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• Battleship: a surprising fact

• Intro to compressed sensing theory

• Examples of compressed sensing

• Early: single-pixel camera, MRI

• Recent @ Sandia: electron microscopy, SAR



A new twist to an old game

• Ships occupy 1 space

• Ask any question of 
the form: “Are there 
any ships (here)?”

• You win if you locate 
all ships in fewer 
guesses than 
competition
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Old strategy: lazy, but inefficient

• Query one location at a 
time, chosen at random

• How many guesses until I 
locate K=1 ship?

• K=1: uniform
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?

Is it here?
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Old strategy: lazy, but inefficient

• Query one location at a 
time, chosen at random

• How many guesses until I 
locate K=10 ships?

• K=10 ships: peaky

• M  N as K gets larger

?

Is it here?
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Smart strategy: optimal, adaptive

• Bisection: count 
number of hits in 
recursively subdividing 
half-planes

How many 
in this half-

plane?



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Smart strategy: optimal, adaptive

• Bisection: count 
number of hits in 
recursively subdividing 
half-planes

How many 
in this half-

plane?
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Smart strategy: optimal, adaptive

• Bisection: count 
number of hits in 
recursively subdividing 
half-planes

How 
many?
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Smart strategy: optimal, adaptive

• Adaptive
– Requires book-keeping

– Next query depends on 
answer from previous 
guess

• Optimal
– Queries designed to 

maximize information 
gain from each guess

• # of queries needed

(tight around mean)

How 
many?



Comparison
• Guess 1-at-a-time

– Lazy: pick a location at random, independently from last guess

– Inefficient: with even a few ships K,  M  N  (guess every location)

• Bisection method
– Adaptive: next guess depends on previous answers

– Optimal: tight around M = O( K log N/K )
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quantiles
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Proposed strategy

• Create pattern by 
randomly choosing 
N/2 of the N locations

• Measurement: Count 
# ships touching  
random pattern

• Keep a journal of 
patterns and counts
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Proposed strategy

• Create pattern/mask 
by randomly choosing 
N/2 of the N locations

• Measurement: Count 
# ships showing 
through the mask

• Keep a journal:
A1 = [ 1  0 1 … 1 0 ]  =>  7

How many 
ships?
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Proposed strategy

• Create pattern/mask 
by randomly choosing 
N/2 of the N locations

• Measurement: Count 
# ships showing 
through the mask

• Keep a journal:
A1 = [ 1  0 1 … 1 0 ]  =>  7

A2 = [ 0 1 0  … 1 0 ]  =>  7

How many 
ships?
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Proposed strategy

• Create pattern/mask 
by randomly choosing 
N/2 of the N locations

• Measurement: Count 
# ships showing 
through the mask

• Keep a journal:
A1 = [ 1  0 1 … 1 0 ]  =>  7

A2 = [ 0 1 0  … 1 0 ]  =>  7

A3 = [ 0 0 1  ..  1 1 ]  =>  6

• After M
measurements, solve 
a logic problem

How many 
ships?



Comparison
• Guess 1-at-a-time:      non-adaptive,   worst-case (M  N)

• Bisection method:      adaptive,            optimal (M ~ K log N/K)

• Compressed sensing: non-adaptive,   ??????

guess 1-at-a-time at random, lazy

Bisection, optimal

?

Error bars 
at 1% and 99% 
quantiles



Comparison
• Guess 1-at-a-time:      non-adaptive,   worst-case, M  N

• Bisection method:      adaptive,            optimal, M=O(K log N/K)

• Compressed sensing: non-adaptive, optimal, M=O(K log N/K) 

Lazy, agnostic measurements and optimal solution

– Price to pay: harder recovery problem after measurements are taken

guess 1-at-a-time at random, lazy

Bisection, optimal

CS, optimal for small K

Error bars 
at 1% and 99% 
quantiles
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Traditional  vs. CS data acquisition

compress
store/

transmit

receive
Linear 

decompress

scene
sample

Seitz 160Mp camera: $40K



Traditional  vs. CS data acquisition

compress
store/

transmit

receive
Linear 

decompress

One can regard the possibility of digital compression as a failure
of sensor design. If it is possible to compress measured data,
one might argue that too many measurements were taken.

David Brady

Can we acquire only the useful parts of the image? 

scene
sample

Seitz 160Mp camera: $40K



Traditional  vs. CS data acquisition

sample

compress

receive
Linear 

decompress

scene

comp. sample
store/

transmit
receive

Non-linear
decompress

scene

store/
transmit



Compressed Sensing Theory
Digital compression:

true image transform domain compressed image

(only K significant values)

sparse image as a matrix-vector product using basis

concise 
description
of image



Compressed Sensing Theory

true image transform domain compressed image

(only K significant values)

sparse image as a matrix-vector product using basis

concise 
description
of image

(but only K are nonzero)





Compressed Sensing Theory

If

then

• Exact reconstruct of sparse images in polynomial time from few measurements
• Bounded reconstruction of compressible (almost sparse) images

How to properly design sensing matrix      ?
• Incoherence: sampling functions “global” in basis 
• RIP: is distance-preserving for sparse vectors

concise 
description
of image

(convex relaxation
[polynomial time]
NP-hard problem)



• Measurement equation is an underdetermined system
(Fundamental theorem of linear algebra ==> cannot uniquely determine     )

Exact Recovery of Sparse Signals



• Measurement equation is an underdetermined system

• Occam’s razor: find sparsest solution that explains 
measurements 

Exact Recovery of Sparse Signals

l0 quasi-norm counts 
# of nonzero elements



Exact Recovery of Sparse Signals

• Measurement equation is an underdetermined system

• Occam’s razor: find sparsest solution that explains 
measurements 

• Some algorithmic approaches
• Greedy pursuit (approximate, fast). Iterative: refine sparse solution.  Greedy, myopic.

• Convex relaxation (exact, managable). Use l1 norm as convex surrogate for sparsity.

l0 quasi-norm counts 
# of nonzero elements

(linear program)

(See [Tropp & Wright, 2010] for overview)



Minimizing l1 norm yields sparse solution

An example:
– Let

– Vector                       known to be sparse

– Single measurement

– Family of solutions 

– Find unique solution to

x1

x2

L-2 Norm

Sparse Solution Non-sparse Solution

known

unknown

l1 ball: 
perimeter of constant 

l2 ball: 
perimeter of constant 



Single-pixel camera [Rice University]

What is sparse? Image coefficients in wavelet basis

What sampling kernel? Randomly-generated binary

How to implement CS?
- Single photo-detector

- Micro-mirror array encodes sensing function

[Duarte, et al, 2008]

could be exotic: for example, 
• line array of hyperspectral elements (InView Corp)
• PMT for low-light imaging 
• APD for active-illuminated lidar (U of Rochester)



Single-pixel camera [Rice University]



Sandia’s Heliostat Array:
world’s largest single pixel camera?



Sparse Magnetic Resonance Imaging

What is sparse? edges in proton density image

Sampling kernel? Randomly-selected Fourier (k-space) samples

How to implement CS?
- MRI already samples in k-space! [Incoherent with canonical (pixel) domain]

(Fourier coefficients)

- Choose random subset of Fourier samples

Life-saving application: pediatric MRI

(Lustig, Donoho, Pauly, 2007)



Sandia SAR imagery (www.sandia.gov/RADAR)
Washington, D.C.,
Ku-Band, 1-m



Compressive Sensing for SAR

What is sparse? Resolved SAR image 

What sensing matrix? Random slow-time sampling

How to encode sensing matrix?
- SAR already gives Fourier measurements

- Random slow-time undersampling 

Benefits: reduced transmit power

longer flight times

electronic counter-countermeasures

Jittered slow-time undersampling
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CS for SAR imaging

CS reconstructionstandard reconstruction

(Patel, et al., 2009)



SAR Imaging from undersampled data
Standard Synthetic Aperture Radar (SAR):

• Regularly-spaced chirps to measure k-space 
samples in trapezoidal (Sandia) or annular region

• SAR image processing (PFA simplified): 
 interpolate onto regular k-space grid     FFT

Compressive SAR (akin to CS for MRI):

• Random-stagger pulse repetition interval (PRI)

– Faster “logical” chirp timing rate (e.g., 4x)

– Chirp only at a fraction of intervals (e.g., 10%)

– Overall pulse reduction (e.g., 40% of typical)

• CS image reconstruction:

– Embed samples on fine k-space grid

– Reconstruct via Occam’s razor: what’s the simplest 
(sparsest) image that can describe my observations

Jittered slow-time undersampling
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CS for SAR imaging

scenephase histories



x x x

x x x x x

x x x x x

x x x x x

x x x x x

xx

x x x x x

CS for SAR imaging

Results (synthetic scene)

jittered slow-time undersampling

(scene)

phase histories

synthetic scene CPB image, regular samples

CPB image, random samples Comp Sens., random samples



37

Electron Microscopy Images

sage @ 200x

Titan arum @ 80x Hawaiian volcanic sand @ 30x

Images courtesy of Dartmouth public domain gallery: http://www.dartmouth.edu/~emlab/gallery

apple @ 15000x
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Why SEM?

Image source: J. Goldstein, et al., Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2003).

Radiolarian (marine organism)

Optical Microscope Image SEM Image

• Typical SEMs can resolve ~1 nm features (103x smaller diff. limit than optical)
• Large depth of focus 
• Flexible viewing conditions, e.g., 10x to 500,000x mag



39Source: J. Goldstein, et. al, Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2003).

SEM Electron Column

 Electron gun generates electrons

 Electromagnetic condenser lenses and 
apertures focus electrons into a beam w/ 
small spot size (~1 nm)

 Scan coils raster beam across sample area to 
be images

 Detector collects electrons at each point of 
raster pattern and plots on computer display 
(typically a single SE/BSE, but there may be 
other, specialized detectors).



SNR-limited image collection time

 Rabbit retina connectome (Anderson, et al., 2011)

 Tissue ~ 0.25 mm in diameter

 ~2 nm resolution

 350,000 image tiles (16.5 TB) in 5 months

 Automated trans. electron microscope

 Mouse brain (Briggman and Denk, 2006)

 Single cortical column from mouse ~0.1 mm3

 ~10nm / pixel per 30nm slice

 Thousands of images (108 pixels each) over several months

 Serial block-face SEM

 Many engineering efforts to reduce collection time
(Lichtman et al. @ Harvard)
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Anderson, et al., 2011, “Exploring the retinal connectome”

Briggman and Denk, 2006, “Towards neural circuit 
reconstruction with volume electron microscopy techniques”



Approach


41original 50% samples reconstruction (36 dB PSNR)



Scan coil dynamics

 Measure step response

 Linear dynamical model to predict “actual” location
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• 99% rise time = 32 um
• 99.9% rise time = 250um
• (ADC sample period = 200ns)



Simulated: Gibeon meteorite surface
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M/N = 30% recovered

(noiseless simulated recover)



Actual: Gibeon meteorite surface

44

M/N = 30% recovered

(actual measurement location + recovery)



Undersampling timing results
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M/N = 10% M/N = 30% M/N = 50%



Compressed Sensing: Hope or Hype?
Explosion of interest
 Elements of theory known since 1950s (group testing, seismic, wavelets)
 A modern theory “assembled” in 2004
 ~200 papers by 2006; ~18,000 in early 2013

A general theory that in some cases may provide
 Better resolution (radar images without a matched filter)
 Faster measurements (MRI from hours to minutes)
 Cheaper sensors (infrared cameras from InView Corp)
 Lower SWaP for small platforms (CS SAR on a UAVs)
 Higher sampling rates (spectral sensing at currently infeasible BWs)

Trade for recovery burden, reduced SNR

Compelling applications are nascent
 Single-pixel infrared, multispectral, lidar cameras
 Compressed MRI, CT & ultrasound
 “Analog-to-Information” converter
 Compressive UWB communication
 Compressive sensing radar / SAR [Sandia!]
 Microscopy [Sandia!]
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