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Outline
e Battleship: a surprising fact
* |Intro to compressed sensing theory

 Examples of compressed sensing
* Early: single-pixel camera, MRI
* Recent @ Sandia: electron microscopy, SAR



A new twist to an old game
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e Ships occupy 1 space

* Ask any question of
the form: “Are there
any ships (here)?”
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Old strategy: lazy, but inefficient

Query one location at a
time, chosen at random

How many guesses until |
locate K=1 ship?

K=1: uniform

0

1/256 §

100 150 250




Old strategy: lazy, but inefficient

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

* Query one location at a

A

time, chosen at random B

* How many guesses until| €

locate K=10 ships? P
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e K=10 ships: peaky i
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Smart strategy: optimal, adaptive
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* Bisection:count = “B
number of hits in ~  "“EEEEEEEEEEEEEEE
recursively subdividing
half-planes

oW manv
in this half-
plane?




Smart strategy: optimal, adaptive

Bisection: count
number of hits in
recursively subdividing

half-planes
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How many
in this half-
plane?




e Bisection: count

Smart strategy: optimal, adaptive

number of hits in
recursively subdividing
half-planes

v o =z =< — X . __ T GO T _m O o o 2>




Smart strategy: optimal, adaptive

14 15 1A

e Adaptive = -}
— Requires book-keeping

— Next query depends on
answer from previous
guess

* Optimal

— Queries designed to
maximize information
gain from each guess

* #ofqueriesneeded JEESEEEEEEEEENNSY =

N
M%Klogzg """ -

(tight around mean)  §




Comparison

e @Guess 1-at-a-time

— Lazy: pick a location at random, independently from last guess

— Inefficient: with even a few ships K, M = N (guess every location)

e Bisection method

# of queries to identify all ships (M)

— Adaptive: next guess depends on previous answers
— Optimal: tight around M = O( K log N/K')
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Proposed strategy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

* Create pattern by
randomly choosing
N/2 of the N locations

* Measurement: Count
# ships touching
random pattern

 Keep a journal of
patterns and counts




Proposed strategy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L ! ! e e e S ——

* Create pattern/mask
by randomly choosing

N/2 of the N locations =

* Measurement: Count ¢ BN EE e B
# ships showing ] H B =

through the mask | - |

ow many

 Keep a journal: - R
A;=[101..10]=>7 ‘i . B

ships?




Proposed strategy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

'

* Create pattern/mask

by randomly choosing © B B RN

N/2 of the N locations E ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* Measurement:Count = [HiiSN NEEE BER B

# ships showing "N

through the mask z = How many

. ships?
 Keep a journal: _

A=[101..10] => 7
A,=[010 ..10] => 7
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Proposed strategy

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T ‘ ‘
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Create pattern/mask
by randomly choosing

N/2 of the N locations © gl il ____ - -
Measurement: Count g How any

# ships showing — I ships?

through the mask - | L o
Keep a journal: B
A1=[1 01..10] =>7 ] o - - =
A,=[010..10]=>7 ' [y W -

A;=[001 . 11] => 6

After M ;
O -

measurements, solve g™ - -

a logic problem



Comparison

* Guess 1-at-a-time: non-adaptive, worst-case (M =2 N)
e Bisection method: adaptive, optimal (M ~ K log N/K)
 Compressed sensing: non-adaptive, ????77?

Error bars
at 1% and 99%
quantiles

# of queries to identify all ships (M)




Comparison

Guess 1-at-a-time: non-adaptive, worst-case, M > N
Bisection method: adaptive, optimal, M=0(K log N/K)

Compressed sensing: non-adaptive, optimal, M=0(K log N/K)
Lazy, agnostic measurements and optimal solution

— Price to pay: harder recovery problem after measurements are taken
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Outline
e Battleship: a surprising fact
‘ * Intro to compressed sensing theory

 Examples of compressed sensing
* Early: single-pixel camera, MRI
* Recent @ Sandia: electron microscopy, SAR



vs. CS data acquisition

Seitz 160Mp camera: S40K

scene
Nyquist rate sampling (N)

prior knowledge:
x has highest frequency wy

Nyquist: sample rate o< wy



Traditional vs. CS data acquisition

4
13

Seitz 160Mp camera: S40K

scene
Nyquist rate sampling (N)

prior knowledge; (T I i T i
x has highest frequency wy e

Nyquist: sample rate o< wy

basis
One can regard the possibility of digital compression as a failure

of sensor design. If it is possible to compress measured data,
one might argue that too many measurements were taken.

David Brady

Can we acquire only the useful parts of the image?



Traditional vs. CS data acquisition

' | )
scene o compress store/
transmit

Nyquist rate sampling (N)
decompress XK
CS: sample rate o sparsity

comp. sample ( ) ( )
o i
. transmit decompress

below Nyquist rate (M K <M< N)

prior knowledge: x is K-sparse in ¥

most coeffs =~ 0
only K coeffs # 0

prior knowledge:
x has highest frequency wy

L3 (U (TP

Nyquist: sample rate o< wy
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Compressed Sensing Theory

Digital compression:

sparse image as a matrix-vector product using basis

true image transform domain compressed image
RN Uty — 87
T € T = Vo
: - ¥ = concise
< description
of image

(only K significant values)



Compressed Sensing Theory

Digital compression:

sparse image as a matrix-vector product using basis

true image transform domain compressed image
RN Uty — 87
T € rr = Vo
: - ¥ = concise
< description
of image

(only K significant values)

Take M “mixture” measurements of «:

J

~ [N (but only K are nonzero)
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Compressed Sensing Theory

Compressed sensing:
A underdetermined =

Support of « is unknown.

.
(M < N)butM =K. '3': ﬁ.
N

Theorem: If A is properly designed, then solve

miIl H 8 H 1 (convex relaxation
o [polynomial time]
NP-hard problem)

st. Aa =y

then| o — o[y < Ghllag — a7y

» Exact reconstruct of sparse images in polynomial time from few measurements
* Bounded reconstruction of compressible (almost sparse) images

concise

< description
of image

)
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How to properly design sensing matrix P ?
* Incoherence: sampling functions “global” in basis
* RIP: P is distance-preserving for sparse vectors

A\/A A w A/iﬁ\ [V \\ ﬂ
A LA T

Most common choices:
low mutual coherence
* 1fWis DFT, then ® is random subset of identity
* 1f W is identity, then W is random subset of DFT

A,
\V4 v \j\/

satisfies RIP
* If I choose elements of @ at random,
* W can be anything!
* | can choose after data has been collected!



Exact Recovery of Sparse Sighals
y o o T o W Q

 Measurement equation is an underdetermined system

(Fundamental theorem of linear algebra ==> cannot uniquely determine X)

To let V=] = z=q«

Y = 9121 + P22

Z1




Exact Recovery of Sparse Sighals
Y o T o W Q

 Measurement equation is an underdetermined system

 Occam’s razor: find sparsest solution that explains

measurements
min||afly st PWa =y lallo = #£{i : i # 0} sammomeone

m) i = Va -

N Y = 9121 + P22

($1 = 07'/172 = _)

P2

Z1




Exact Recovery of Sparse Sighals
Y o x | o 7 W ._
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Measurement equation is an underdetermined system

Occam’s razor: find sparsest solution that explains
measurements
min [|afly s.t. PVa =y lallo = #4{i - cu # 0} Gonimemion.

Some algorithmic approaches (see rropp & wright, 2010 for overview)

* GrEEdy pu rsuit (approximate, fast). Iterative: refine sparse solution. Greedy, myopic.
* Convex relaxation (exact, managable). Use £, norm as convex surrogate for sparsity.
rrgnHozHl s.t. Vo =y er]]; = E oy

(linear program) 7



Minimizing £, norm yields sparse solution

An example:
— Vector x = [z1,22]" known to be sparse Jnknown
— Single measurement y= &x Y = brzy + Gt
— Family of solutions N A [3&'1] AR A
— Find unique solution to 2 known
min [|x[[(1 or2) 8.6, P11 + Powa =y
%[l = [21] + |22 x> = /a1 + 23
Sparse Solution Non-sparse Solution
T )
y — ¢1[L’1 —|— ¢2£U2 /_\\y = qﬁlﬂﬁl —+ ¢2£132
\/ I \-/ I
¢, ball:

{, ball:

perimeter of constant ||x||:

perimeter of constant ||X||>



Single-pixel camera [Rice University]

What is Spa rse? Image coefficients in wavelet basis

What sampling kernel? Randomly-generated binary

||
-

.
. Tiﬁ
1

How to implement CS? i
- Single photo-detector

- Micro-mirror array encodes sensing function

|||l||||l:|:-r|||Q

r = WVal

could be exotic: for example,
line array of hyperspectral elements (InView Corp)
PMT for low-light imaging
APD for active-illuminated lidar (U of Rochester)

4
photodiode

PD

quantizer

Yi —

processing

Yi+1 =




Single-pixel camera [Rice University]

target
65536 pixels

> 11000 measurements

Object | = = LED (light source)

(16%)

| : ] i.{.. r|

Photodiode | DMD+ALP m
circuit P ; . " Board 1300 measurements
. . . . (2%)






Sparse Magnetic Resonance Imaging

What is SpP4d rse? edges in proton density image
Sampling kernel? Randomly-selected Fourier (k-space) samples

How to implement CS?

- MRI already samples in k-space! [Incoherent with canonical (pixel) domain]
(Fourier coefficients)
X (wlywz) = Z x(t1’t2)6_j2ﬁ(w1t1+w2t2)
(t1,t2)

- Choose random subset of Fourier samples

\.

Life-saving application: pediatric MRI

Space domain

A S

~ /Futier sampling™. CS [Cand&s,Romberg]
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Compressive Sensing for SAR

Traditional PFﬁ for SAR imaging

What is sparse? Resolved SAR image

What sensing matrix? Random slow-time sampling

A
v
o~

How to encode sensing matrix?

- SAR already gives Fourier measurements

ky
v

. Jittered slow-time undersampling

- Random slow-time undersampling

Benefits: reduced transmit power

longer flight times e
electronic counter-countermeasures

CS for SAR imaging

x A x

standard reconstruction CS reconstruction

A
v




SAR Imaging from undersampled data

Traditional PF‘A: for SAR imaging

Standard Synthetic Aperture Radar (SAR):

e Regularly-spaced chirps to measure k-space
samples in trapezoidal (Sandia) or annular region

* SAR image processing (PFA simplified):

e interpolate onto regular k-space grid o FFT

A
v
o~

Ky

v

. Jittered slow-time undersampling

Compressive SAR (akin to CS for MRI):
 Random-stagger pulse repetition interval (PRI)

— Faster “logical” chirp timing rate (e.g., 4x) BN RN

— Chirp only at a fraction of intervals (e.g., 10%)
— Overall pulse reduction (e.g., 40% of typical) CS for SAR imaging

x A x

* (S image reconstruction:
— Embed samples on fine k-space grid

— Reconstruct via Occam’s razor: what’s the simplest

(sparsest) image that can describe my observations ks
phase hiStorieS / scene

Ny — Ax

A
v

min ||z]|; st. Az =y
x



Results (synthetic scene)

CS for SAR imaging

synthetic scene CPB image, regular samples

phase histories

CPB image, random samples Comp Sens., random samples

i)

jittered slow-time undersampling
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Why SEM? B

Laboratories

Optical Microscope Image SEM Image

Radiolarian (marine organism)

« Typical SEMs can resolve ~1 nm features (103x smaller diff. limit than optical)
« Large depth of focus
* Flexible viewing conditions, e.g., 10x to 500,000x mag

Image source: J. Goldstein, et al., Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2003). 38




SEM Electron Column 7 i,

Laboratories

< Electron Gun = Electron gun generates electrons

Electron Lens = Electromagnetic condenser lenses and

;|{>< +~ (1st Condenser) apertures focus electrons into a beam w/
small spot size (~1 nm)

<—— Spray Aperture

= Scan coils raster beam across sample area to

Scan Coils ]
be images
V2
# Magnification Scan )
e Control  <1Generator = Detector collects electrons at each point of
AN TV [ raster pattern and plots on computer display
. Final Lens Aperture | (typically a single SE/BSE, but there may be
(A I other, specialized detectors).
/—\ Display
B Detector > Amp [— CRT
Specimen
to
Vacuum
Pumps
Source: J. Goldstein, et. al, Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2003). 39




SNR-limited image collection time

A 001 +GE.10=RGEa

=  Rabbit retina connectome (Anderson, et al., 2011)
= Tissue ~ 0.25 mm in diameter

= ~2 nm resolution

] 350’000 image tiles (165 TB) in 5 months Anderson, et aI.,201“Eproring the retinal conectome”

= Automated trans. electron microscope .

= Mouse brain (Briggman and Denk, 2006)
= Single cortical column from mouse ~0.1 mm?3
= ~10nm / pixel per 30nm slice

= Thousands of images (108 pixels each) over several months
= Serial block-face SEM

= Many engineering efforts to reduce collection time

(Lichtman et al. @ Harvard) Briggman and Denk, 2006, “Towards neural circuit
reconstruction with volume electron microscopy techniques”

Sandia
m National
Laboratories




Approach ) e,

= Visit a random subset of pixel locations

: T
= From M < N measurements, reconstruct ~ min [[¥"x[; + Vx|

= Compression basis chosen to be block-DCT ~ st. |y — ®x| <o
= Good compressibility of SEM images
= Low mutual coherence

= Total variation regularizer || Vx||; to denoise and promote
smoothness between block boundaries

W AR R s N

origi nal reconstruction (36 dB PSNR)
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Scan coil dynamics

= Measure step response
i) __

ii)

AB C
iii)
C e
’ * 99% rise time = 32 um
¢ 99.9% rise time = 250um
A i  (ADC sample period = 200ns)
|
AB C
= Linear dynamical model to predict “actual” location
d®x(t) . dx(t) d*x(t) d3x(t) d*z(t)
= ag(z(t) — x(t)) — aq TGy — a3~ a — G4

A+D
42



Sandia

Simulated: Gibeon meteorite surfacdl .

(noiseless simulated recover)




recovered

(actual measurement location + recovery)
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Undersampling timing results ) e

8 .

Sandia

actual
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Sandia

Compressed Sensing: Hope or Hype #Js.

Explosion of interest 20000
= Elements of theory known since 1950s (group testing, seismic, wavelets) 18000 7
= A modern theory “assembled” in 2004 %]2888 /
= ~200 papers by 2006; ~18,000 in early 2013 §1§888 //
+H
A general theory that in some cases may provide g 2888 /
=  Better resolution (radar images without a matched filter) 3 4000 /
=  Faster measurements (MRI from hours to minutes) 2000 //
=  Cheaper sensors (infrared cameras from InView Corp) 0 thz@ © Ié\ 'Q% @ O n D
=  Lower SWaP for small platforms (CS SAR on a UAVs) OIS R IS NI N S SO
=  Higher sampling rates (spectral sensing at currently infeasible BWs) year
Trade for recovery burden, reduced SNR
Compelling applications are nascent e
=  Single-pixel infrared, multispectral, lidar cameras
=  Compressed MRI, CT & ultrasound
=  “Analog-to-Information” converter Crina 100 ee—
= Compressive UWB communication ’ —— - =
=  Compressive sensing radar / SAR [Sandia!] Unied Kingdorn "o
=  Microscopy [Sandia!] normalized Google search volume by country,

2004-present




