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Modified set of DAEsModified set of DAEs
(compact model)(compact model)

Set of DAEsSet of DAEsNetlistNetlist

“Standard”
Solver

Solver
˙ q (x)  f (x)  b(u)

y  g(x,u)

yu

ˆ ˙ q ( ˆ x ) ˆ f ( ˆ x )  ˆ b (u)

y  ˆ g ( ˆ x ,u)

yu

y(t)

y(t)

Modified Modified 
SolverSolver
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• Reduced 
complexity
– Faster function evaluations 

and system solves

“Model Order Reduction”
“Reduced Order Model”

ˆ ˙ q ( ˆ x ) ˆ f ( ˆ x )  ˆ b (u)

y  ˆ g ( ˆ x ,u)
yu

• Fits into solver framework
– System of ODEs or DAEs

Compact ModelCompact Modelyu
• Port description of system

– Device, block, circuit



• Bounded input  bounded output

• Small input perturbation produces 
small output perturbation

• Difficult to enforce global stability 
via projection for nonlinear system

Accelerated Simulation of Analog Systems Using Linear and 
Nonlinear RobustRobust Compact Models

Compact
Model

Ckt 1

Ckt 2

Ckt 3
StableStable

PassivePassive

ParameterizedParameterized

Compact
Model

y(t)u(t)
“Nice” input “Nice” output

y
u ˆ ˙ q ( ˆ x ,)  ˆ f ( ˆ x ,)  ˆ b (u)

y  ˆ g ( ˆ x ,u)
1

2
(e.g. design or manufacturing parameters)

AccurateAccurate
• Guarantee of accuracy between 

original model and compact model

• Wide range of inputs 

(amplitude, frequency, shape, …)
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Accelerated Simulation of Analog Systems Analog Systems Using Linear and 
Nonlinear Robust Compact Models

Compact
Model

)(ty)(tu

Transient
Simulation

u(t),y(t) 

Data
Samples

Nonlinear
System

˙ x  f (x,u)

Indefinite
Linear
System

E˙ x  Ax  Bu

RLC
Model

CLR ,,

Need techniques Need techniques 
not requiring not requiring 

special structurespecial structure

Input Output

Transient Performance analysisAC

Models useful for Models useful for 
variety of applicationsvariety of applications
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Outline

• Motivation

• System Identification (SYSID): Introduction

• SYSID: Theory

• SYSID: How to make it practical

• Examples
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SYSID Intro (1): System Identification

Identification
Procedure

Robust 
Compact 
Model

˙ y  f (y,u)

y

u2

y
u u1

˜ u (t), ˜ y (t) 

Measurements

Training 
data

Simulation data
Traditional MOR  

examples

• Solves MOR problems
– Does not require 

system equations

– Can enforce stability by 
construction



 

SYSID Intro (2): Model Terminology / Notation

88

0),,( 1  ttt uyyF

F(x t,x t1,ut )  0

F(y t,y t1,,yt m,ut ,ut1,,utk )  0

G(y t ,x t )  0
F( ˙ x , x,u)  0

G(y, x)  0

y t  f (yt1,ut1)
Explicit I/O 

system

Implicit I/O 
system

Continuous timeContinuous time Discrete timeDiscrete time

F( ˙ y ,y,u)  0

Delays, 
derivatives

States

˙ y  f (y,u)

H
ig

h
e
r 

o
rd

e
r

F
ir
st

 o
rd

e
r

F(y, ˙ y , ˙ ̇ y ,,u, ˙ u , ˙ ̇ u ,)  0

y

u
x

-- Inputs

-- Outputs -- States (optional)

Ff -- Implicit system-- Explicit system

F  ˙ y  f (y,u)  0e.g. 

y t  f (y t1,ut1)

F(y t ,y t1,ut )  0
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SYSID Intro (3): Problem Statement

• What to minimize?

• Robustness constraint?

• How to describe F?

Original System
(e.g. SPICE simulation, 

or physical device)

˜ u ˜ y 

y

e

F(y t, y t1,ut1)  0

Identified 
Compact Model


Identify dynamical Identify dynamical 
relation  relation  
to optimally fit training to optimally fit training 
datadata

F(yt ,y t1,ut1)  0

minF (F, ˜ y , ˜ u )
2

t

     

s.t.  Robustness(F)

˜ u t , ˜ y t 

System Identification…. Is it just Fitting?System Identification…. Is it just Fitting?

Optimization problem must be niceOptimization problem must be nice
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Outline

• Motivation

• System Identification (SYSID): Introduction

• SYSID: Theory

• SYSID: How to make it practical

• Examples
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SYSID (1): Nonlinear Model Description

Implicit DT  ModelsImplicit DT  Models

F(y t, y t1,ut )  0

 j  y t

a j y t1

b j u
c j

Polynomial basisPolynomial basis

F(y t, y t1,ut )   j j (y t, y t1,ut )
j


Basis FunctionsBasis Functions

1111

Later in the talkLater in the talk
Models with states, higher order systems, continuous timeModels with states, higher order systems, continuous time

y t
2  y t1  ut

3  0 y t  y t1  ut
3

For example,

q(y t1)y t  p(y t1,ut )  0
Rational 
Modelsy t 

p(y t1,ut )

q(y t1)

Unlike projection, no Unlike projection, no 
equations to start fromequations to start from

Implicit model captures highly nonlinear behaviorImplicit model captures highly nonlinear behavior
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SYSID (2): Explicit Error Minimization

Original Systemu~ y~

y

e

F(y t , y t1,ut )  0
Compact Model

 minimize et

2

t



y~

y t  f (y t1,ut1)

0
~y

1
~y

3y

2
~y

e1  ˜ y 1  f ( ˜ y 0, ˜ u 0)

Can only minimize one-step errors

Must guarantee errors do not accumulate

y1  f ( ˜ y 0, ˜ u 0)

y2  f ( f ( ˜ y 0, ˜ u 0), ˜ u 1)

y 2  f ( ˜ y 1, ˜ u 1)

Assume explicit system

Goal:

3
~y

e2  ˜ y 2  f ( f ( ˜ y 0, ˜ u 0), ˜ u 1)

e2  ˜ y 2  f ( ˜ y 1, ˜ u 1)

et  ˜ y t  y t  ˜ y t  f (y t1,ut )

Nonlinear in unknown coefficients
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• For implicit system, minimize equation error (i.e. residual)

SYSID (3): Implicit Error Minimization

Original Systemu~ y~

y

e

F(y t , y t1,ut )  0
Compact Model



minimize F ( ˜ y t , ˜ y t1, ˜ u t )
2

t



Need relation between equation error and output error

Ax1  b1

Ax2  b2

|| b1  b2 ||  small   || x1  x2 ||   small

F(y t ,y t1,ut1)  0

• Small equation error doesn’t always imply small output error

minimize et

2

t


Goal:



Our method

SYSID (4): Incremental Stability

– Perturbations to solutions decay

– Errors do not accumulatey 0 u(t)  0

y0

y(t)

F( ˜ y t , ˜ y t1, ˜ u )t

t


2

 y t  ˜ y t
2

t


• Equation error bounds output error

y  y  
T

F(y,u)  F(y ,u)   h(y,y )  h(y, y )  y  y 
2

Incremental stability constraintIncremental stability constraint

h(y, y ) -- Certificate of stability

One possible constraint –
sufficient, but not necessary

State 
space

• Larger class of admissible stable models F

• Semidefinite constraint

• Tighter error bound

Space of Stable F

[Megretski 08]

Modified incremental stability constraint 
[Bond et al TCAD10]
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SYSID (5): Identification Procedure
Robust equation error, upper 
bounds linearized output error

Robust dissipation 
constraint, implies local 
incremental stability

Optimization ProblemOptimization Problem

Optional constraint, 
enforces global 
incremental stability

F(y,u)   j j (y,u)
j



F

r
h

- Stable reduced model

- Storage function, certifies stability

- Error bound

˜ u t , ˜ y t  - Training data set

InputsInputs OutputsOutputs

• Coefficients defining

   j (y,u)  - Set of basis functions 
describing F,r,h

Semidefinite constraintsSemidefinite constraints
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Outline

• Motivation

• System Identification (SYSID): Introduction

• SYSID: Theory

• SYSID: How to make it practical

• Examples



1717

SYSID (1): Complexity

• Complexity (# of coefficients) determined by

– Number of inputs, outputs, states, parameters

– Number of delays (input and state memory)

– Polynomial degrees

• Need to keep total number of coefficients small

F(, x t ,, x tm,ut ,,utk )  0 G(x t ,y t )  0

• Most general model



   ,x t ,,x tm,ut ,,utk,y t ,, y t l   ut i,n

p j

h,i, j ,k,l ,m,n,r,s

 x t j,m
pk y t ,s

phr
p l



• Equations obtained by fitting to data rather than from residual orthogonality condition

SYSID (2): Projecting States

Find low-order basis

• Connections to traditional projection approaches

UT ˜ F (Vˆ x ,u)  0
F( ˆ x ,u)  0

minF E(F( ˆ x ,u))

F(x t , x t1,ut )  0• Model with large number of states:

x V ˆ x 



ˆ ˜ x t1 ˆ ˜ x t 2  ˆ ˜ x tT

















Project state samples



˜ x t1 ˜ x t 2  ˜ x tT





























• Fit to reduced set of states: F( ˆ x t , ˆ x t1,ut )  0

Generate training data
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SYSID (3): Reduced Basis

• Fit to reduced set of basis terms

– Linear transformation of basis

wt   jut j

j




ˆ x t1,, ˆ x tm,ut ,,utk 

p

F( ˆ x t , ˆ x tm ,ut ,,utk )  0

• Model with large 
number of delays

• Many basis terms for 
large polynomial degree

LTI yu w
),,ˆ( uwxF

Large memory
Small memory

 ut  ut1  ut2 
2

ut
2  ut1

2  ut2
2  2utut1  2utut2  2ut1ut2

wt
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SYSID (4): Algorithm

Model complexity determined by m,k,p,q

Select model complexity:  {m,k,p,q}

Increase model Increase model 
complexity: {m,k,p,q}complexity: {m,k,p,q}

Increase Increase 
{m,k,p,q}{m,k,p,q}

Increase 
{m,k,p,q}

Enforce local stability

Enforce global stability

Poor fitPoor fit
Good fitGood fit

Poor fitPoor fit
Good fitGood fit

Poor fitPoor fit

Good fitGood fit

Fit without stability 
constraint

Space of Rational models
with m,k,p,q

Locally stable rational 
models with m,k,p,q

Globally stable rational 
models with m,k,p,q


y t 

p(y t1,, y tm ,ut,,utk )

q(y t1,, y tm ,ut ,,utk )

Space of Rational models
with m’,k’,p’,q’
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Outline

• Motivation

• System Identification (SYSID): Introduction

• SYSID: Theory

• SYSID: How to make it practical

• Examples
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Example: Low Noise Amplifier (1)

Q2(y t1,ut ,ut1)y t  p3(y t1,ut ,ut1)

Q 
Q11 Q12

Q21 Q22











Transient simulation

• Low noise amplifier

• Identified rational 
model with feedback

• Model has two 
outputs

• 102 coefficients 
describing model

p 
p1

p2










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Example: Low Noise Amplifier (2)

Q2(y t1,ut ,ut1)y t  p3(y t1,ut ,ut1)

Q 
Q11 Q12

Q21 Q22











• Low noise amplifier

• Identified rational 
model with feedback

• Model has two 
outputs

• 102 coefficients 
describing model

p 
p1

p2











FFT magnitudes



Example: Parameterized System – Opamp
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Parameter

 j,u j (t) Tested on140 random pairs

y t 
p3(, y t1,ut,ut1)

q4 (y t1,ut,ut1)



u(t)  Ai sin(2f it  i)
i1

5


Varied randomly

97 coefficients describing model

p  0 1ut 2y t1  ut
3

k,0 k,1  k,2
2
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Example: Performance Analysis - Power Amplifier (1)

y t 
p3(y t1,wt ,wt1,ut ,ut1)

q4 (y t1,wt ,wt1,ut ,ut1)

Figs. from Z.Mahmood

• Distributed power 
amplifier

• Identified rational 
model with feedback

• Fit also to LTI 
transformation of 
input

• 106 coefficients 
describing model

Transient simulation FFT Magnitudes
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Example: Performance Analysis - Power Amplifier (2)

y t 
p3(y t1,wt ,wt1,ut ,ut1)

q4 (y t1,wt ,wt1,ut ,ut1)

Performance curves 
from dynamical model

Figs. from Z.Mahmood

• Distributed power 
amplifier

• Identified rational 
model with feedback

• Fit also to LTI 
transformation of 
input

• 106 coefficients 
describing model

Performance curves 
from dynamical model
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Example: Design - Opamp Compensator (1)

Compensatoru y
w

y

u

w

u

w
u yOpamp 

inverse 
model

G
Gu

In collaboration with Yan Li, MIT
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Example: Design - Opamp Compensator (2)

u w

0 100 200 300 400 500 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w

u

w Opamp 
inverse 
model

u

0 100 200 300 400 500 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time index

w

u

Circuit Simulator

Our model

• Compare distortion in 
opamp and inverse outputs

• Compensator increases 
SDR by ~10dB

In collaboration with Yan Li, MIT
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Example: Traditional LMOR Application - Inductor

E˙ x  Ax  Bu

ˆ E ̂  ˙ x  ˆ A ̂  x  ˆ B u

x,u 

ˆ x ,u 

Simulate 
original 
system

Project 
data

Identify 
model

Continuous Time, Linear Model
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Example: Traditional NLMOR Application - MEMS

˙ x  f (x,u)

ˆ ˙ x  ˆ f ( ˆ x ,u)

x,u 

ˆ x ,u 

4th order CT compact model

52 coefficients
7th degree polynomial

Simulate 
original 
system

Project 
data

Identify 
model

40X speedup for Transient

400th order original model
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Conclusion

• Accelerated simulation using compact models

• Need techniques guaranteeing robust models

• Encounter all types of systems in analog applications

– Unstructured Linear, Nonlinear, Data samples

• SYSID approach based on semidefinite optimization

www.bnbond.comwww.bnbond.com
Papers, codes, slides


