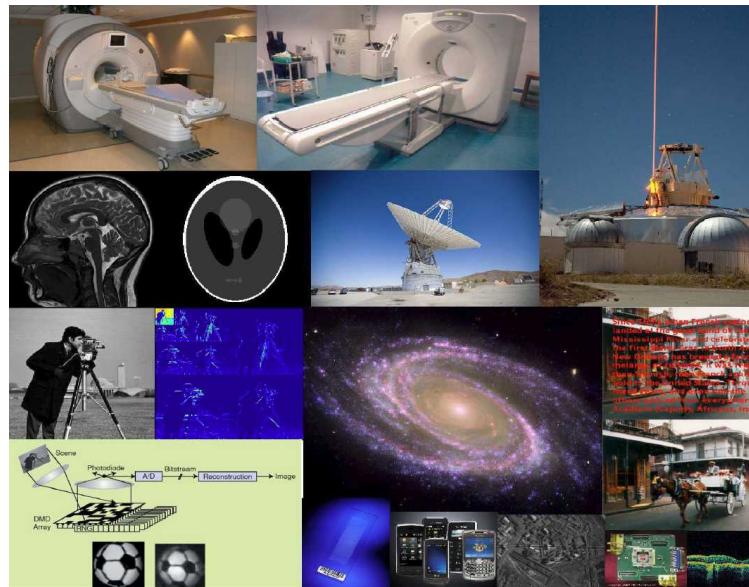


Both lazy and efficient: Compressed sensing and applications

Hyrum Anderson
Sandia National Laboratories
Albuquerque, NM



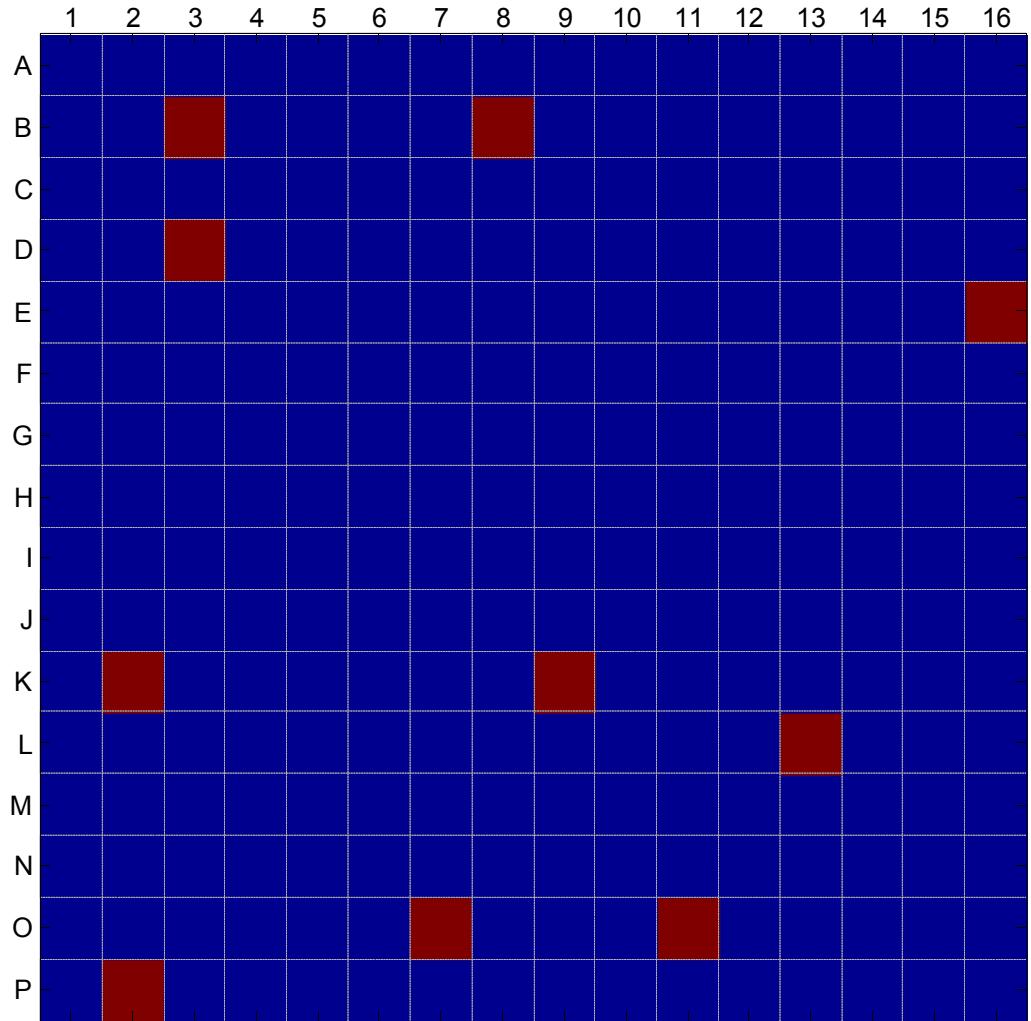
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Battleship: a surprising fact
- Intro to compressed sensing theory
- Examples of compressed sensing
 - Early: single-pixel camera, MRI
 - Recent @ Sandia: electron microscopy, SAR

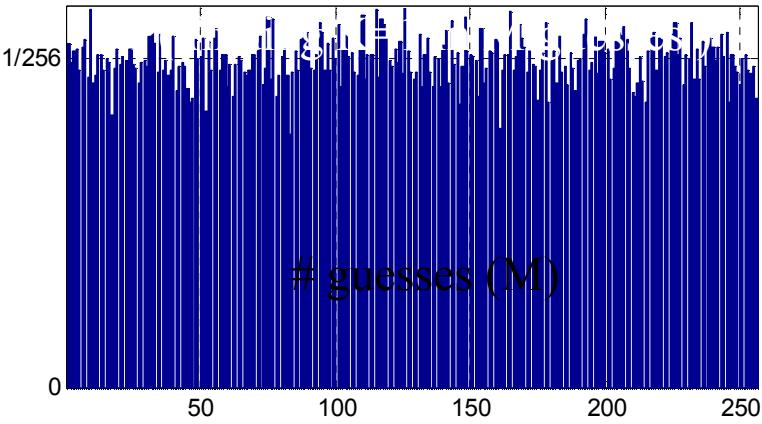
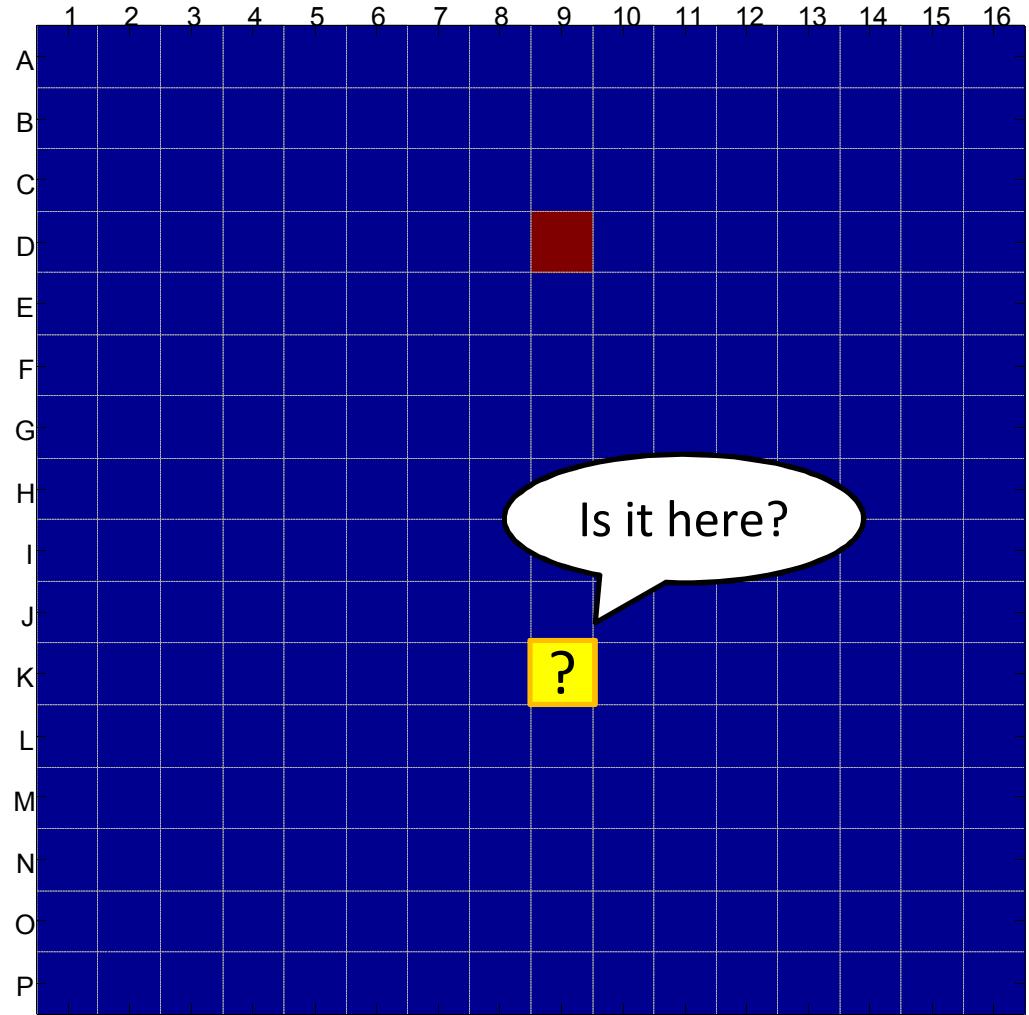
A new twist to an old game

- Ships occupy 1 space
 - Ask any question of the form: “Are there any ships (here)?”
 - You win if you locate all ships in fewer guesses than competition



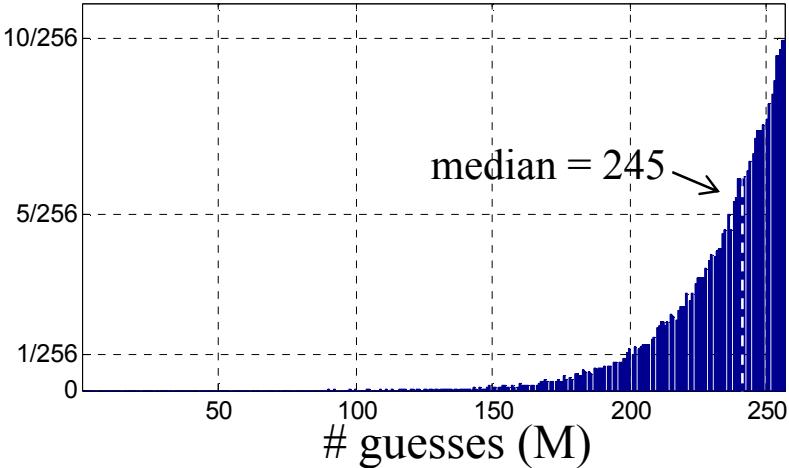
Old strategy: lazy, but inefficient

- Query one location at a time, chosen at random
- How many guesses until I locate $K=1$ ship?
- $K=1$: uniform

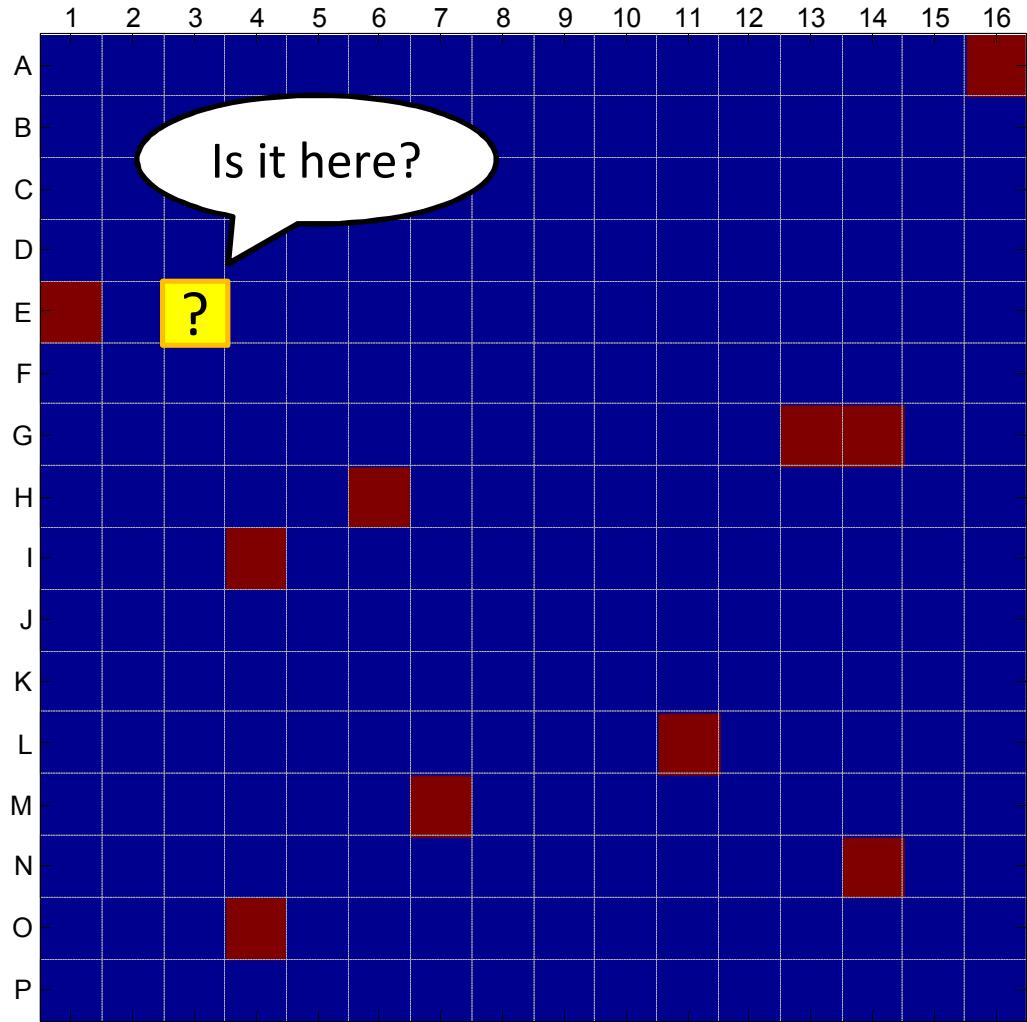


Old strategy: lazy, but inefficient

- Query one location at a time, chosen at random
- How many guesses until I locate $K=10$ ships?
- $K=10$ ships: peaky

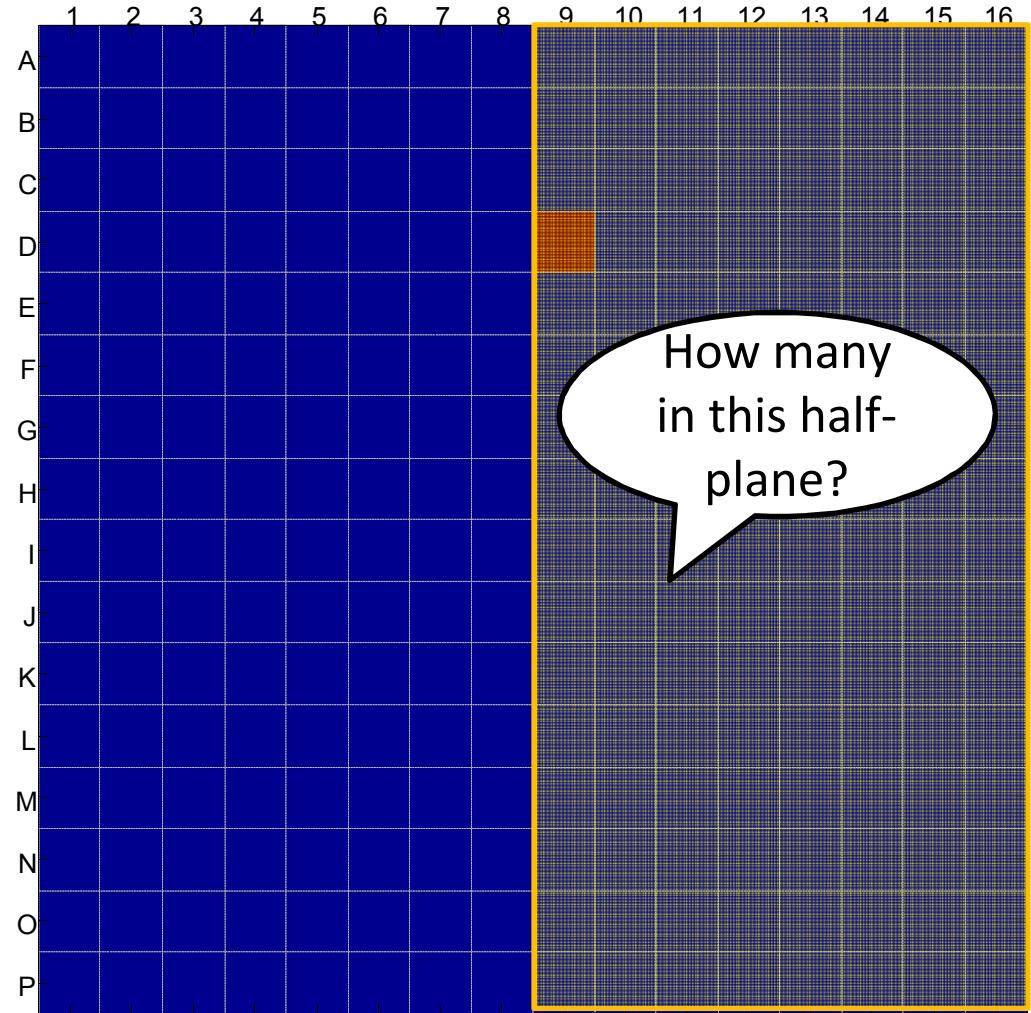


- $M \rightarrow N$ as K gets larger



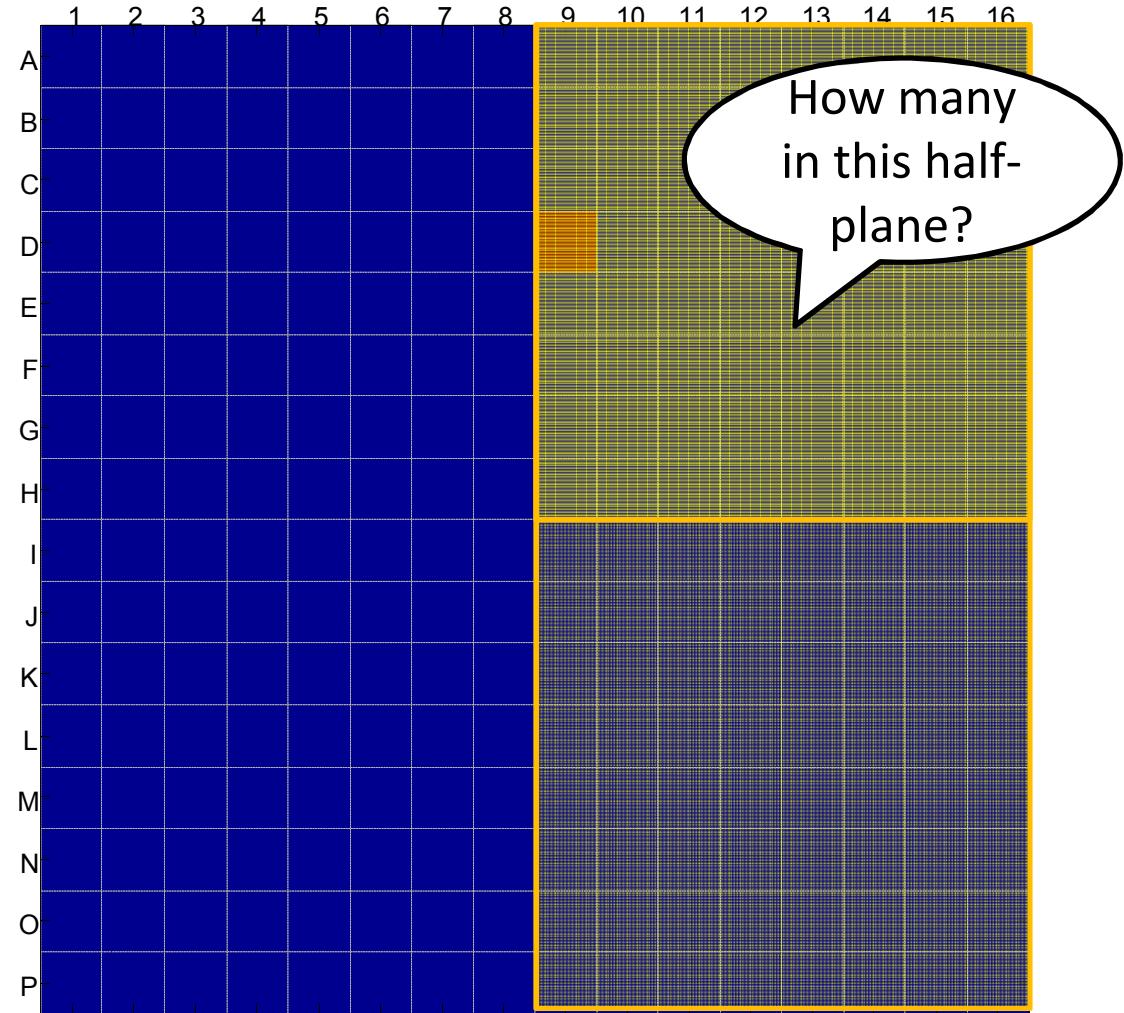
Smart strategy: optimal, adaptive

- Bisection: count number of hits in recursively subdividing half-planes



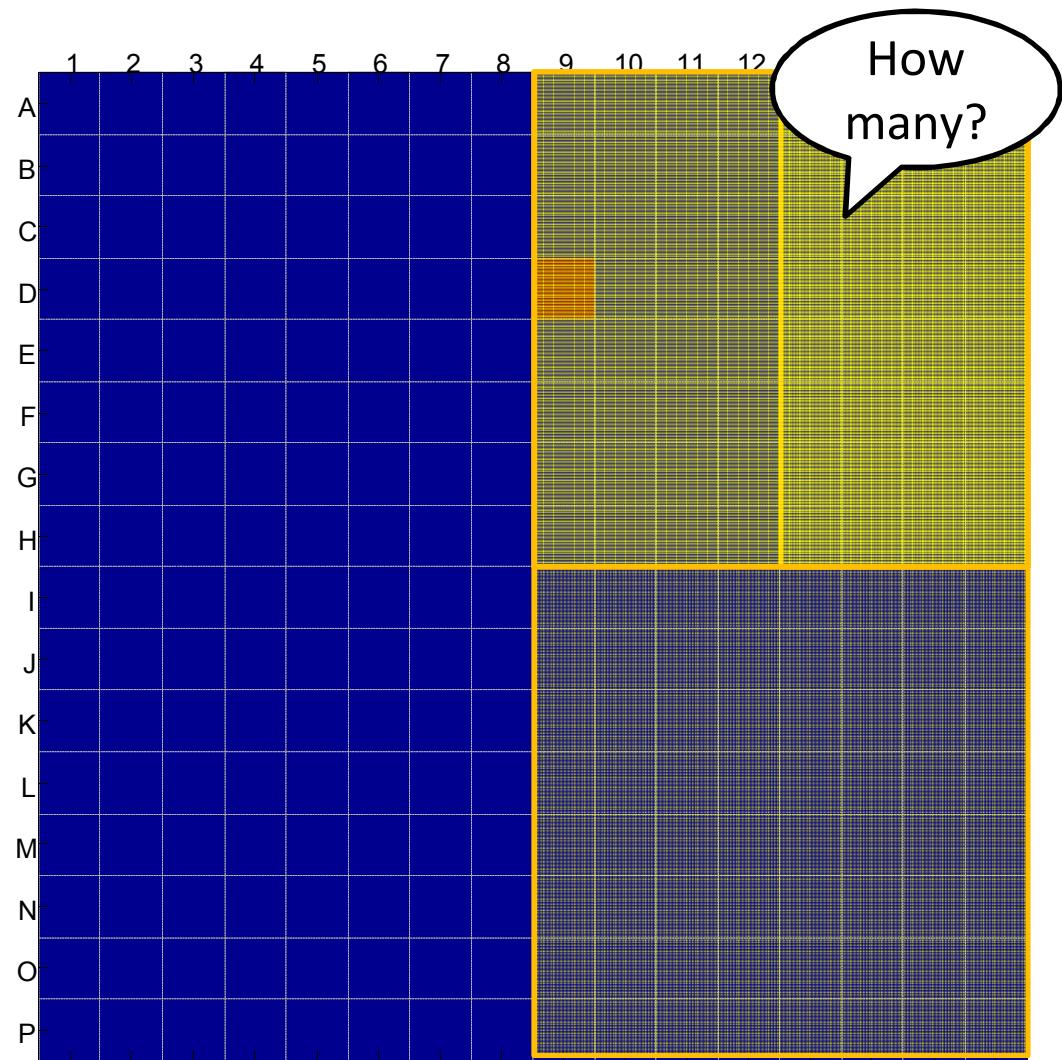
Smart strategy: optimal, adaptive

- Bisection: count number of hits in recursively subdividing half-planes



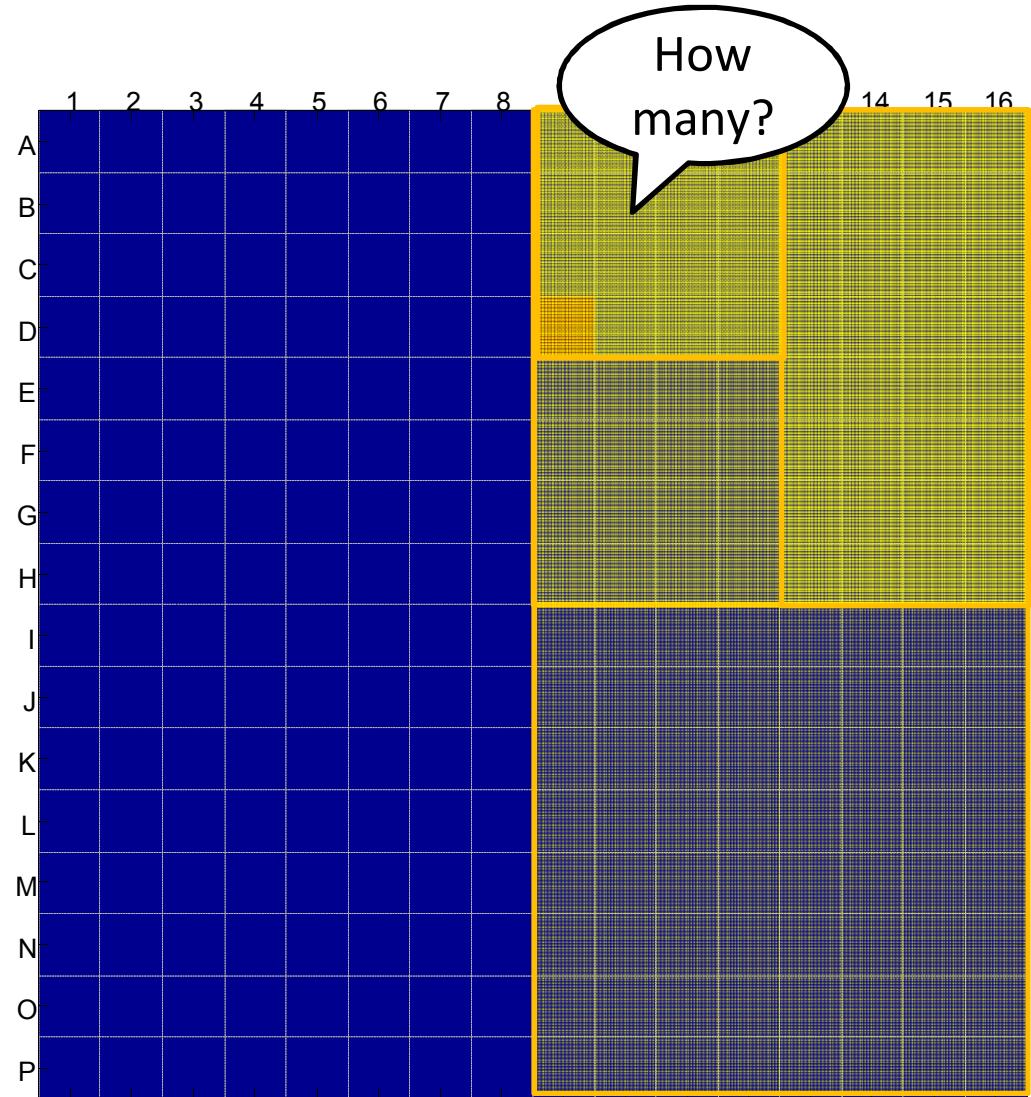
Smart strategy: optimal, adaptive

- Bisection: count number of hits in recursively subdividing half-planes



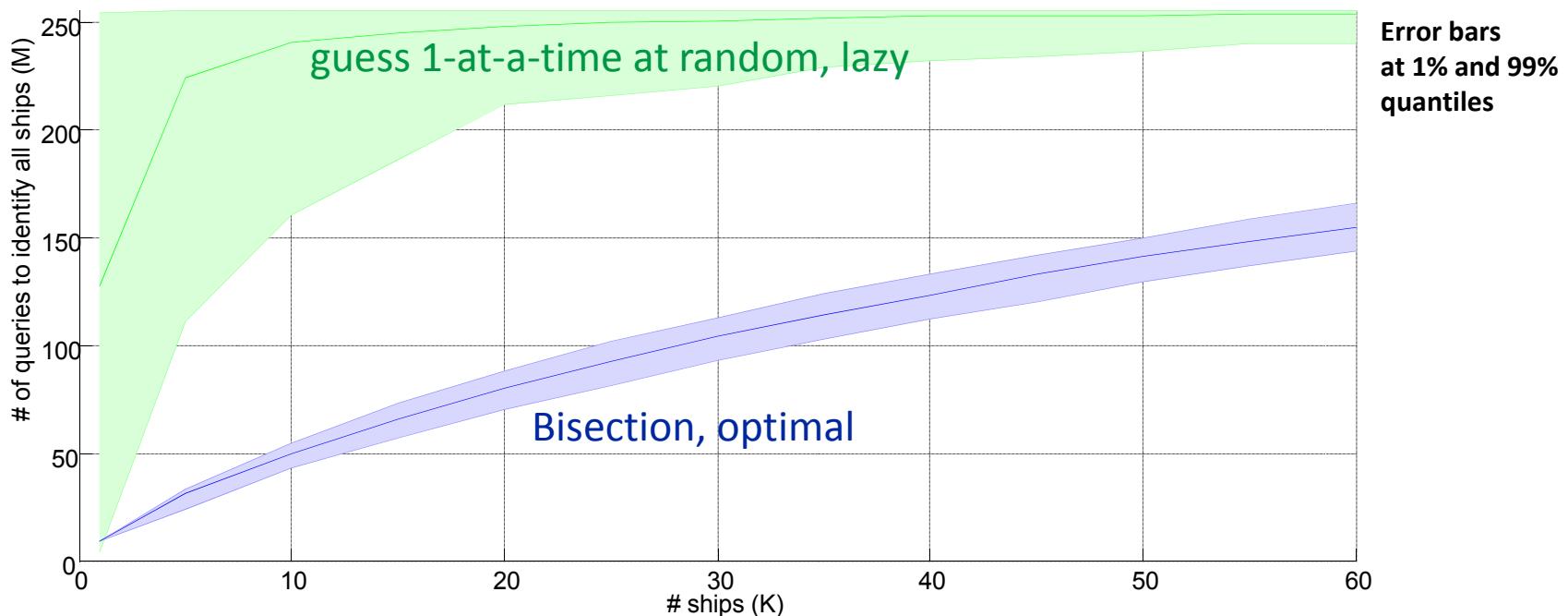
Smart strategy: optimal, adaptive

- Adaptive
 - Requires book-keeping
 - Next query depends on answer from previous guess
- Optimal
 - Queries designed to maximize information gain from each guess
- # of queries needed
$$M \approx K \log_2 \frac{N}{K}$$
(tight around mean)



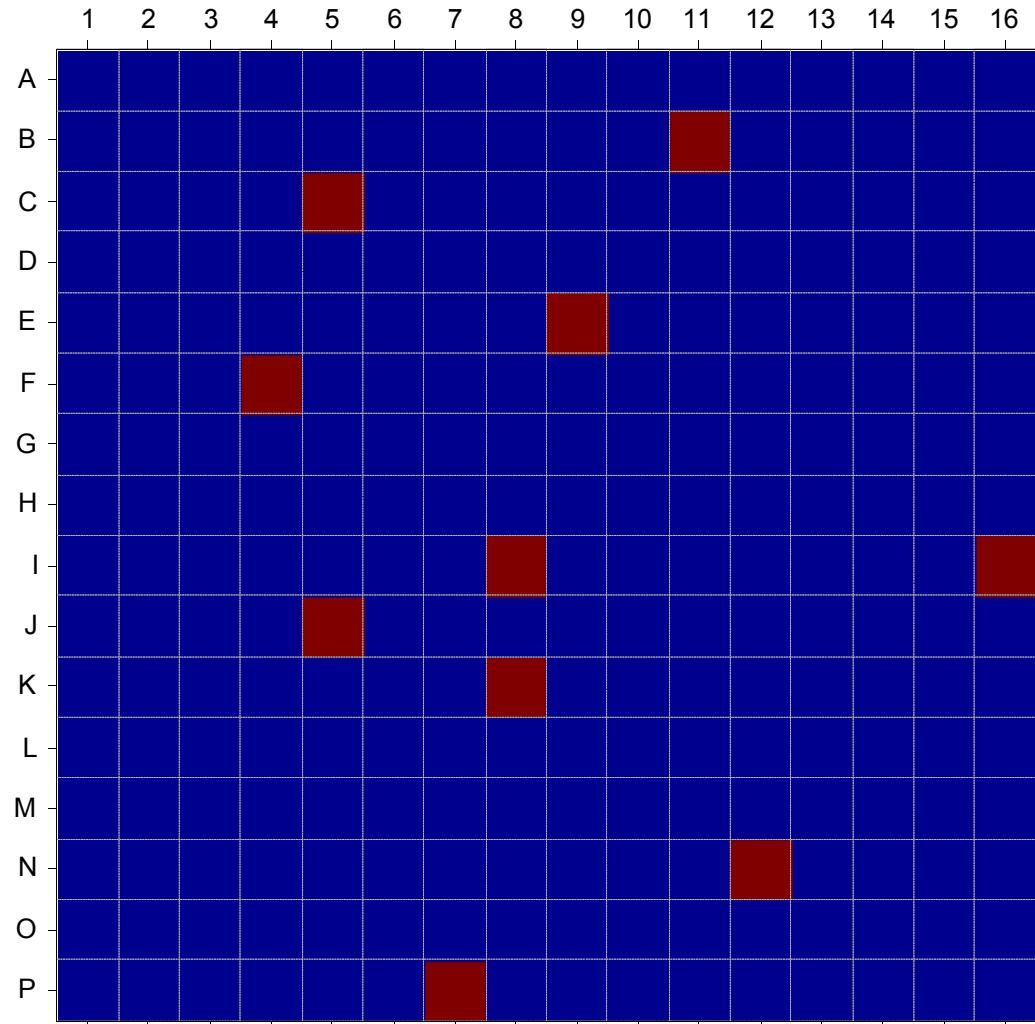
Comparison

- Guess 1-at-a-time
 - Lazy: pick a location at random, independently from last guess
 - Inefficient: with even a few ships K , $M \rightarrow N$ (guess every location)
- Bisection method
 - Adaptive: next guess depends on previous answers
 - Optimal: tight around $M = O(K \log N/K)$



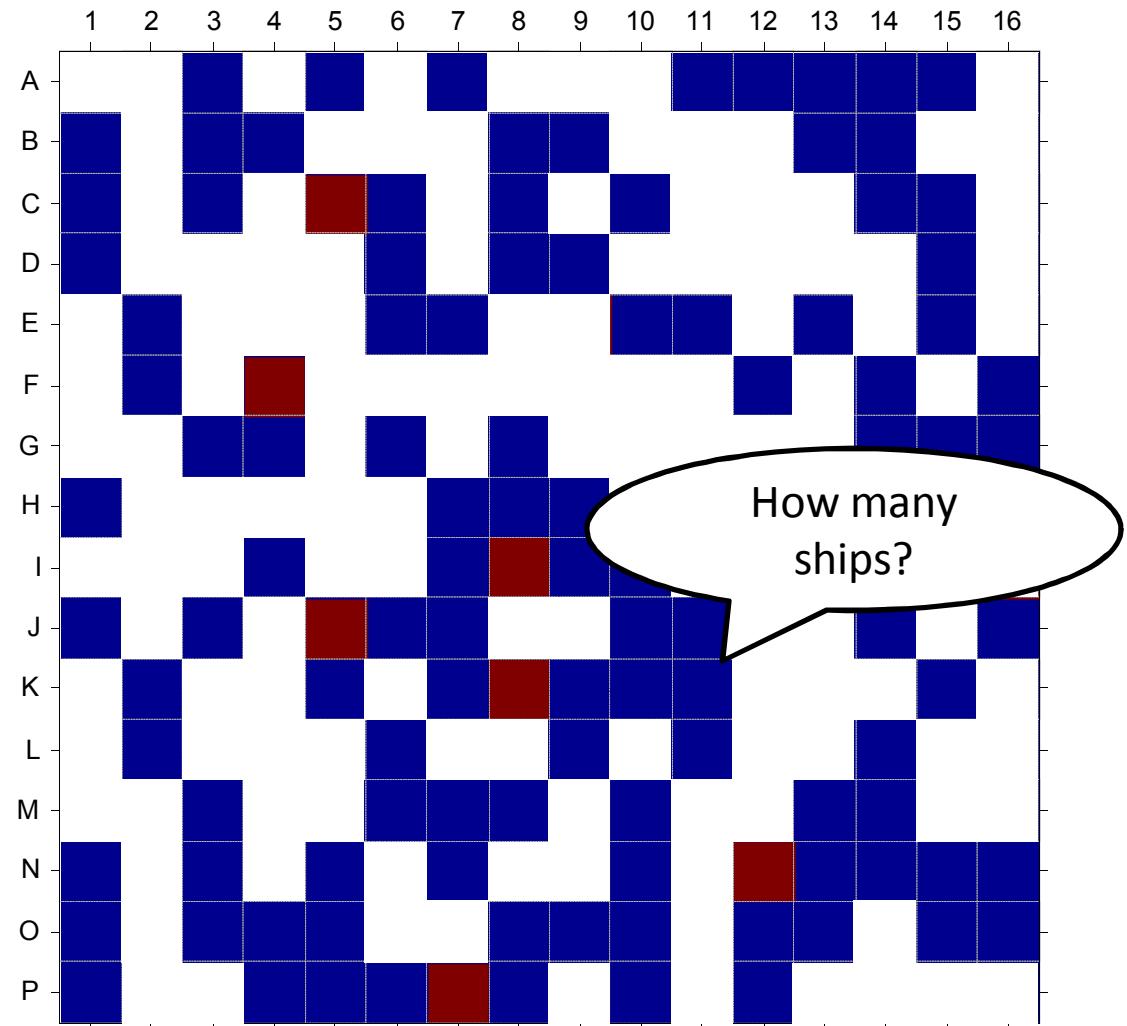
Proposed strategy

- Create pattern by randomly choosing $N/2$ of the N locations
 - Measurement: Count # ships touching random pattern
 - Keep a journal of patterns and counts



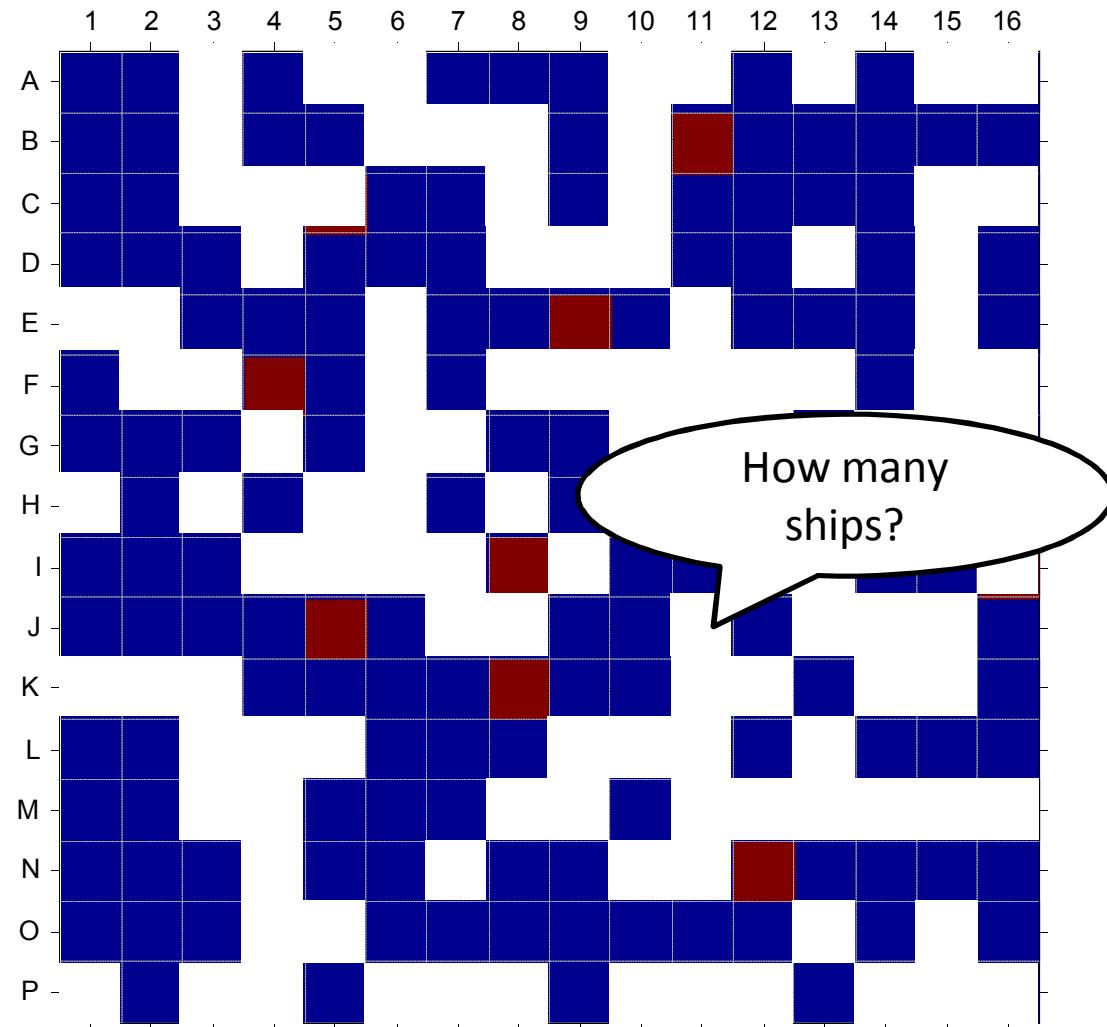
Proposed strategy

- Create pattern/mask by randomly choosing $N/2$ of the N locations
- Measurement: Count # ships showing through the mask
- Keep a journal:
 $A_1 = [1 \ 0 \ 1 \dots \ 1 \ 0] \Rightarrow 7$



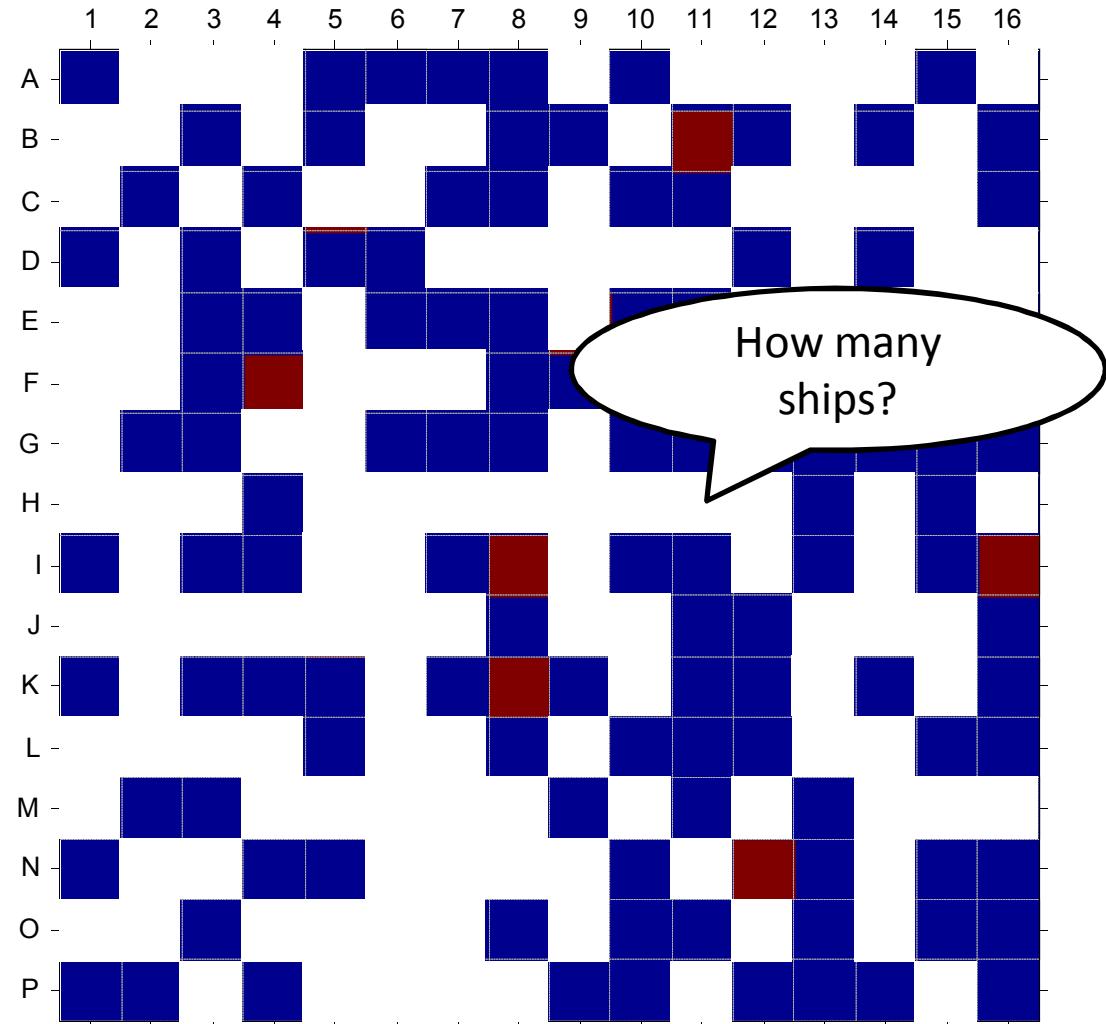
Proposed strategy

- Create pattern/mask by randomly choosing $N/2$ of the N locations
 - Measurement: Count # ships showing through the mask
 - Keep a journal:
$$\mathbf{A}_1 = [1 \ 0 \ 1 \ \dots \ 1 \ 0] \Rightarrow 7$$
$$\mathbf{A}_2 = [0 \ 1 \ 0 \ \dots \ 1 \ 0] \Rightarrow 7$$



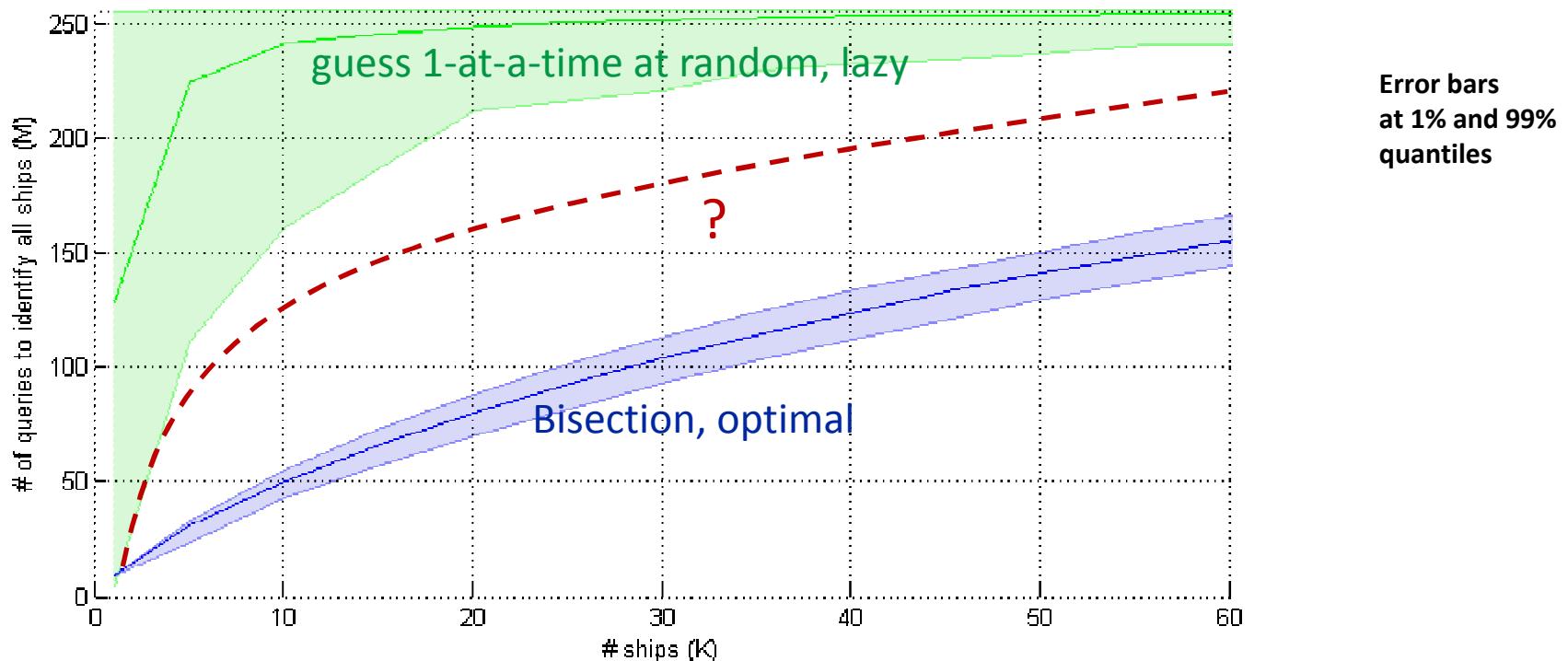
Proposed strategy

- Create pattern/mask by randomly choosing $N/2$ of the N locations
- Measurement: Count # ships showing through the mask
- Keep a journal:
 $A_1 = [1\ 0\ 1\ \dots\ 1\ 0] \Rightarrow 7$
 $A_2 = [0\ 1\ 0\ \dots\ 1\ 0] \Rightarrow 7$
 $A_3 = [0\ 0\ 1\ \dots\ 1\ 1] \Rightarrow 6$
- After M measurements, solve a logic problem



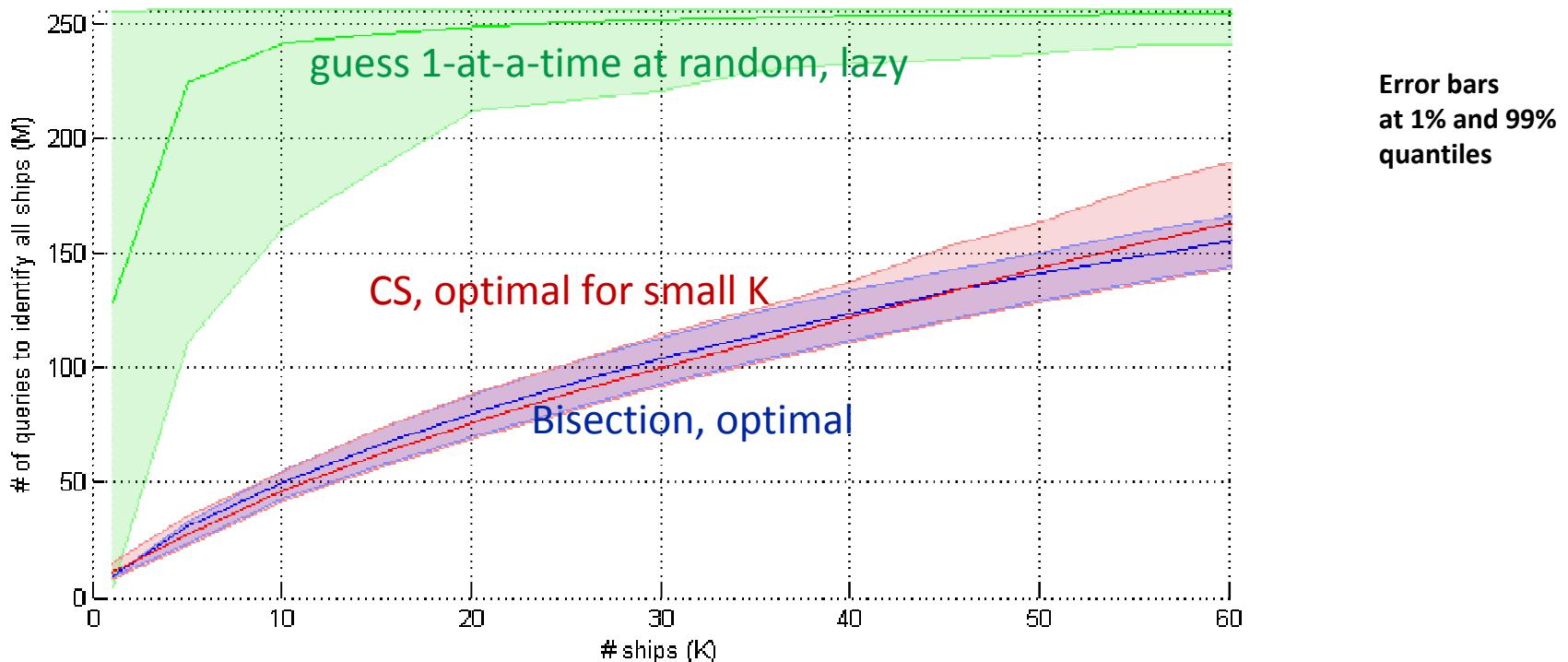
Comparison

- **Guess 1-at-a-time:** non-adaptive, worst-case ($M \rightarrow N$)
- **Bisection method:** adaptive, optimal ($M \sim K \log N/K$)
- **Compressed sensing:** non-adaptive, ??????



Comparison

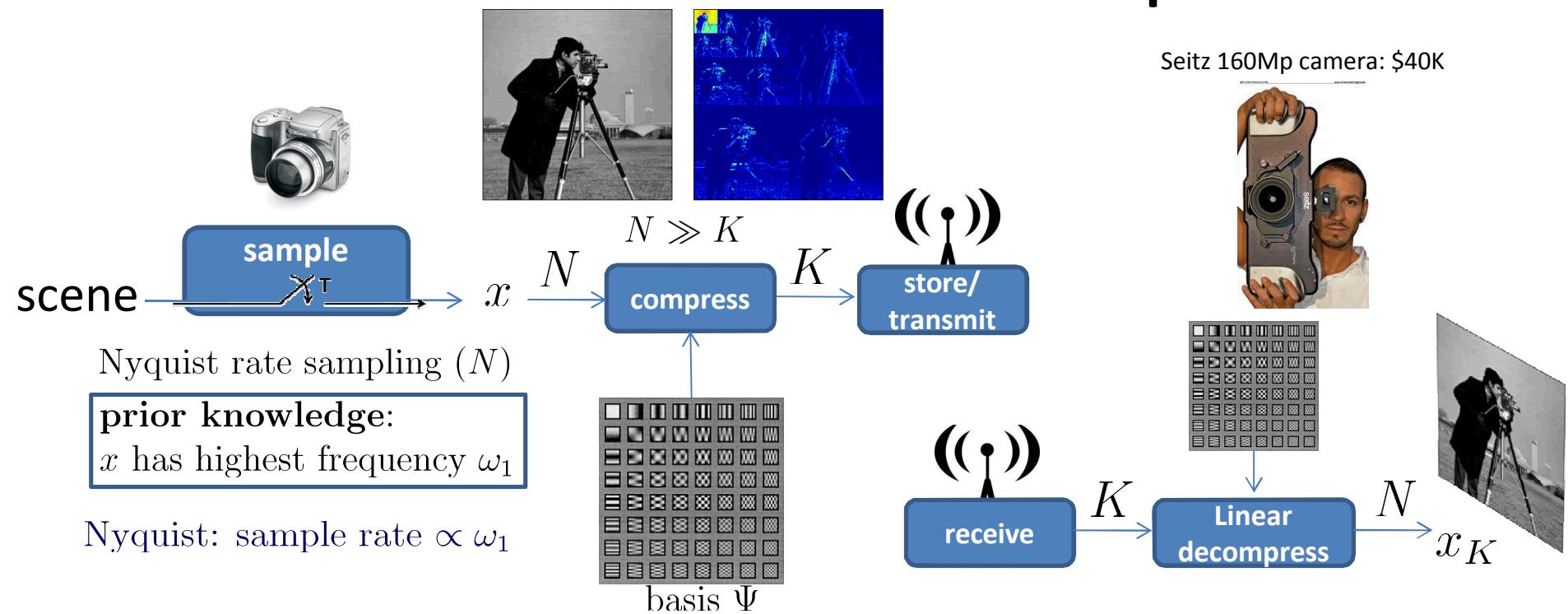
- **Guess 1-at-a-time:** non-adaptive, worst-case, $M \rightarrow N$
- **Bisection method:** adaptive, optimal, $M=O(K \log N/K)$
- **Compressed sensing:** non-adaptive, optimal, $M=O(K \log N/K)$
Lazy, agnostic measurements and optimal solution
 - Price to pay: harder recovery problem after measurements are taken



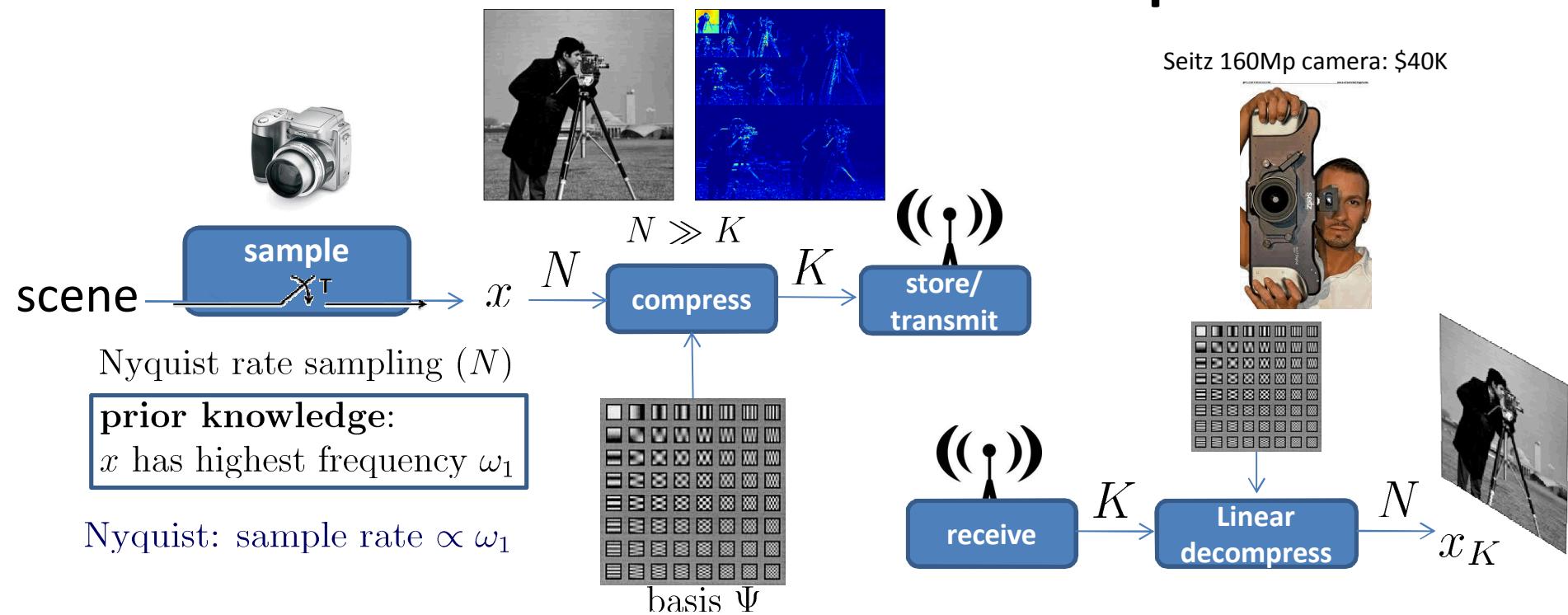
Outline

- Battleship: a surprising fact
- Intro to compressed sensing theory
- Examples of compressed sensing
 - Early: single-pixel camera, MRI
 - Recent @ Sandia: electron microscopy, SAR

Traditional vs. CS data acquisition



Traditional vs. CS data acquisition

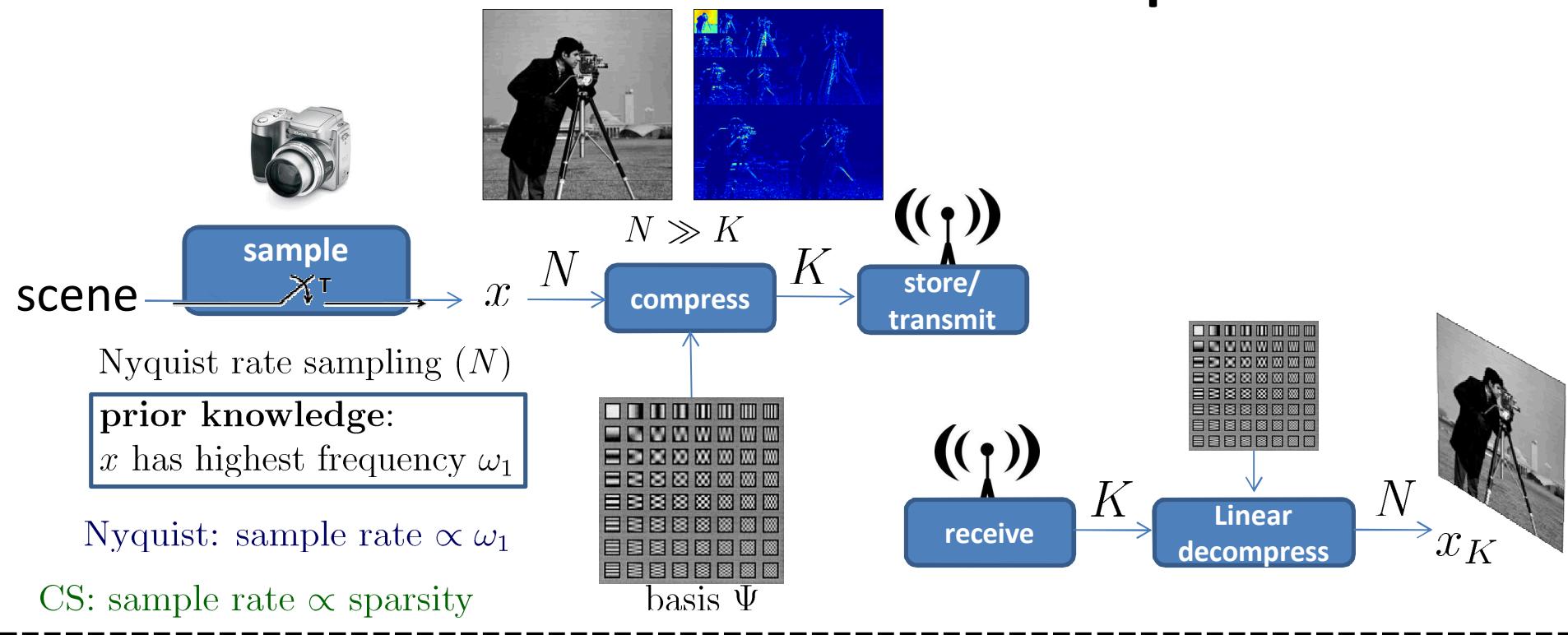
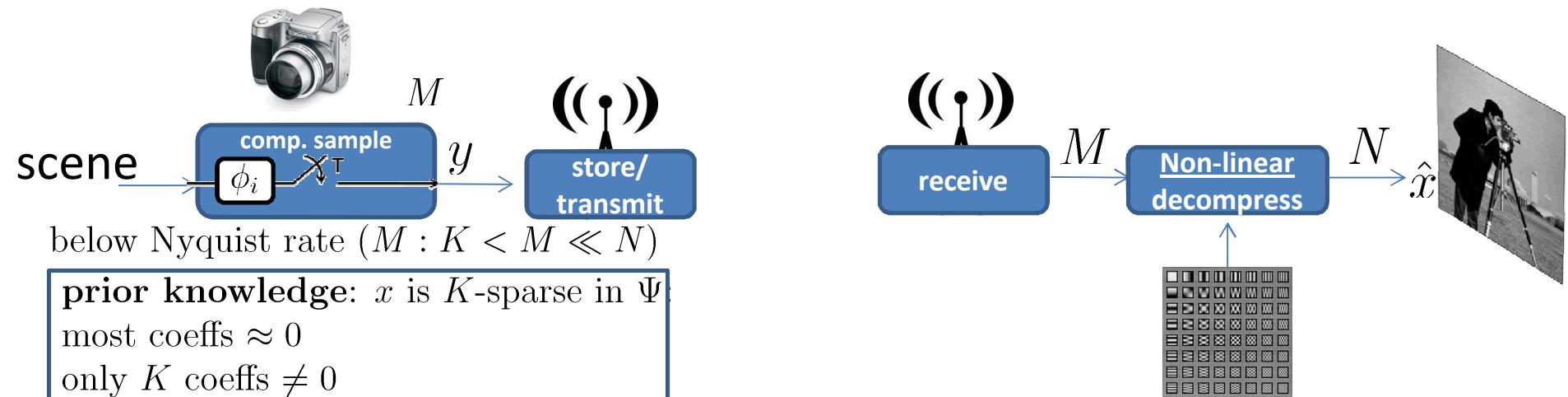


One can regard the possibility of digital compression as a failure of sensor design. If it is possible to compress measured data, one might argue that too many measurements were taken.

David Brady

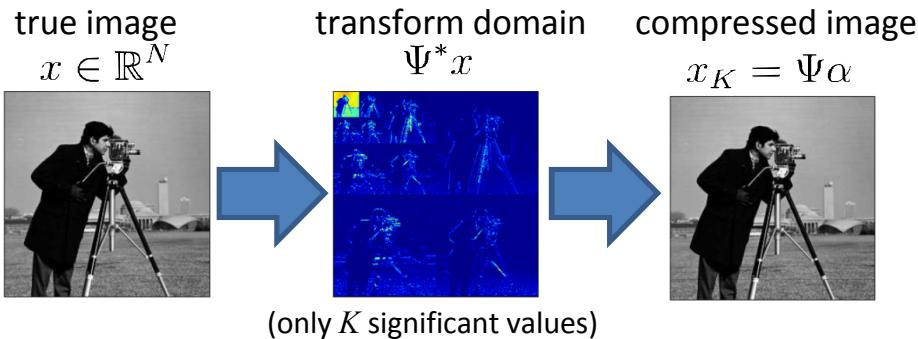
Can we acquire only the useful parts of the image?

Traditional vs. CS data acquisition



Compressed Sensing Theory

Digital compression:



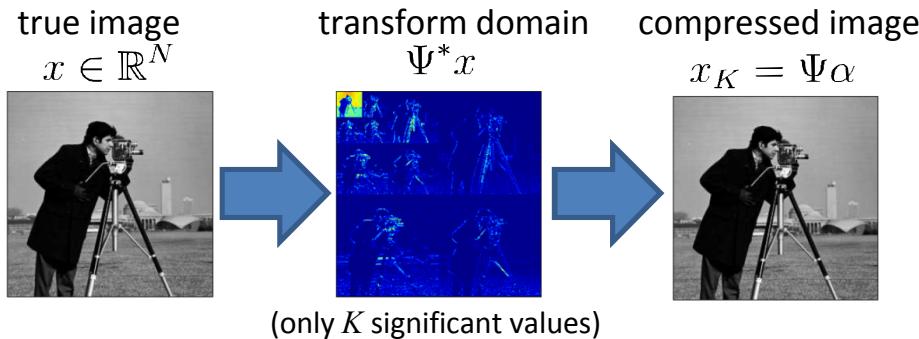
sparse image as a matrix-vector product using basis

$$x_K = \Psi \alpha$$

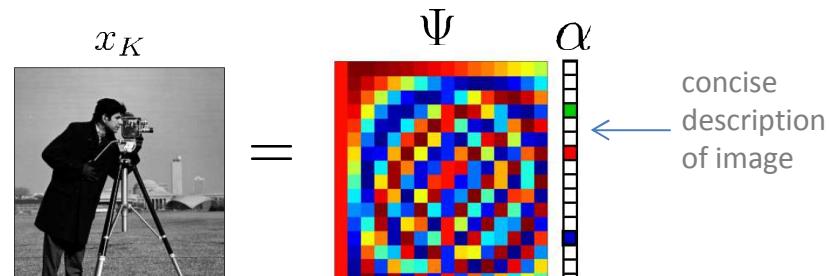
concise description of image

Compressed Sensing Theory

Digital compression:



sparse image as a matrix-vector product using basis



Take M “mixture” measurements of α :

$$y = \Phi \Psi \alpha$$

y Φ Ψ α

$x = \Psi \alpha$

$$y = A \alpha$$

y $A = \Phi \Psi$ α

M M N N N (but only K are nonzero)

Compressed Sensing Theory

Compressed sensing:
 A underdetermined
 $(M < N)$ but $M \geq K$.
Support of α is unknown.

$$y = A\alpha \quad A = \Phi\Psi$$

Theorem: If A is properly designed, then solve

$$\begin{aligned} \min_{\alpha} \quad & \|\alpha\|_1 && \text{(convex relaxation} \\ & \text{[polynomial time]} \\ \text{s.t.} \quad & A\alpha = y & \text{NP-hard problem)} \end{aligned}$$

If $M \geq C_1 K \log N$

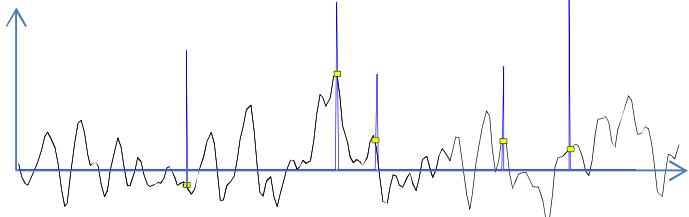
$$\text{then } \|\alpha - \alpha^*\|_1 \leq C_2 \|\alpha_K^* - \alpha^*\|_1$$

- Exact reconstruction of sparse images in polynomial time from few measurements
- Bounded reconstruction of compressible (almost sparse) images

$$x = \Psi \alpha$$

How to properly design sensing matrix Φ ?

- Incoherence:** sampling functions “global” in basis
- RIP:** $\Phi\Psi$ is distance-preserving for sparse vectors



Most common choices:

low mutual coherence

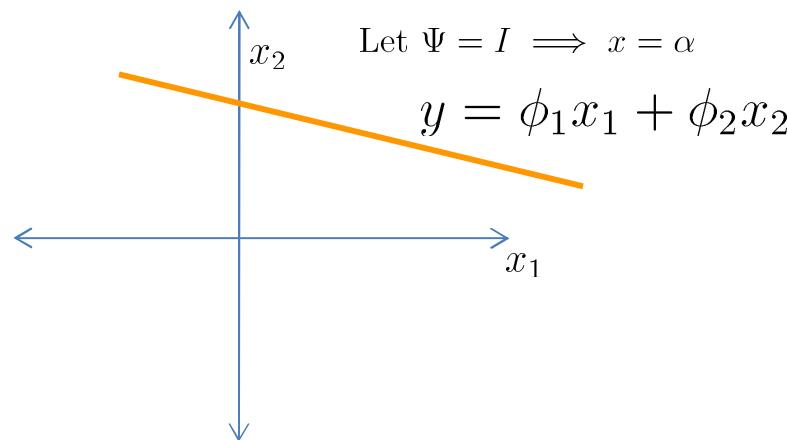
- if Ψ is DFT, then Φ is random subset of identity
- if Ψ is identity, then Ψ is random subset of DFT

satisfies RIP

- If I choose elements of Φ at random,
 - Ψ can be anything!
 - I can choose after data has been collected!

Exact Recovery of Sparse Signals

- Measurement equation is an **underdetermined system**
(Fundamental theorem of linear algebra ==> cannot uniquely determine x)



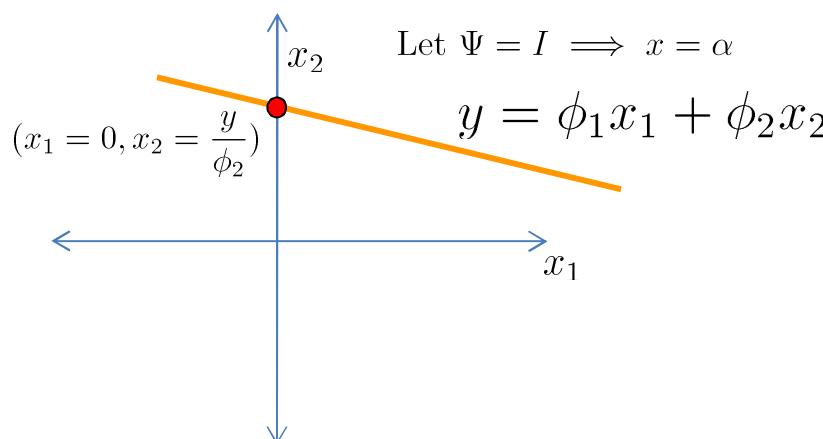
Exact Recovery of Sparse Signals

$$\begin{array}{c}
 y \quad \Phi \quad x \\
 \left[\begin{array}{c} \text{color bars} \\ \vdots \end{array} \right] = \left[\begin{array}{cccc} \text{red} & \text{blue} & \text{green} & \text{yellow} \\ \text{blue} & \text{green} & \text{red} & \text{yellow} \\ \text{green} & \text{red} & \text{blue} & \text{yellow} \\ \text{yellow} & \text{blue} & \text{green} & \text{red} \\ \vdots & \vdots & \vdots & \vdots \end{array} \right] \quad (M \times N) \\
 M \ll N
 \end{array}
 \quad
 \begin{array}{c}
 x \quad \Phi \quad \Psi \quad \alpha \\
 \text{photographer} \quad \left[\begin{array}{cccc} \text{red} & \text{blue} & \text{green} & \text{yellow} \\ \text{blue} & \text{green} & \text{red} & \text{yellow} \\ \text{green} & \text{red} & \text{blue} & \text{yellow} \\ \text{yellow} & \text{blue} & \text{green} & \text{red} \\ \vdots & \vdots & \vdots & \vdots \end{array} \right] \quad \left[\begin{array}{cccc} \text{red} & \text{blue} & \text{green} & \text{yellow} \\ \text{blue} & \text{green} & \text{red} & \text{yellow} \\ \text{green} & \text{red} & \text{blue} & \text{yellow} \\ \text{yellow} & \text{blue} & \text{green} & \text{red} \\ \vdots & \vdots & \vdots & \vdots \end{array} \right] \quad \left[\begin{array}{c} \text{color bars} \\ \vdots \end{array} \right] \\
 x = \Psi \alpha \quad \boxed{x}
 \end{array}$$

- Measurement equation is an **underdetermined system**
- Occam's razor: find ***sparsest solution*** that explains measurements

$$\min_{\alpha} \|\alpha\|_0 \quad \text{s.t.} \quad \Phi \Psi \alpha = y \quad \|\alpha\|_0 = \#\{i : \alpha_i \neq 0\} \quad \begin{array}{l} \ell_0 \text{ quasi-norm counts} \\ \# \text{ of nonzero elements} \end{array}$$

→ $\hat{x} = \Psi \hat{\alpha}$



Exact Recovery of Sparse Signals

$$y = \Phi x$$

y is a vector of measurements, Φ is the measurement matrix, x is the original signal. $M \ll N$.

- Measurement equation is an **underdetermined system**
- Occam's razor: find ***sparsest solution*** that explains measurements

$$\min_{\alpha} \|\alpha\|_0 \text{ s.t. } \Phi \Psi \alpha = y \quad \|\alpha\|_0 = \#\{i : \alpha_i \neq 0\}$$

ℓ_0 quasi-norm counts
of nonzero elements

- Some algorithmic approaches (See [Tropp & Wright, 2010] for overview)

- **Greedy pursuit** (approximate, fast). Iterative: refine sparse solution. Greedy, myopic.
 - **Convex relaxation** (exact, manageable). Use ℓ_1 norm as convex surrogate for sparsity.

$$\min_{\alpha} \|\alpha\|_1 \text{ s.t. } \Phi \Psi \alpha = y \quad \|\alpha\|_1 = \sum_i |\alpha_i|$$

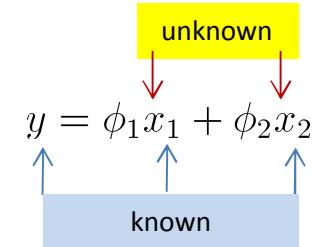
(linear program)

Minimizing ℓ_1 norm yields sparse solution

An example:

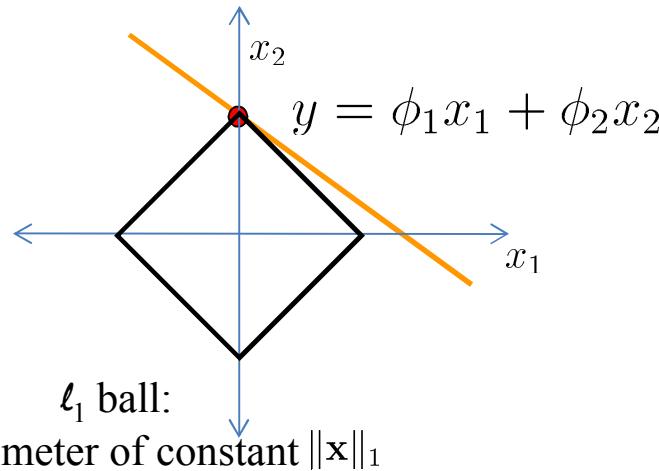
- Let $\Psi = I$
- Vector $\mathbf{x} = [x_1, x_2]^T$ known to be sparse
- Single measurement
- Family of solutions
- Find unique solution to

$$\begin{aligned} y &= \Phi \mathbf{x} \\ &= [\phi_1 \quad \phi_2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{aligned}$$



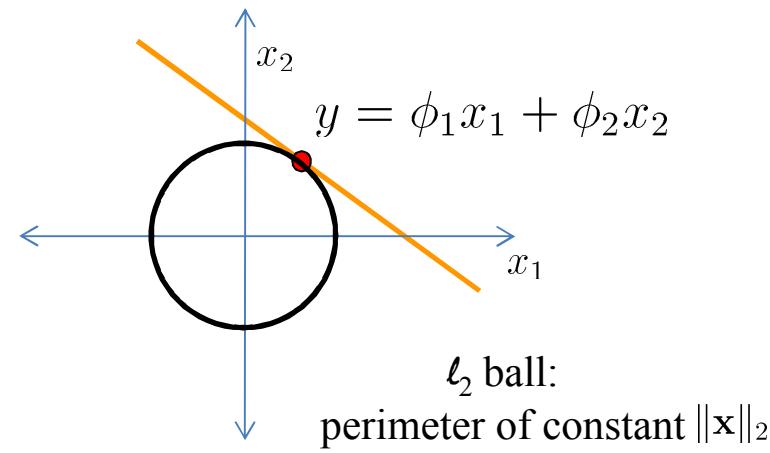
$$\|\mathbf{x}\|_1 = |x_1| + |x_2|$$

Sparse Solution



$$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2}$$

Non-sparse Solution



Single-pixel camera [Rice University]

[Duarte, et al, 2008]

What is sparse? Image coefficients in wavelet basis

What sampling kernel? Randomly-generated binary

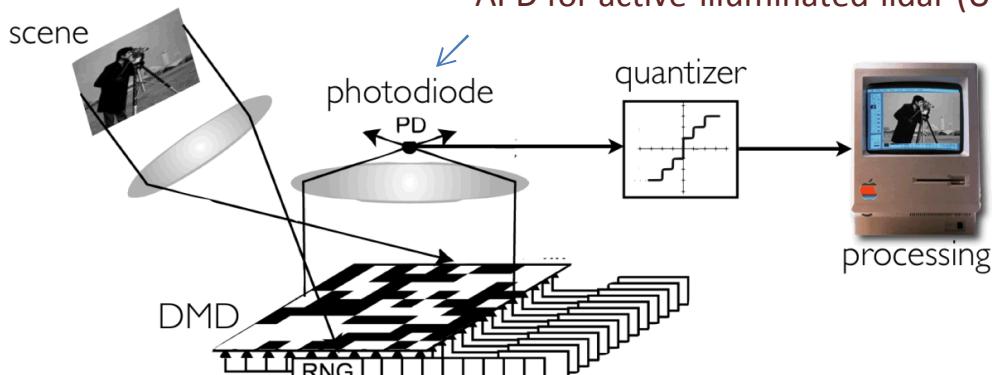
How to implement CS?

- Single photo-detector
- Micro-mirror array encodes sensing function

$$y = \Phi \Psi \alpha$$

could be exotic: for example,

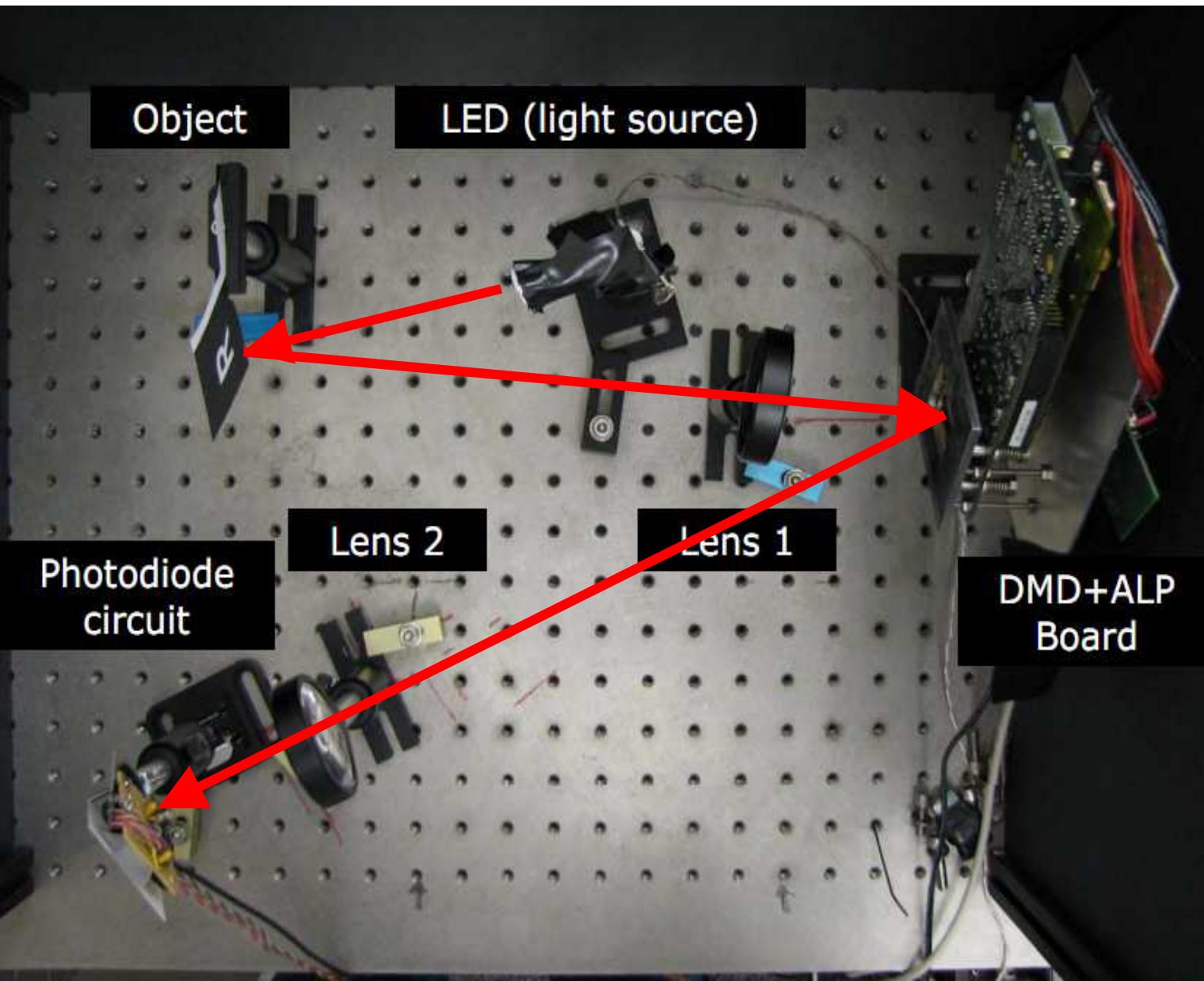
- line array of hyperspectral elements (InView Corp)
- PMT for low-light imaging
- APD for active-illuminated lidar (U of Rochester)



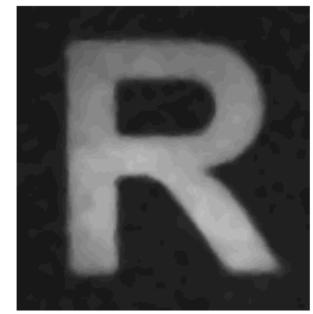
$$y_i = \langle \text{[sparse matrix]}, \text{[image of a person]} \rangle$$

$$y_{i+1} = \langle \text{[sparse matrix]}, \text{[image of a person]} \rangle$$

Single-pixel camera [Rice University]



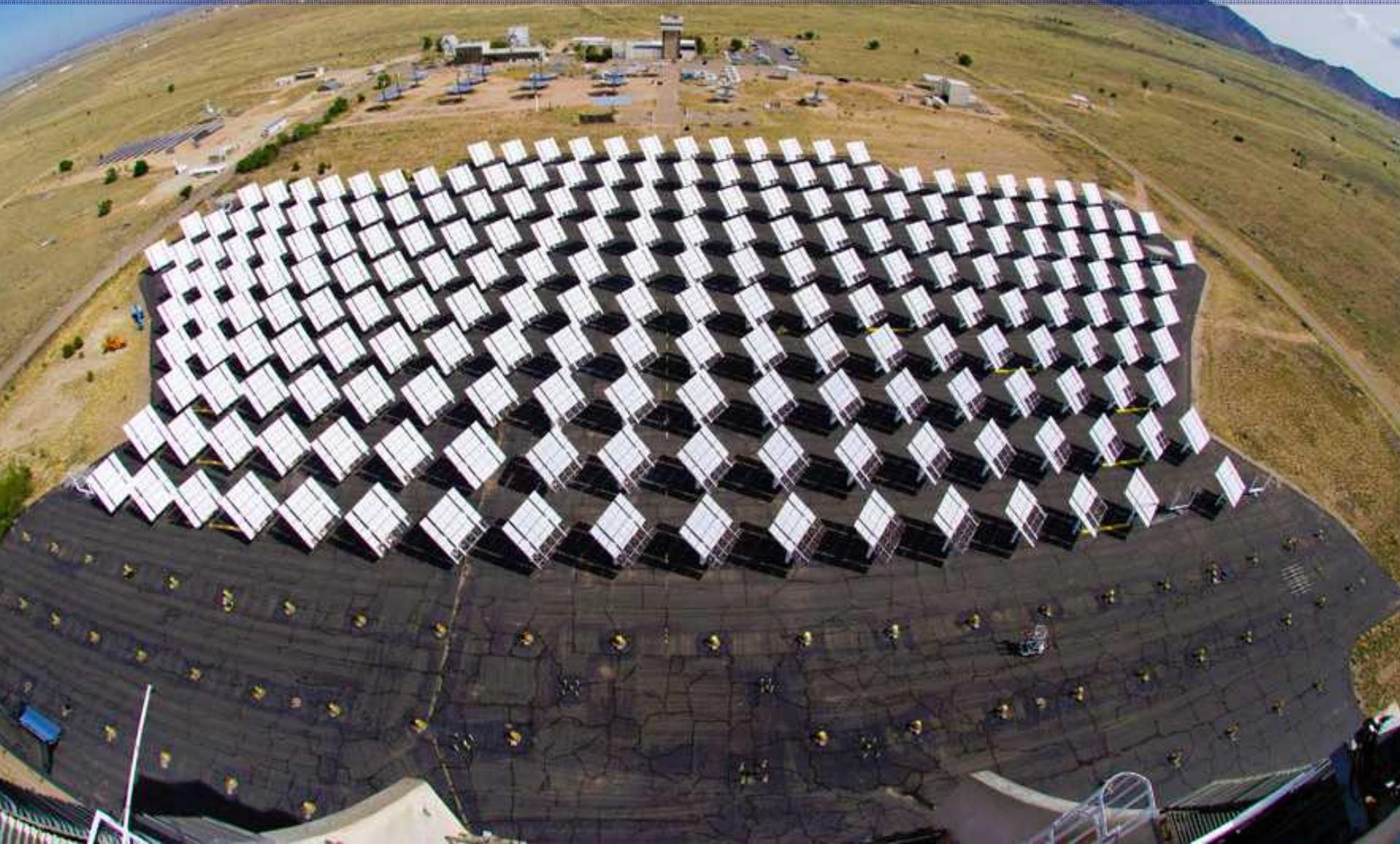
target
65536 pixels



11000 measurements
(16%)

1300 measurements
(2%)

Sandia's Heliostat Array: world's largest single pixel camera?



Sparse Magnetic Resonance Imaging

(Lustig, Donoho, Pauly, 2007)

What is sparse? edges in proton density image

Sampling kernel? Randomly-selected Fourier (k-space) samples

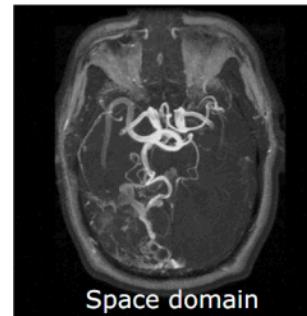
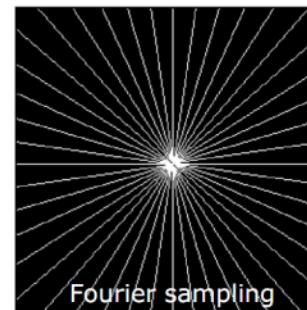
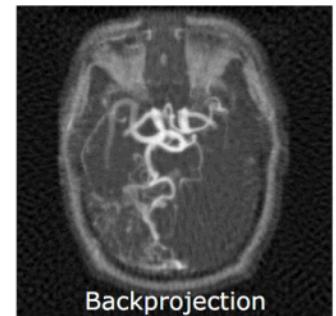
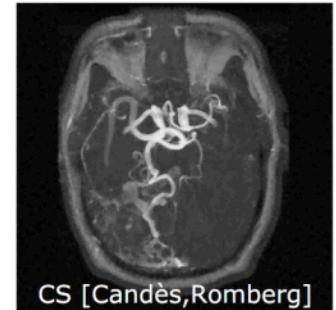
How to implement CS?

- MRI already samples in k-space! [Incoherent with canonical (pixel) domain]
(Fourier coefficients)

$$X(\omega_1, \omega_2) = \sum_{(t_1, t_2)} x(t_1, t_2) e^{-j2\pi(\omega_1 t_1 + \omega_2 t_2)}$$

- Choose random subset of Fourier samples

Life-saving application: pediatric MRI



Sandia SAR imagery (www.sandia.gov/RADAR)

Washington, D.C.,
Ku-Band, 1-m

Compressive Sensing for SAR

What is sparse? Resolved SAR image

What sensing matrix? Random slow-time sampling

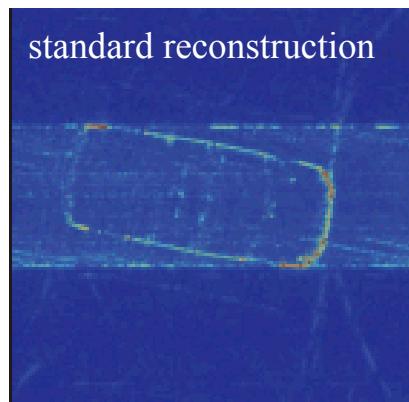
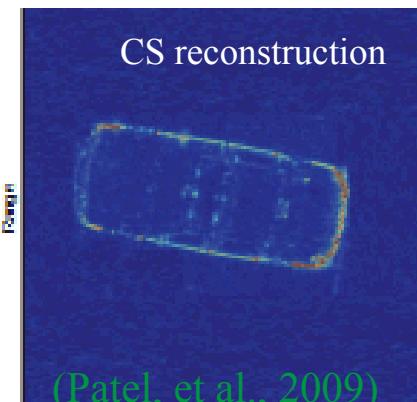
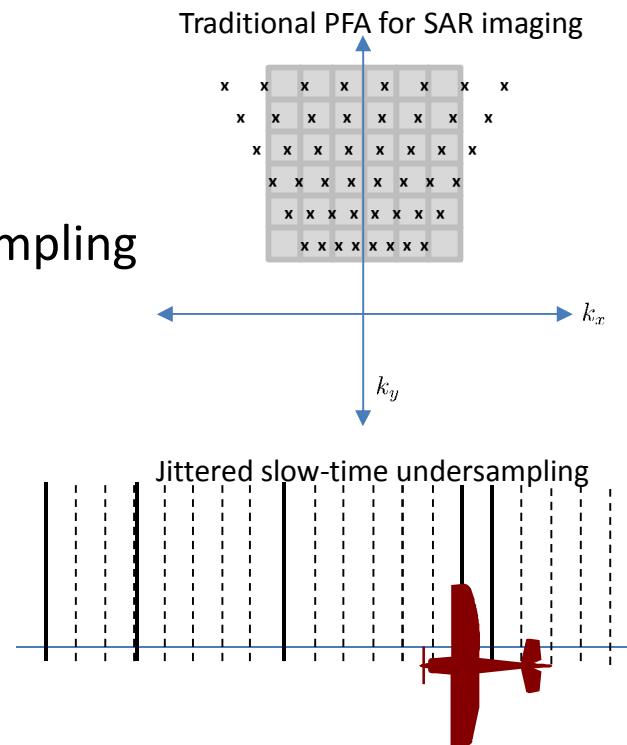
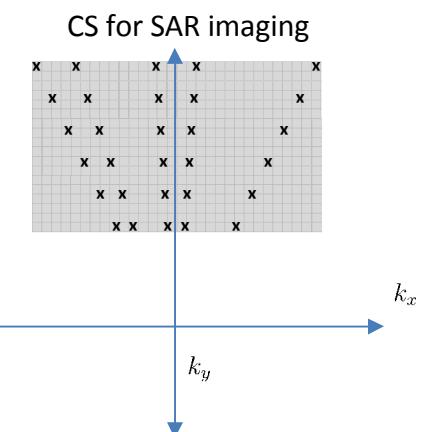
How to encode sensing matrix?

- SAR already gives Fourier measurements
- Random slow-time undersampling

Benefits: reduced transmit power

longer flight times

electronic counter-countermeasures



SAR Imaging from undersampled data

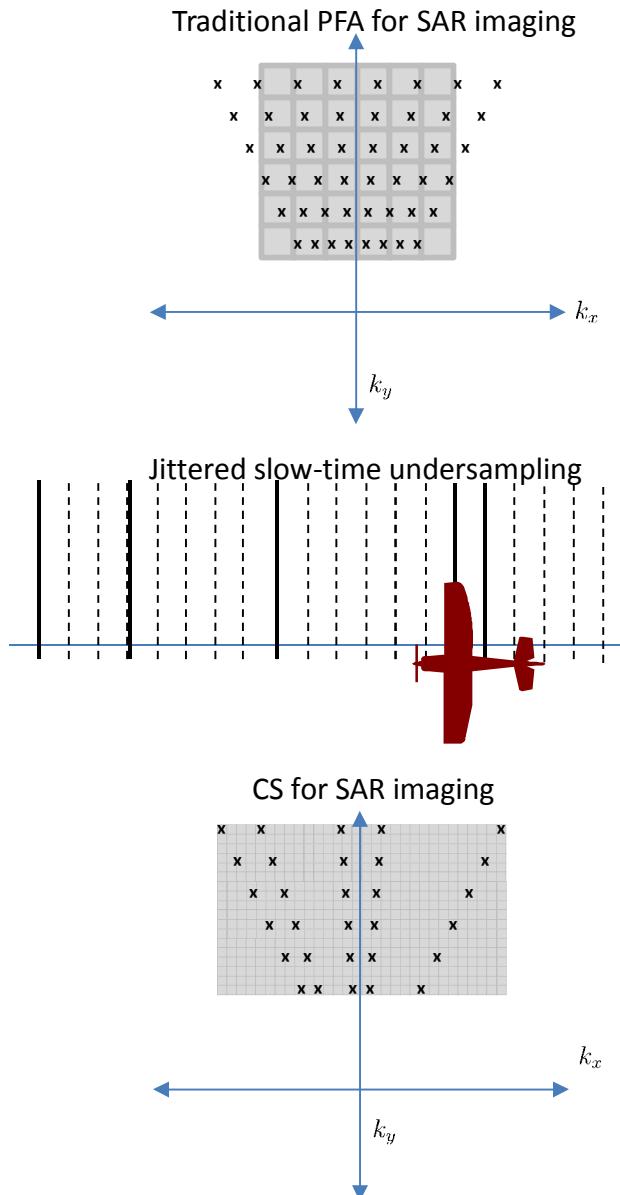
Standard Synthetic Aperture Radar (SAR):

- Regularly-spaced chirps to measure **k-space samples** in trapezoidal (Sandia) or annular region
 - SAR image processing (PFA simplified):
 - interpolate onto regular k-space grid
 - FFT

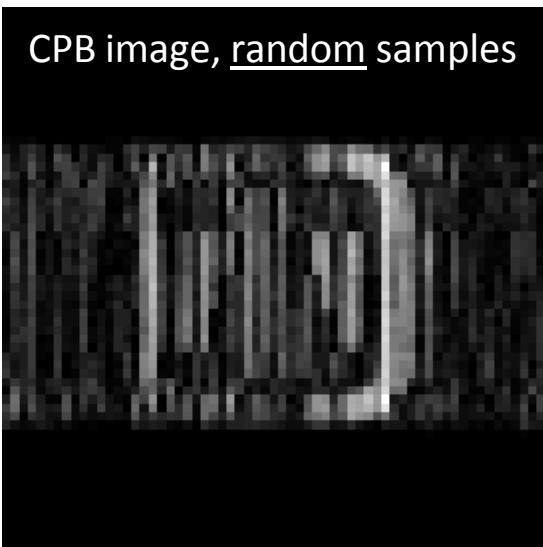
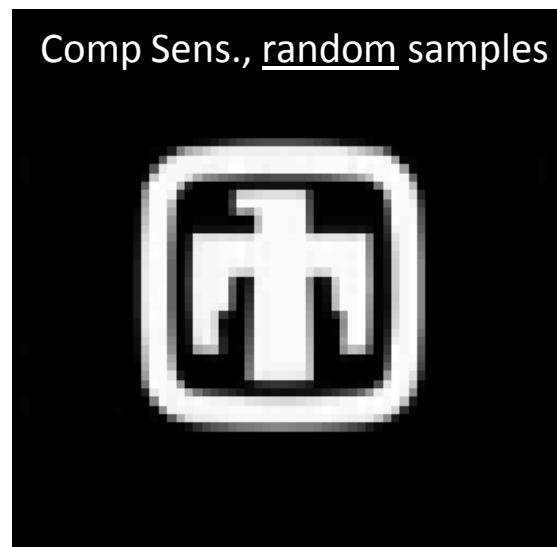
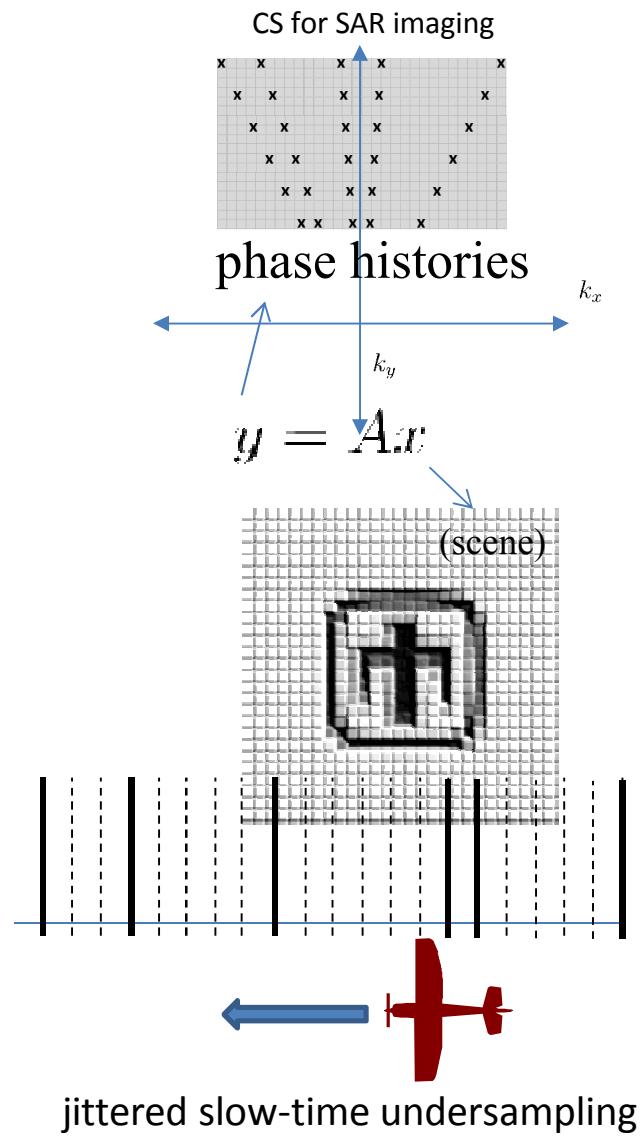
Compressive SAR (akin to CS for MRI):

- Random-stagger pulse repetition interval (PRI)
 - Faster “logical” chirp timing rate (e.g., 4x)
 - Chirp only at a fraction of intervals (e.g., 10%)
 - Overall pulse reduction (e.g., 40% of typical)
 - CS image reconstruction:
 - Embed samples on fine k-space grid
 - Reconstruct via Occam’s razor: what’s the simplest (sparsest) image that can describe my observations

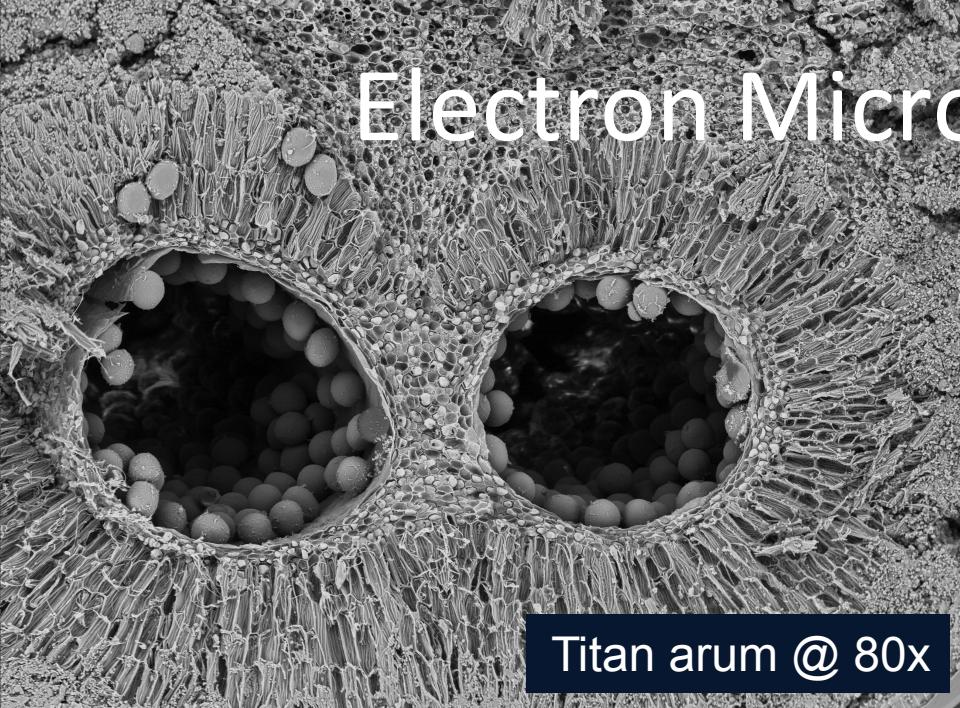
$$\text{phase histories} \quad \text{scene} \\ \mathbf{y} = \mathbf{A}\mathbf{x} \quad \min_x \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{y}$$



Results (synthetic scene)

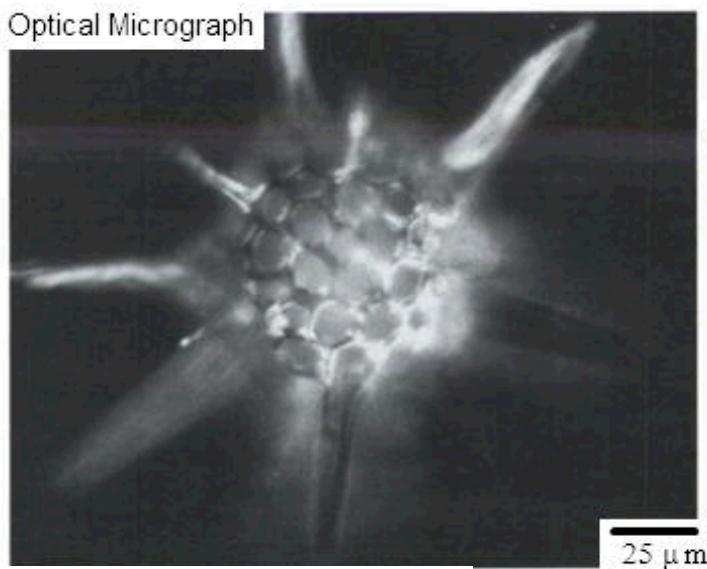


Electron Microscopy Images



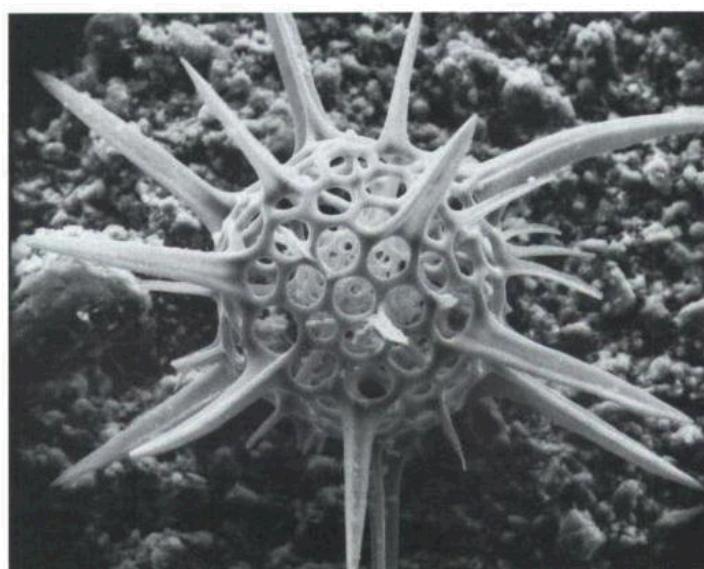
Why SEM?

Optical Microscope Image



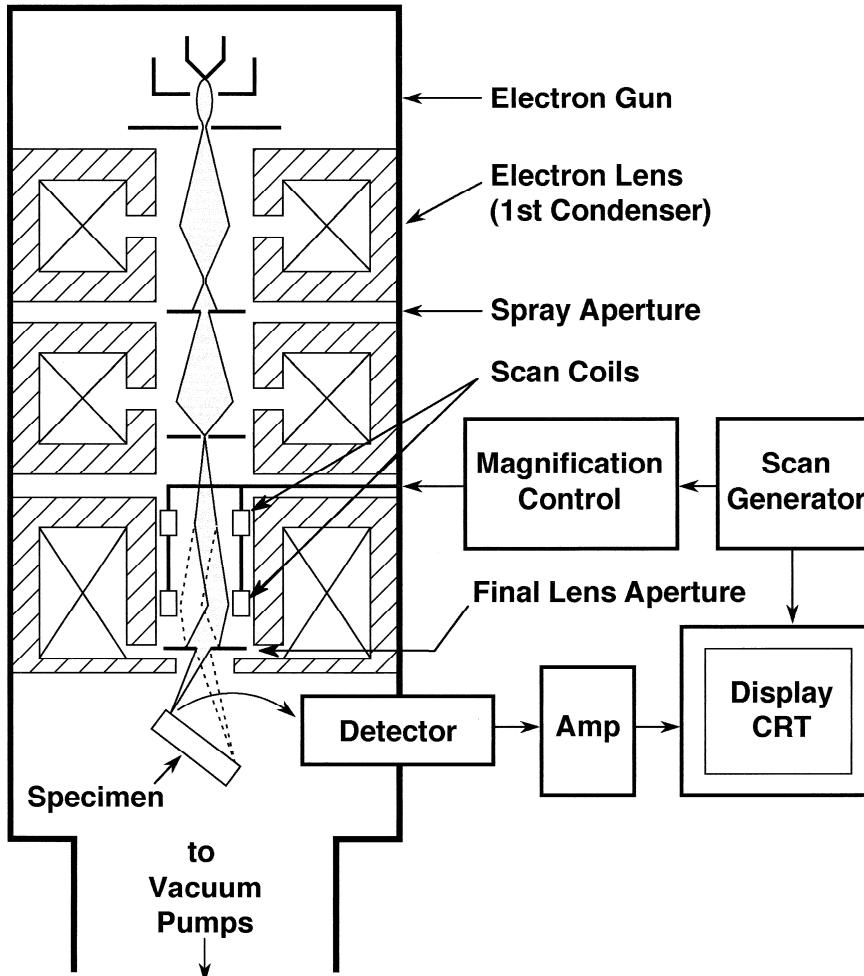
Radiolarian (marine organism)

SEM Image



- Typical SEMs can resolve ~ 1 nm features (10^3 x smaller diff. limit than optical)
- Large depth of focus
- Flexible viewing conditions, e.g., 10x to 500,000x mag

SEM Electron Column



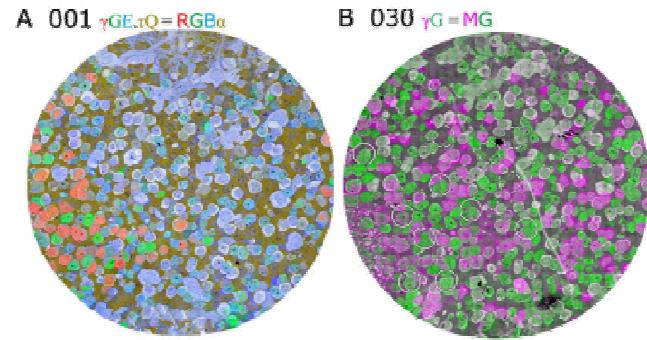
- Electron gun generates electrons
- Electromagnetic condenser lenses and apertures focus electrons into a beam w/ small spot size (~1 nm)
- Scan coils raster beam across sample area to be imaged
- Detector collects electrons at each point of raster pattern and plots on computer display (typically a single SE/BSE, but there may be other, specialized detectors).

SNR-limited image collection time

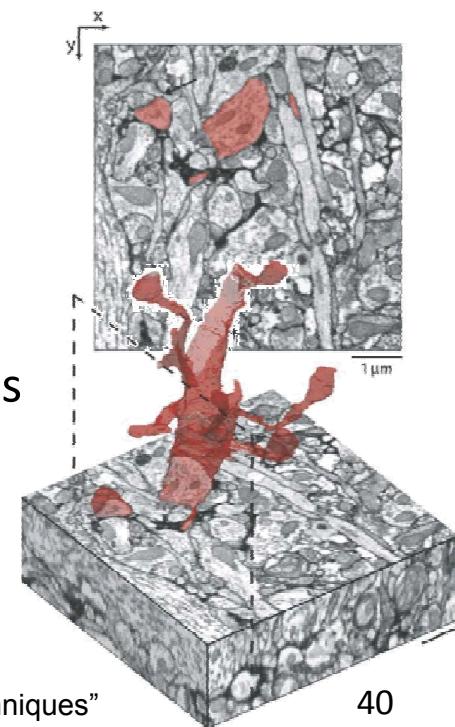
- Rabbit retina connectome (Anderson, et al., 2011)
 - Tissue ~ 0.25 mm in diameter
 - ~ 2 nm resolution
 - 350,000 image tiles (16.5 TB) in 5 months
 - Automated trans. electron microscope
- Mouse brain (Briggman and Denk, 2006)
 - Single cortical column from mouse ~ 0.1 mm 3
 - ~ 10 nm / pixel per 30 nm slice
 - Thousands of images (10^8 pixels each) over several months
 - Serial block-face SEM
- Many engineering efforts to reduce collection time

(Lichtman et al. @ Harvard)

Briggman and Denk, 2006, "Towards neural circuit reconstruction with volume electron microscopy techniques"



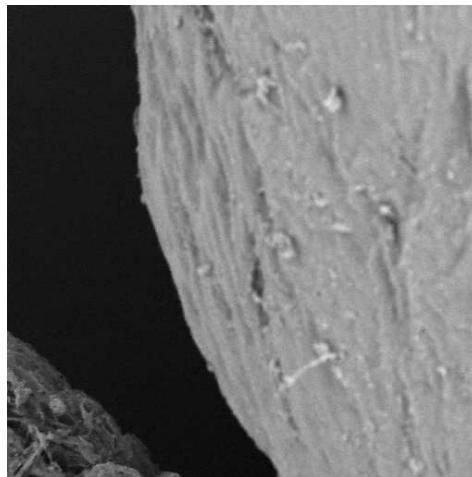
Anderson, et al., 2011, "Exploring the retinal connectome"



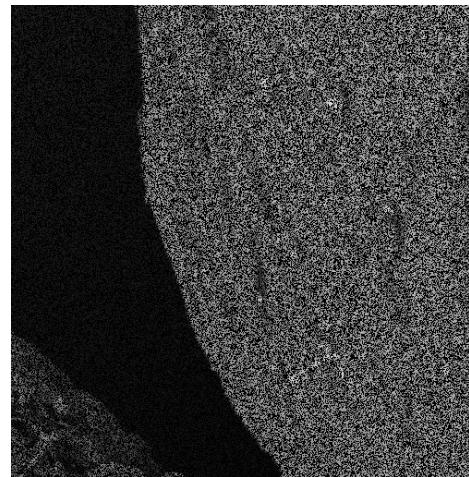
Approach

- Visit a random subset of pixel locations
- From $M < N$ measurements, reconstruct
- Compression basis chosen to be block-DCT
 - Good compressibility of SEM images
 - Low mutual coherence
- Total variation regularizer $\|\nabla \mathbf{x}\|_1$ to denoise and promote smoothness between block boundaries

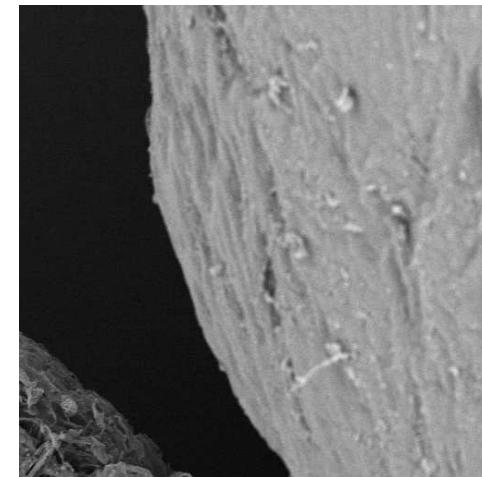
$$\begin{aligned} \min_{\mathbf{x}} \quad & \|\Psi^T \mathbf{x}\|_1 + \|\nabla \mathbf{x}\|_1 \\ \text{s.t.} \quad & \|\mathbf{y} - \Phi \mathbf{x}\| \leq \sigma^2 \end{aligned}$$



original



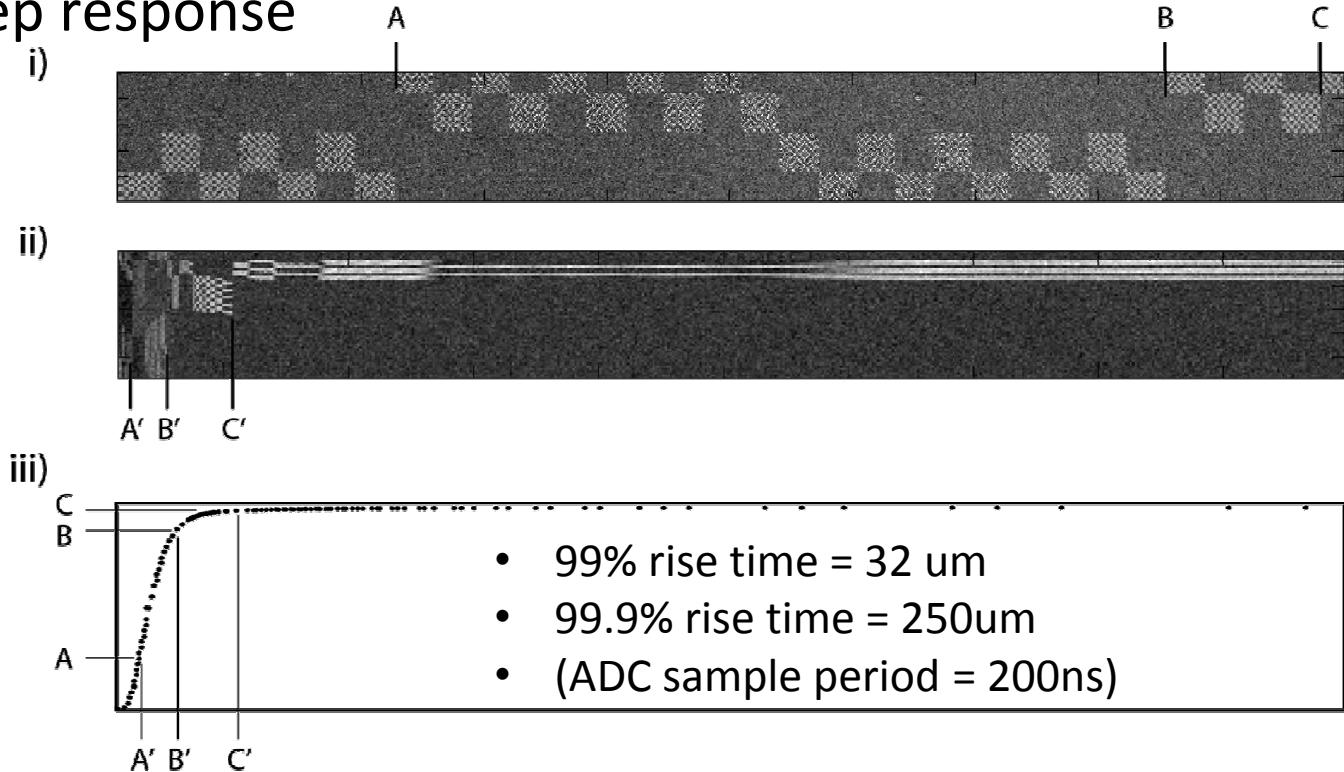
50% samples



reconstruction (36 dB PSNR)

Scan coil dynamics

- Measure step response



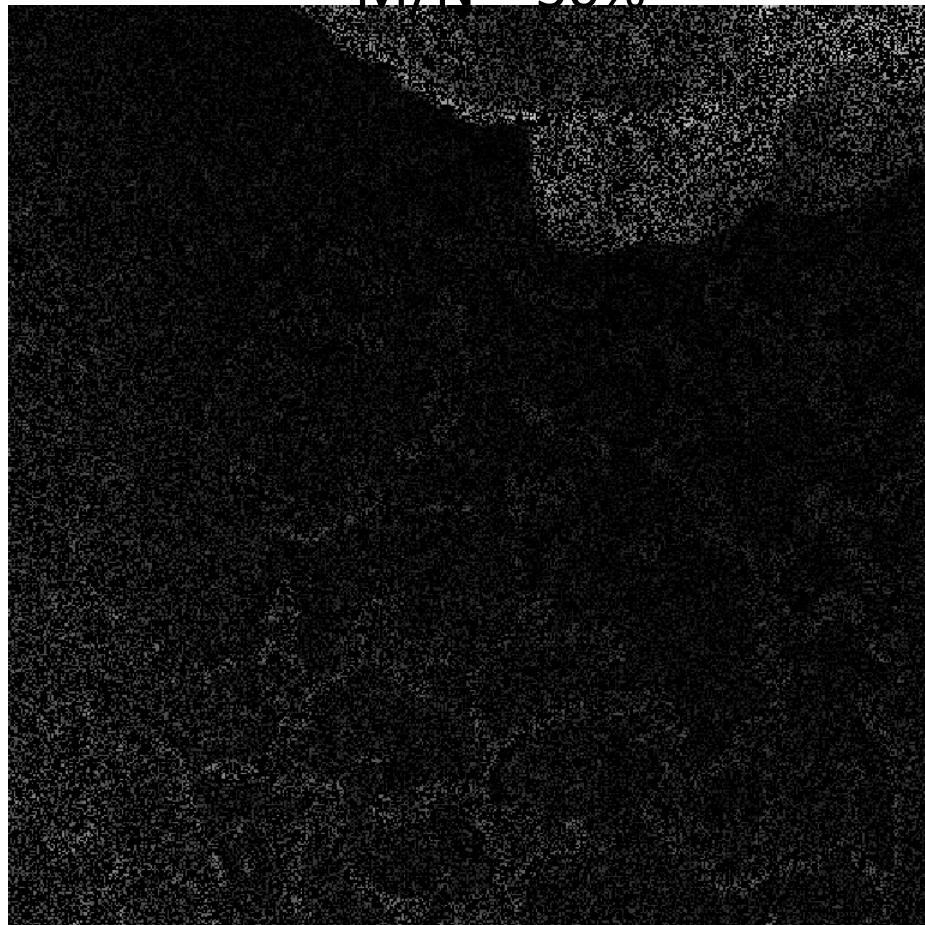
- Linear dynamical model to predict “actual” location

$$\frac{d^5x(t)}{dt^5} = a_0(\hat{x}(t) - x(t)) - a_1 \frac{dx(t)}{dt} - a_2 \frac{d^2x(t)}{dt^2} - a_3 \frac{d^3x(t)}{dt^3} - a_4 \frac{d^4x(t)}{dt^4}$$

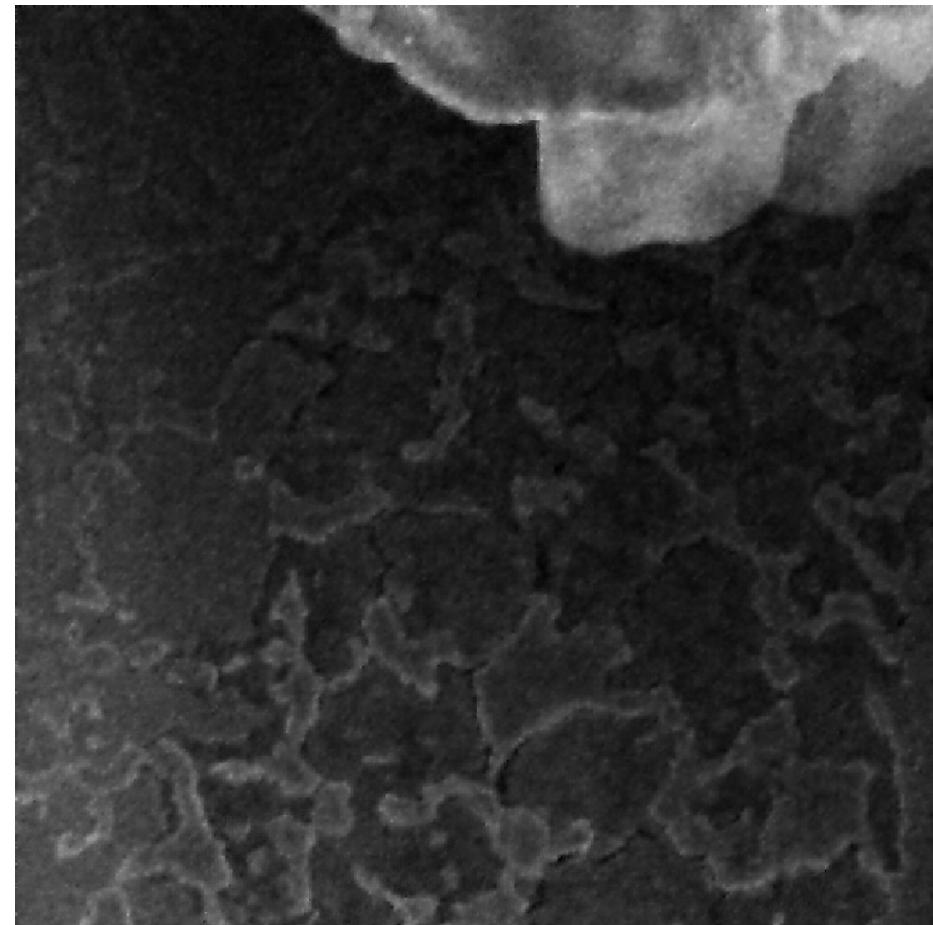
Simulated: Gibeon meteorite surface

(noiseless simulated recover)

$M/N = 30\%$



recovered

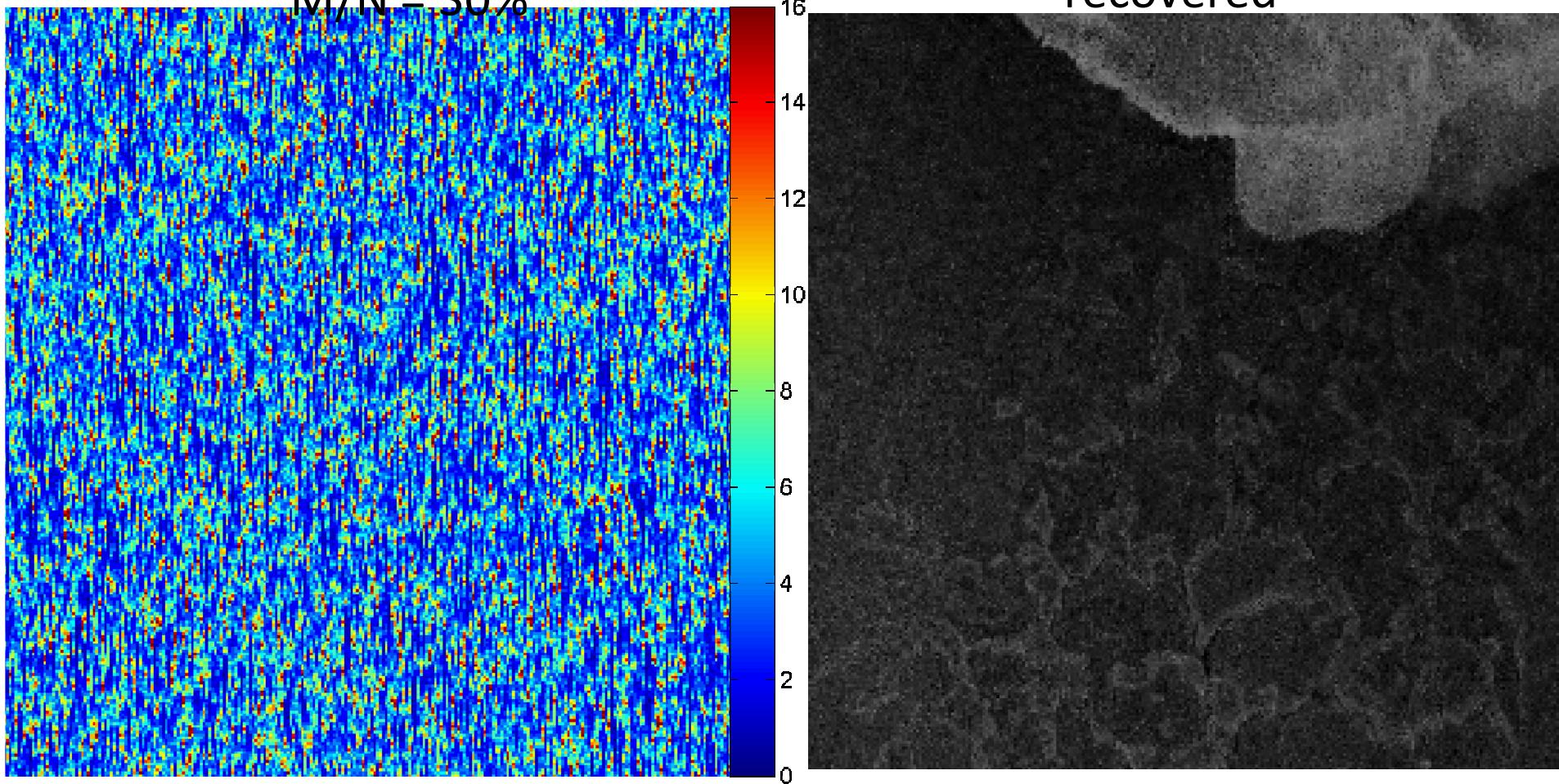


Actual: Gibeon meteorite surface

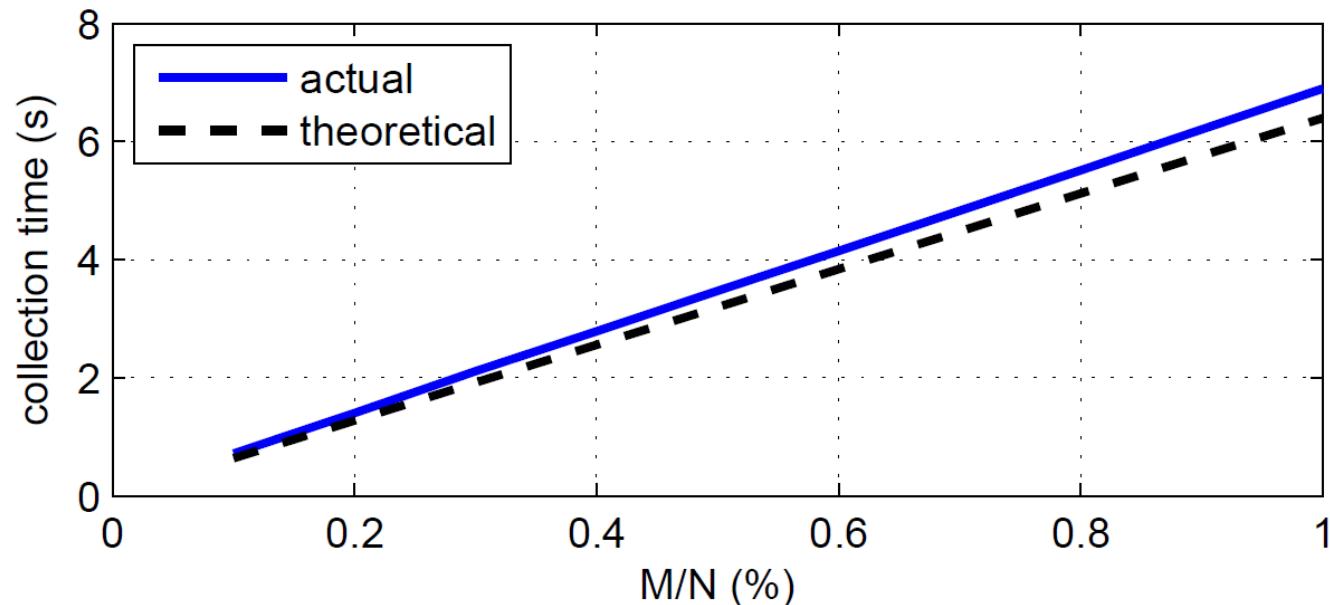
(actual measurement location + recovery)

M/N = 30%

recovered

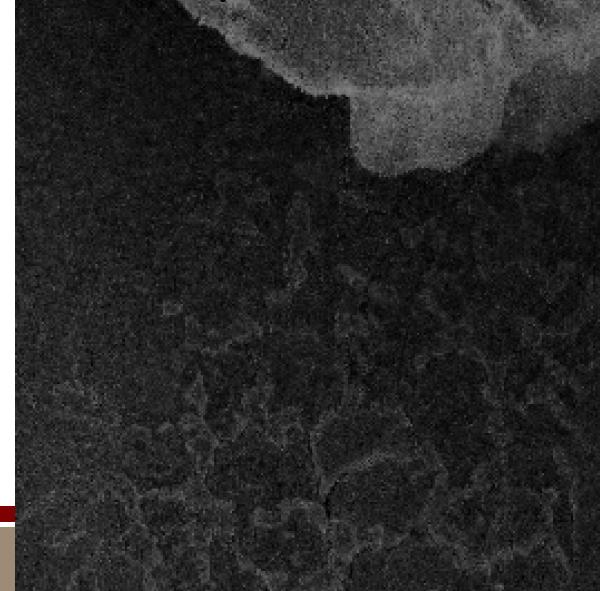


Undersampling timing results

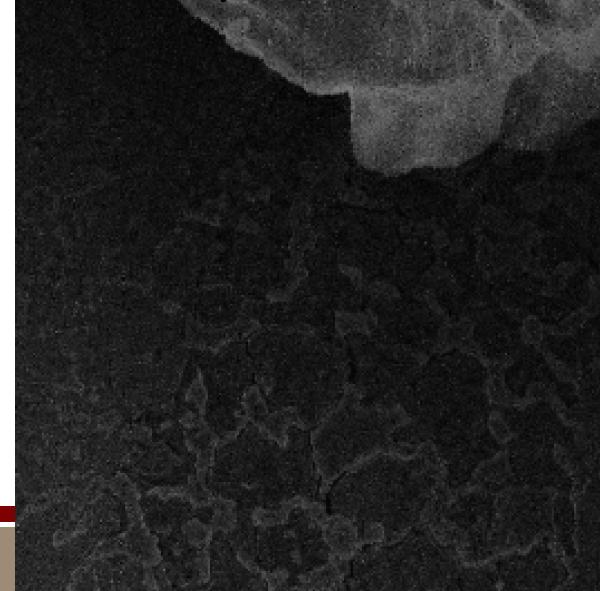


$M/N = 10\%$

$M/N = 30\%$



$M/N = 50\%$



Compressed Sensing: Hope or Hype?

Explosion of interest

- Elements of theory known since 1950s (group testing, seismic, wavelets)
- A modern theory “assembled” in 2004
- ~200 papers by 2006; ~18,000 in early 2013

A general theory that in some cases may provide

- **Better resolution** (radar images without a matched filter)
- **Faster** measurements (MRI from hours to minutes)
- **Cheaper** sensors (infrared cameras from InView Corp)
- **Lower SWaP** for small platforms (CS SAR on a UAVs)
- **Higher sampling rates** (spectral sensing at currently infeasible BWs)

Trade for recovery burden, reduced SNR

Compelling applications are nascent

- Single-pixel **infrared, multispectral, lidar** cameras
- Compressed **MRI, CT & ultrasound**
- “Analog-to-Information” converter
- Compressive **UWB communication**
- Compressive sensing **radar / SAR [Sandia!]**
- Microscopy **[Sandia!]**

