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• The reliability of components with 
thin film polymer/metal interfaces 
is often controlled by the 
toughness of the interface.

• One method of measuring the 
toughness of such interfaces is the 
stressed-overlayer test:
–metal substrate coated with thin 
polymer film to create interface 
of interest.

–deposit overlayer with very high 
residual compressive stress on 
top of polymer.

– height of induced blisters used 
to infer toughness using 
mechanics models.

Modeling Stressed Overlayer Test

Tungsten/Epoxy/Aluminum 
deposited on a thick glass substrate
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Buckle-driven thin film delamination:
one-dimensional, straight-sided blister
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• Analytic results for a thin elastic film on 
a rigid substrate are well established 
(Chai et.al, 1981; Evans and 
Hutchinson, 1984; Gille, 1985; 
Whitcomb, 1986).

• There are some published results for 
the case of a compliant substrate 
(Cotterell and Chen, 2000; Yu and 
Hutchinson, 2002), however, results for 
a very stiff film on a very compliant 
substrate have not been fully 
determined (e.g., W/PMMA).

• There appears to be little work aimed 
at including the effects of substrate 
yielding and crack flank friction in FEA 
simulations.

•Requires a pre-existing delamination.
•Nonlinear, large deflection analysis.
•No crack growth until σo exceeds the 
critical buckling stress.
•Based upon dimensional considerations
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Cohesive zone

Material 2

Cohesive zoneMaterial 1

•Material separation based on a 
specified traction-separation(σ –δ) 
relationship.

•Well-suited for modeling interfacial 
crack growth when crack path is 
well defined.

•Crack growth is a natural outcome 
of the solution, bond failure is a 
gradual process with tractions 
resisting separation.

•Key parameters are the interfacial 
strength     and the work of 
separation/unit area Γ  (i.e., the 
intrinsic interfacial toughness).

•Mesh-independent results.

σ̂

Cohesive Zone Model

• Usually defined in terms of a 
potential that depends on a scalar 
effective separation.

• Similar to model introduced by 
Tvergaard and Hutchinson (J. Mech. 
Phys. Solids, 41, 1119, 1993).



Technique for analyzing a buckle-driven delamination

• For a prescribed σo, perform CZ finite element simulation to determine delamination 
width (b) and height (δ) for interface with toughness Γ.
– displace center of buckle upwards (i.e., an external agent prescribes the buckle 
height δ). 
– monitor the associated applied force
– when the applied force does equal zero, a free-standing, buckled exists.

• Perform calculations for broad range of Γ to determined relationship between 
delamination height (width) and interfacial toughness for fixed σo.

• FE model contains a small pre-existing flaw shorter than the critical buckling length.
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Applied Film Displacement

Zero Applied Force
For a prescribed 
σo, apply 
monotonically 
increasing film 
displacement and 
monitor 
associated force.
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• Note scaling

where   is the long crack energy release rate. Go = 0.325 J/m2

• These results are for W/PmmA with α = 0.985, β = 0.227
• CZ length in these calculations was ~ 3-5h
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Results for a 0.1 µm W film on a thick PMMA substrate with 
σo=1.7 GPa demonstrated effect of substrate compliance.
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Another calculation approach

• Initially apply load to lift up 
preexisting delaminated region 
(create an initial “imperfection”).

• Then monotonically increase the 
film compressive stress while 
decreasing applied load (fully 
release applied load prior to any 
delamination growth).

– note             increases with 
increasing σo.

• Results consistent with previous 
approach.

• Calculation for W/PMMA with h = 
0.1 µm, with Γ = 0.5 J/m2 and for 
an initial delamination = 3 µm.
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• To provide focus, analyzed a 
previously reported, stressed 
overlayer  test configuration 
(SAND2002-8567).
– Substrate: 0.2 µm Al sputtered on 

a glass microscope slide.
– Film: 0.024, 0.164 or 0.615 µm 

thick Epon 828/T403 epoxy layer  
spin-coated on the substrate (film 
is material 2).

– Stressed overlayer: 0.22 µm W 
with a σo=2.2 GPa residual biaxial 
compressive film stress sputtered 
on top of the epoxy film (overlayer 
is material 1).

– Failure at the epoxy/Al interface.

W-overlayer on an epoxy film on an 
aluminized glass substrate

Measured half-buckle width b
h2  (µm) b (µm)

0.024 4.4
0.164 6.5
0.615 6.0

Tungsten (W):  E1=410 GPa   ν1=0.28
Epoxy:              E2=3.5 GPa    ν2=0.35
Aluminum (Al):  E3=70 GPa     ν3=0.33
Substrate: thick and rigid
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W (2.2 GPa film compression)

epoxy

Al substrate
Initial 0.5 µm delamination

After introduce W compression, pull up node

Test calculations for W/0.164 µm epoxy/Al specimen 

Bottom of substrate fixed.
Rhs and lhs edges constrained  against lateral displacement.  
Front and back constrained so in plane strain.

50 µm

= 120 
MPa

= 170 
MPa

= 240 
MPa

δ/h1 3.5 3.5 3.4

b/h1 36.4 34.5 33.9

CZ 
length/h1

4 2 1

σ̂ σ̂ σ̂• Examined how choice of interface strength     
affects solution.
– A higher     is associated with a lower δc.
– Length of the cohesive zone scales with δc.
– Results for a W/0.164 µm epoxy/Al lay-up  

with Γ = 1.7 J/m2

– b measured from tip of cohesive zone
– chose     so that CZ length/h1 ~ 1-2
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• Calculated Γ/Go and δ/h1 depend on W overlayer-to-epoxy film thickness ratio h2/h1.

• Maximum Γ/Go > 1.33 exceeds the rigid substrate ratio; as is the case for a thick compliant 
substrate.

• FEA shows that there is horizontal deflection of the overlayer at the buckle front towards the 
center of the buckle ( will call this overlayer edge-displacement).

Results: effect of epoxy thickness



Shear-lag analysis estimate of overlayer edge-
displacement during buckling

• The shear-lag analysis assumes
– W-overlayer carries only axial 

loads
– epoxy layer carries only shear 

loads
• Note: 

– εy= 0 (plane strain)  and σz= 0 
(beam-like)

– σo is the residual overlayer 
stress (positive in compression)

– Nc= critical classical buckling 
load

– Analyzing unbuckled portion of 
strip (i.e., buckle would be 
beyond rhs of model)
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Extended rigid substrate analytic solution

• Extension for a stiff overlayer (e.g., W) on a very compliant film (e.g., 
epoxy) that fails at the film/substrate interface where the substrate is also 
relatively stiff (e.g., Al).

• Modify rigid substrate analytic solution (see Mixed Mode Cracking in 
Layered Materials, Hutchinson and Suo, Advances in Applied 
Mechanics,1992) by: 

1) Using the effective, plane strain EI per unit width for the combined 
overlayer/film bimaterial beam (see Formulas for Stress and Strain, by 
Roark and Young for equations to calculate De=(EI)e per unit width).

2) Appending a term associated with overlayer edge-displacement to the 
“change in the resultant from the unbuckled state”, ∆N, that is used in 
the formula defining the amplitude of the buckling deflection.

(eq. 7)

(recall that  U* is the overlayer edge-displacement and b is the buckle half-width)
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Extended rigid substrate (ERS) analytic solution

1. Calculate De (see Roark and Young)

2. Calculate Nc eq. 7

3. Calculate U* eq. 6

4. Calculate δ eq. 7

5. Calculate 

6. Calculate G/Go where 
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Order of calculations for ERS solution; assume know half-
buckle width b, layer thicknesses and elastic properties.
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Compare enhanced rigid substrate analytic 
solution and FEA results

• Enhance Rigid Substrate (ERS) analytic result, which incorporates a shear-lag estimate for 
horizontal edge-displacement during buckling, is in good agreement with FEA results for the 
particular specimen analyzed here when h2/h1 = 0.11 and 0.75.

• As might be anticipated, the ERS solution was in poor agreement with the FEA results when 
h2/h1= 2.8 (when use of shear-lag analysis is questionable).

• Overlayer edge-displacement provided largest correction to rigid substrate analysis (De had 
small effect).
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FEA used to reduce experimental data

• For an ~ constant mode-mixity ψ (or if 
independent of ψ), FEA results for a 
constant Γ should predict the variation in 
b/h1 with h2/h1.

• Finite element results suggest that Γ/Go=1.6 
is a good fit to data for h2/h1 = 0.11 and 
0.75.

– Corresponds to Γ=1.9 J/m2, a relatively 
high value, suggesting epoxy yielding is 
contributing to the apparent toughness.

• Data point for h2/h1 = 2.8 lies well below the 
Γ/Go=1.6 prediction.

– Finite element results suggest contact 
behind the cohesive zone --- crack flank 
friction is not accounted for in the 
analysis and could generate an enhanced 
mode-mixity effect.
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Summary

• Performed cohesive zone finite element analysis of a W/epoxy/Al 
stressed overlayer specimen that has been used previously at SNL.

– Showed that variations in the epoxy layer thickness can have a 
significant effect.

– Showed that the overlayer “edge-displacement”  (enabled by 
relatively low epoxy compliance) is the primary cause of differences 
from the rigid substrate idealization.

– Showed how applicability of rigid substrate analytic solution can be 
enhanced to include overlayer edge-displacement through a 
simple, shear-lag based correction (preliminary result, have not 
determined range of applicability, etc.).

– Comparison with experimental data indicates that plasticity and 
crack flank friction affects measured toughness --- topics that must 
be addressed in future work so can model mode-mixity effects.
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Yu/Hutchinson
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Elastic mismatch characterized by Dundur’s parameters:

Normalization parameters (1 Film, 2 Substrate):



The buckled portion of the film was 
modeled using von Karman nonlinear 
plate theory

The film/substrate system is a linear 
plane strain problem solved using an 
integral equation formulation

The solutions were matched at the detached edges of the film by requiring 
continuity of displacements and rotations.

Yu/Hutchinson (2002)
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Yu/Hutchinson Results
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