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Accelerated Simulation of Analog Systems Using Linear and
Nonlinear Robust Compact Models
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Accelerated Simulation of Analog Systems Using Linear and
Nonlinear Robust Compact Models

~ —,  Compact Model

* Port description of system
— Deuvice, block, circuit

* Fits into solver framework
— System of ODEs or DAESs

« Reduced
Y complexity
— Faster function evaluations




Accelerated Simulation of Analog Systems Using Linear and

Nonlinear Robust Compact Models
Accurate

« Guarantee of accuracy between
original model and compact model

* Wide range of inputs
(amplitude, frequency, shape, ...)

“Nice” input

Stable

u(t)

Compact
Model

“Nice” output

— y(1)

 Bounded input = bounded output

« Small input perturbation produces
small output perturbation

+ Difficult to enforce global stability
via projection for nonlinear system

Passive
Ckt 1
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Compact Ckt 2
Model _
Ckt 3
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(e.g. design or manufacturing parameters)



Accelerated Simulation of Analog Systems Using Linear and
onlinear Robust Compact Models

Need techniques
not requiring
special structure
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Models useful for
variety of applications
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SYSID Intro (1): System Identification

u2 Ny : 1
§§ o §§
. S —— % .
1y e
M Traditional MOR
\ Slmulatlon ‘data easurements examples
« Solves MOR problems { y ( t) ( t)} Training
— Does not require Y data
system equations
— Can enforce stability by dentification
construction Procedure
Robust

o—o: y:f(y,u) o Compact
OoO—— —O Model 7




SYSID Intro (2): Model Terminology / Notation

A

First order

Higher order

Continuous time Discrete time
(e . .
Explicit 1/0 . .
system y — f(y,M) yt o f(yt—lﬂut—l)
Implicit I/O . . —
. System F(%%M)—O F(ytbyt—laut) _O
(" Delays, - -
derivatives | £'(V. 0.0, ittty ) =0 P F(p,y, e,y gyt ) =0
States F(X,X,U) — 0 F(xt,xt_l,ut) — O
- G(y,x)=0 G(y,x,)=0
f -- Explicit system F - Implicit system
1 - Inpus (o F=i-f(u)=0)
y - Outputs X - States (optional)
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SYSID Intro (3): Problem Statement

:- ‘)7 “ | e
Identify dynamical
relation F(y,y _,u_)=0
YV to optimally fit training
data {;,t, ;t}

System Identification.... Is it just Fitting?

. o o2 o « s )
min, ) _[E(F,,i) What to minimize*
t « Robustness constraint?

s.t. Robustness(£)  « How to describe F?

Optimization problem must be nice 9
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SYSID (1): Nonlinear Model Description

Implicit DT Models Unlike projection, no
F(y,y,_,u)=0 equations to start from
Basis Functions Polynomial basis
a; ., b; ¢
F(yﬁyt—l’ut):Za‘j(l)j(ytﬂyt—lﬂut) (I)j :yt yt—l u

J

Implicit model captures highly nonlinear behavior

For example,

yf_yt_fl'u?:() ‘ yt:\/yt—l_uf

_»U,) Rational
9, )y, —py, ,u)=0 mmp yr:pxyl )) Models
r—1

Later in the talk
Models with states, higher order systems, continuous time 11




SYSID (2): Explicit Error Minimization

1 » Original System
Compact Model
F(ytayt—l’ut) =0

e, =5, ~y,| =5, — [0,

€| = )71 _f()?oaﬁo)‘

e, [ =iy i)

Nonlinear in unknown coefficients

‘82 )72 _f()7197/~11)

Can only minimize one-step errors

<
Vi :f(yoauo) //
s

Goal:

R 2
minimize Z‘et‘

Assume explicit éystem
Vo=t u,)

J./z = f(f (Vo> thy)s 1)

» J_/z :f(j/piﬁ)
.. Vs
)72 V3

Must guarantee errors do not accumulate 12



SYSID (3): Implicit Error Minimization

17 »  Original System — > Goal:
Y e

- e 2
minimize Z‘et‘
{

Compact Model
F(ytayt—Uut) =0

Y

* For implicit system, minimize equation error (i.e. residual)

F(yuyt) =0 > minimize Z‘F@vfz—vﬁzf
« Small equation error doesn’t always imply small output error
j;; zlglz b, —b, | small # | x —x,]| small

Need relation between equation error and output error _,



SYSID (4): Incre

mental Stability

A

y(1)

State
space

A(ZZ/ Yo u(t)?fo
Yo

— Perturbations to solutions decay
— Errors do not accumulate

Incremental stability constraint

(v =7) (F.u0) = F@u) >h.(3,9)~h (r,9)+ly -3
h(y,y) -- Certificate of stability

A

One possible constraint —
sufficient, but not necessary

y

[
>

Equation error bounds output error
~ o~y P ~ |2
Z‘F(yﬁyt—l’u)t ZZ‘yt —V
t

t

Modified incremental stability constraint

Space of Stable F

Our method

[Megretski 08]

2N F(yu)A+h(y, ,A,) ~h(y_A )=~

[Bond et al TCAD10]
2

A+

Semidefinite constraint

Tighter error bound

Larger class of admissible stable models F



SYSID (5): Identification Procedure

Robust equation error, upper
bounds linearized output error

minF’r,h E r(j}t ,Ztt) SUbjeCt to Robust dissipation

/ constraint, implies local
incremental stability

r,+2A0(F, +FA)-|A +h_ ~h, 20, V1A
- Optional constraint,

QAT (y,)A =|A +h_—h, 20, Vi, y,A eromoniatoto

incremental stability

Optimization ProbAIem/

Semidefinite constraints

Inputs Outputs

{ﬁt,j;t} - Training data set « Coefficients defining

[’ - Stable reduced model

h - Storage function, certifies stability
V" - Error bound

Flyan=2.0,0,(0u)

D = {(I)j(y, u)} - Set of basis functions
describing F,r,h
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SYSID (1): Complexity

 Most general model
FO\‘ KXot o Xy o Uyt 9ut—k) =0 G(xt9yt) =0
- Complexity (# of coefficients) determined by
— Number of inputs, outputs, states, parameters
— Number of delays (input and state memory)
— Polynomial degrees
d) d)(}\‘ Ko o Xy s Uyt ,ut_k,yt,---,yt_,) = Hut ini- ]mytsy\‘pl

h,i,j,k,l,mn,r,s

 Need to keep total number of coefficients small

17



* Model with large number of states: F(x,,x, ,u)=0

SYSID (2): Projecting States

Generate training data

xtl

A20

+ Fit to reduced set of states: F'(X,,x

1]

Find low-order basis

M

N/
N/

v

d|

~J

X

!

Project state samples

~

A T~
—x, =V X
'§t1 '§t2 ;Cﬂ
t—l’ut) =0

« Connections to traditional projection approaches

UTF(V)Ac,u):O% - @ min, E(F(X,u))
X,Uu)=

Equations obtained by fitting to data rather than from residual orthogonality condition

!



SYSID (3): Reduced Basis

* Model with large « Many basis terms for
number of delays large polynomial degree
A A A A P
F(Xt,' X Uy .9ut—k) =0 ('xt—l’. RERTRTY Y ”’uf—k)

 Fit to reduced set of basis terms

— Linear transformation of basis W

A
( \

2
2 2 2 —
u, +u.  tu L +2uu,  +2uu, ,+2u, u, , = (ut +u, |+ ”f—z)

t

Large memory

. Small memory
w, —ZB-%_- u—— LT,
J J A Y
i F(x,w,u) —

»
»

19




SYSID (4): Algorithm

Model complexity determined by m,k,p,q

— p(yf—l’. " Vi Uy .Dut—k)
GOV iV Uy U, ) Select model complexity: {m,k,p,q}

|

Increase model ,| Fit without stability

Vi

Space of Rational models
with m',kK’,p’,q’

Globally stable rational
models with m,k,p,q

Poor fit

Good fit

[

I .

I complexity: {m,k,p,q} constraint

[ .

1 | Space of Rational models Poor fit Good fit

| with m,k,p,q Increase

I {m,k,p,q} "| Enforce local stability

[

l Poor fit

| ocally stable rational Good fit
models with m k,p,q | :

: {Z%(GZS;} ~Enforce global stability

[

[

[

[
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Example: Low Noise Amplifier (1)

Rneé él-d Qz(yt—lﬂutﬁut—l)yt = p3 (yt—lﬂutﬂut—l)
M3 M2 L LVOUT
Reixe |: IC . \‘Qll Q12J _ \‘le
TR LT = 0= p=
AN ﬁ E{g@—{ M1 O, On P>

Orignal Circuit
Our Compact Model

* Low noise amplifier

I
|
Output Voltage (V)
(g = N
AN = 1 N O

* ldentified rational 0 0.5 1 15 2 2.5 3 \
model with feedback Transient simulation x10
< 0015 TS | | | |
»  Model has two ¥ oo LATAATARS oy ,
outputs E M !
3 0.025 Jukh} ¥ YR VY ¥
. > 003} 8] Original Circuit
« 102 cpe_fflments 2 0.035 - i "' Our Compact Model
describing model ® | | | | . . |
0 05 1 15 2 25 3

Time (sec) x10® 22



Example: Low Noise Amplifier (2)

Vdd
Rneé él-d Qz(yt—lﬂutﬁut—l)yt = p3 (yt—lﬂutﬂut—l)
VOUT
L
M3 M2 c

— Reie - I L 0= o, O, b= P

! Rs | - - Q Q

; wv——| ”Eg@—{ M1 21 ¥» P>

Vi E Ls
" FFT magnitudes - Our Gompaet Mode
70

* Low noise amplifier ool o4 ® o

50

* |dentified rational
model with feedback

 Model has two
outputs

Magnitude of Frequency Domain Coefficients

« 102 coefficients
describing model

7500
Discrete Frequency Index



Example: Parameterized System — Opamp

Parameterx M20 M14J Mzze
a5 [M11 M12]}a -
L
_”: M10

!

u(t) = ZA s1n(21tf t +(|) )

Varled randomly

o
@
T

Output (V)

o o
[e2]

I
T

o
o

T T T T T T
Original Circuit ot i
Our Compact Model j/\/\\

L L %l V - L L ﬂ

3000

500 1000 1500 2000 2500
Sample index
5 =
Eal
g
o 3
5
g2
=]
[e]
1
0

Sample index

M21

out

p=0,+ou, +o,y, +---+u

_ POy, )
Q4 (yt—19 ut’ ut—l)
97 coefficients describing model

Vi

3
t

( \
Oy o+ O A+ ockyzkz

Tested on140 random pairs {xj,uj(t)}

10
g 8 -
S
o
o 6f
2
[ + +
o +
£ 4t + ".1.*-!'-"1.
5 + I
3 W et *u 'IH-.I- o
S 2“_ " +#+ 7 4 t ok aar i g+
AT e T . LA R
A + r 4, L HEE Y &
ettt L +++++++ PR T . "T‘
0 | | | |
0 20 40 60 80 100 120 140

Testing sets



Example: Performance Analysis - Power Amplifier (1)

Figs. from Z.Mahmood

+ Vou-r
R_
Il
i
18217
1
1
1;1‘& 1;1& 2 : 1 1%
0 opo
1
vad ﬂ Vdd ! Vad
|
CIM +—| CIN
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Il

4 Transient simulation
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3500

FFT Magnitudes

Distributed power
amplifier

|dentified rational
model with feedback

Fit also to LTI
transformation of
input

106 coefficients
describing model

Original Circuit

*  Our Compact Model

3900 4000 4100 4200 549
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Example: Performance Analysis - Power Amplifier (2)

+ Vour Figs. from Z.Mahmood
I « Distributed power
& amplifier
— L JIUL S LA

* |dentified rational
model with feedback

Cw =+ = £ IS ] i M [T ° Fit also to LTl
T “ ; — transformation of
‘ ‘ L L ' input
] _ 106 coefficients
y, = PV, W W, U, U, ) describing model
, =
Q4 (yt—19 wl‘ > wl‘—l’ ul‘ > ul‘—l)
30 T T T T 60 T
Original Circuit Original Circuit
O  Our Compact Model O  Our Compact Model
50
25
T Sl
3. 20} 3
215 £
3 £ ol
10
Performance curves 10 Performance curves
from dynamical model from dynamical model
50 5 10 15 20 25 05 10 15 éO 25 26
Input Power [dBm] Output Power [dBm]



Example: Design - Opamp Compensator (1)

W A y A
» U > U
w
u *| Compensator >V
// ‘\
, N
4 AN
e \
// \\
4

/// \\\

_____________________________ RY

| |

| |

| |

W . | Opamp u Gu
: inverse g G — Y

|

: model .

|

: .

|

In collaboration with Yan Li, MIT
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Example: Design - Opa

W

rrrrrrr
mmmmmmmm

« Compare distortion in
opamp and inverse outputs

« Compensator increases

SDR by ~10dB

mp Compensator (2)

W Opamp u
— | inverse
model
1 0ot f
0.9 — Circuit Simulator
0.8 e  QOur model
07/ | U
0.6+ v U U V \JWW
05 ﬂ ﬂh' ; i{ |
OA-} | ‘ 1 aqt # 3 : .
7o b
248 ‘&’“ﬁfig SRR
01| B p

0

In collaboration with Yan Li, MIT

300 400 500 600
Time index
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Example: Traditional LMOR Application - Inductor

N ETmhNS Y
& Y
R Continuous Time, Linear Model
= N SR
N &
* Original System
EX — AX + B M 3.5 X Our Compact Model
Simulate 31
original @
system . 250
e g g
S 2
£
Project S el
data A@ "
Xup
|dentify
model ﬂ or
0 OO0, ;';';;.‘::.‘.‘:‘:~$v’-""""" R

Ex=Ai+Bu v @

Frequency (Hz)



Example: Traditional NLMOR Application - MEMS

AT i 400t order original model
o $/ 4" order CT compact model
7th degree polynomial

Si substrate 52 CoeffiCientS

2.3 um gap

0:3 um SiN filled with air 40X SpeedUP for Transient

x — f(x’ u) 2.4
Simulate .
original @
system {x I/l}

9
Project @
data A
L uf A
|dentify ah {
model ﬂ 1.7} | ;

° N
A A 1.6 | | | | | | |
x p— f(x M) 0 1 2 3 4 5 6 7 8
9 Time (sec) x 10

Original System
*  Our Compact Model | |

Center-Point Deflection




Conclusion
Accelerated simulation using compact models
Need techniques guaranteeing robust models

Encounter all types of systems in analog applications
— Unstructured Linear, Nonlinear, Data samples

SYSID approach based on semidefinite optimization

www.bnbond.com

Papers, codes, slides
31



