Density: 2.44 g/cm3
 Elastic Modulus: 79.0 Gpa

Some Applications…Some Applications…

 Glass microscope slide
 Dimensions: 3” x 1” x 0.05”
 Notch at top, pull on ends

Peridynamics Physical Experiment*

SetupSetup

ResultsResults

*S F. Bowden, J. Brunton, J. Field, and A. Heyes, Controlled fracture of brittle solids and interruption of electrical current, Nature, 216, 42, pp.38-42, 1967.

Strain Energy 
Density

 Discretization (finest)
 Mesh spacing: 35 microns
 Approx. 82 million particles
 Time: 50 microseconds (20k timesteps)

Simulation performed with 
PDLAMMPS (Parks) 



 Dawn (LLNL): IBM BG/P System

 500 teraflops; 147,456 cores

 Part of Sequoia procurement 

 20 petaflops; 1.6 million cores

 Discretization (finest)

 Mesh spacing: 35 microns

 Approx. 82 million particles

 Time: 50 microseconds (20k timesteps)

 6 hours on 65k cores

 Largest peridynamic simulations in history

Some Applications…Some Applications…

# Cores # Particles Particles/Core Runtime (sec) T(P)/T(P=512)

512 262,144 4096 14.417 1.000

4,096 2,097,152 4096 14.708 0.980

32,768 16,777,216 4096 15.275 0.963

DawnDawn at LLNLat LLNL

Weak Scaling ResultsWeak Scaling Results

Simulation performed with 
PDLAMMPS (Parks) 



Part II
Discretizations and 
Numerical Methods
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 Spatial Discretization
 Approximate integral with sum*
 Midpoint quadrature
 Piecewise constant approximation

DiscretizingDiscretizing PeridynamicsPeridynamics

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.
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 Spatial Discretization
 Approximate integral with sum*
 Midpoint quadrature
 Piecewise constant approximation

DiscretizingDiscretizing PeridynamicsPeridynamics

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.

 Temporal Discretization
 Explicit central difference in time 

 Velocity-Verlet
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 Spatial Discretization
 Approximate integral with sum*
 Midpoint quadrature
 Piecewise constant approximation
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*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.

 Temporal Discretization
 Explicit central difference in time 

 Velocity-Verlet
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 This approach is sometimes called the “EMU” numerical method (Silling)



 This approach is simple but expedient. What more can we do?

 Temporal discretization
 Implicit time integration (Newmark-beta method, etc.)

 Spatial discretization (strong form)
 Midpoint quadrature (EMU method)
 Gauss quadrature*

 Spatial discretization (weak form)
 Nonlocal Galerkin finite elements (1D)*

 Nonlocal integration-by-parts*
 Nonlocal mass & stiffness matrices, force vector*

 Let’s explore Peridynamic finite elements…

DiscretizingDiscretizing PeridynamicsPeridynamics

*E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



Part III
Peridynamic Finite Elements*

*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation. To Appear. 
2011.



 What is the condition number of a matrix?

 Why do we care?

 Condition number dictate convergence 
rates of linear solvers

 Condition numbers dictate the accuracy of  
computed solution

 Rule of thumb: 
If (A) = 1016-d, then computed 
solution has d digits of accuracy. 

If (A) = 1016, expect zero digits of accuracy! 

 Old saying: “You get the answer you deserve…”

 Driving motivation for effective preconditioners

Why is Conditioning Important?Why is Conditioning Important?

1κ(A)= A A

Ill conditioned

Well conditioned

Cantilevered beam

Convergence curves for 
optimal Krylov methods 



 Why do I care about condition numbers of peridynamic models?
 First step towards scalable preconditioners
 First step towards effective utilization of leadership class 

supercomputers for peridynamic simulations
 New component in nonlocal modeling is peridynamic horizon 

 How does  affect the conditioning?
 Develop preconditioners/solvers optimized for nonlocal models 

at extreme scales
 DOE current computing platforms

 Jaguar (ORNL)
 2.595 petaflops (~2.5 quadrillion calculations per second)
 224,162 cores

 DOE future computing platforms
 Exaflop machines by 2018

Why is Conditioning Important?Why is Conditioning Important?



 Classical domain and boundary: 

 Nonlocal domain and boundary:

Nonlocal BoundariesNonlocal Boundaries

 

  

   B

B

 interacts with 

all points in 



 EMU/PDLAMMPS discretize strong form of equation (like finite differences)
 What about nonlocal finite elements? 
 Prototype operator

 Need nonlocal weak form*  Multiply by test function and “integrate by parts”

 Compare with local Poisson operator

Nonlocal Weak FormNonlocal Weak Form
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*E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



 Review: Local Quadrature
 One integral required
 Compute products of gradients of 

shape functions and apply Gauss quadrature
 Gradient drops polynomial order 

(lower order quadrature scheme required)

 Nonlocal Quadrature
 Two integrals required
 Compute products of differences of shape functions and integrate
 No gradient  higher polynomial order (higher order quadrature needed)
 Nonlocality generates substantially more work over each element
 Discontinuous integrands a challenge for quadrature routines (more later…)

 Integration by parts is standard in local (classical) FEM
 Unnecessary in nonlocal FEM

Nonlocal QuadratureNonlocal Quadrature
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 For simplicity, assume

 Principle Theorem*

 Let K be a finite element discretization of a(u,u). Then,

 This is not tight!

 Consider lim 0. Cond # estimate  , true (K)  h-2.
 Condition number not mesh independent (bound is mesh independent).
 In practice, observe very weak mesh dependence.
 Bound descriptive when h < .
 Alternative approach: Zhou & Du†

 Dominant length scale in nonlocal model set by .
 Contrast with local model, where length scaled introduced by h 

Spectral EquivalenceSpectral Equivalence
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

 
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
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1 if x - x'
C(x,x') x x

0 otherwise
“Canonical”

Kernel Function

† K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Num. 
Anal., 48(5), pp. 1759—1780, 2010.
† Q. Du and K. Zhou. Mathematical analysis for the peridynamic nonlocal continuum theory. Mathematical Modelling and Numerical 
Analysis, 2010. doi:10.1051/m2an/2010040.

*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation. To Appear. 2011.



 Let  = (0,1),  = [-,0][1, ]. 

 u=0 on 

 Let

 Weak form becomes

 Numerical Study
 PW constant and PW linear SFs
 Hold  fixed, vary h
 Hold h fixed, vary 

Conditioning Results Conditioning Results –– 1D1D
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 Observations: (K)~O(-2), only weak h-dependence
 At most weak h-dependence; No preconditioner!

Conditioning Results Conditioning Results –– 1D1D



 Let  = (0,1)(0,1),  = [-,0][1, ]. 

 u=0 on 

 Let

 Weak form requires quadruple quadrature

 Integrand discontinuous!
 Gauss quadrature not accurate
 Adaptive quadrature (expensive)
 Break up integral into many separate

integrals where integrand continuous
over each subregion

 Numerical Study
 PW constant SFs
 Hold  fixed, vary h
 Hold h fixed, vary 

Conditioning Results Conditioning Results –– 2D2D

 
 


1 if x - x'
C(x,x')

0 otherwise

Sparsity Pattern
(2D, 10,000 unknowns, 3.4M nnz)

Integrand discontinuous 
over elements



 Observations: (K)~O(-2), only weak h-dependence
 At most weak h-dependence; No preconditioner!

Conditioning Results Conditioning Results –– 2D2D



Part IV
Nonlocal Substructuring*

*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and 
Computation. To Appear. 2011.



 DD is the mathematical and computational technology allowing us to map our 
problems onto parallel computers

 Cut problem into pieces, assign each piece to a core. 

 Example: -2u(x)=f(x)

 Standard DD approach:   (Hh)-1

 h = mesh size, H = subdomain size
 As # cores increases, H decreases,  increases!
 Not scalable! 

 Ideal preconditioner
   O(1) 

 Scalable preconditioner (weak scalability)
   O( (1+log(H/h))2 ) 

 Nonlocal domain decomposition theory is critical path for utilization of massively  
parallel leadership class supercomputers for peridynamic modeling and simulation   
on static & quasistatic problems.

Why is Domain Decomposition (DD) Important?Why is Domain Decomposition (DD) Important?



 One, two domain strong formulations

Review: Classical Review: Classical SubstructuringSubstructuring
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 Two domain weak formulation

Nonlocal Domain DecompositionNonlocal Domain Decomposition
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 Two domain weak formulation

 Differences from classical (local) DD
 Interface region is volumetric (of width ) to decompose domains
 Flux balance transmission condition also contains governing equation for interface 

region

Nonlocal Domain DecompositionNonlocal Domain Decomposition

1 2

1B
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 Linear algebraic representation unchanged (interpretation different)
 Stiffness matrix takes familiar block arrowhead form

 Schur complement

Nonlocal Domain DecompositionNonlocal Domain Decomposition
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 Observations: (S)~O(-1), only weak h-dependence

Conditioning Results Conditioning Results –– 1D1D
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 Mercifully brief review of peridynamics

 Applications
 Fracture, fragmentation, failure

 Codes
 EMU, PDLAMMPS, Peridigm, more

 Discretizations & Numerical Methods
 Particle-like discretization of strong form

 Peridynamic Finite Elements
 Peridynamic weak forms
 Conditioning results

 Peridynamic Domain Decomposition
 Peridynamic Schur Complement
 Conditioning results

 Thank you!

SummarySummary


