Sandia
National
Laboratories

.
V Kitware

UCDAVIS

LINIVERSITY OF CALIFORNIA

Abstract

Experts agree that the exascale machine will comprise processors that
contain many cores. Furthermore, physical limitations will prevent data
movement in and out of the chip (that is, between main memory and
the processing cores) from keeping pace with improvements in overall
compute performance. To use these processors to their fullest capabil-
ity, it is essential to carefully consider fine grained concurrency and
memory access.

This project investigates a new type of visualization framework that
exhibits a pervasive parallelism necessary to run on exascale machines.
Our framework achieves this by defining algorithms in terms of localized
stateless functions. These functions can be connected in much the
same way as filters in the visualization pipeline. But our framework’s
design allows functions to be concurrently running on massive amounts
of lightweight threads. Only with such fine-grained concurrency can we
hope to fill the billions of threads we expect will be necessary for effi-
cient computation on an exascale computer.

Current Visualization Pipeline

Most of today’s visualization libraries and applications are based off of
what is known as the visualization pipeline. In the visualization pipeline
model, algorithms are encapsulated as filter components with inputs

===

e and outputs. These filters can be com-

bined by connecting the outputs of one

e s o filter to the inputs of another.
The most successful way of achieving
BB concurrency is to use a data-parallel ap-
proach. The input mesh is partitioned,
and the partitions are divided amongst
distributed memory nodes. The pipeline
¢ is replicated on all nodes, and the same

operations are done on each partition.

Scaling to Extreme

According to the Interna- Jaguar — XT5 Exascale Increase
. Cores 224,256 100M-1B ~1,000x
tional Exascale Software Concurrency 224,256 way 10 billion way ~50,000%

Memory 300TB 128 PB ~500X

Project Roadmap, we
expect an exascale computer to require 50,000 times more concur-

rent threads and provide only 500 times the memory.

Will current visualization scale? Implementations of tools like
ParaView and Vislt rely on MPI for most of their concurrency. Using
MPI to generate the requisite threads will require more memory
than available on the system. Even ignoring this problem, an

extreme-scale computer will require the data to be partitioned on
too fine a level to effectively run a visualization pipeline.

Dax: Data Analysis at Extreme

Kenneth Moreland Utkarsh Ayachit Berk Geveci

Sandia National Laboratories

Kitware, Inc.

Revisiting the Pipeline

We need a visualization framework that performs on
the finest level of concurrency possible. Consider a
filter-type object that operates on a single element of
a mesh. In order for this unit to be executed concur-
rently over all elements of the mesh, it must be com-
pletely stateless and have memory access limited to
the“safe”locations given to it. The solution is remark-
ably basic: a function. This stateless serial function is
the basic building block in the Dax Toolkit and the
unit the visualization algorithm developer creates.

v

Dax Algorithm Execution
The Dax Toolkit provides a unit called an executive
that accepts a mesh, iterates over all elements in the
mesh, invokes one or more of these stateless func-
tions on each element, and collects the resulting
values for each element, and collects the resulting
values for each element. Conceptually we can think
of this iteration as a serial operation, but of course in
practice the executive will schedule the operation on
multiple threads. Because the function is con-
strained to be stateless and operate on the single el-
ement it is given, the execution can be scheduled
concurrently without danger of pitfalls such as race
conditions and deadlock.

Executive

foreach element

Dax Toolkit Features

Algorithms are expressed as serial functions. Thus, a developer be-
comes more efficient with the Dax Toolkit by focusing on the details of
the algorithm rather than the intricacies of the parallel system.

By applying different Dax executives, a single algorithm implementa-
tion can be adapted to multiple execution environments such as a serial
loop (for debugging purposes), on multiple CPU cores, or a GPU-type ac-
celerator.

An executive of the Dax Toolkit can chain . .
multiple functions together within a single it- (2T “Filter 1
eration of the data. Consequently, an entire Vauma! fi}'
chain of operations can be performed for a |
single memory read/write. Such execution
behavior maximizes the instruction-to-
memory-fetch ratio. In comparison, each
filter in a traditional visualization pipeline
must independently iterate over an entire

data set.

Filter 2

foreach element

Dax Pipeline Traditional Pipeline

SAND2011- 1350P

Kwan-Liu Ma
University of California at Davis

Kitware, Inc.

Using the Dax Toolkit

The Dax Toolkit provides a rich APl that a developer can use when writ-
ing functions. This C-based API makes it possible to port to different de-
vices included GPUs. The C-API provides accessors to mesh geometry
and topology. By providing abstractions, the Dax APl keeps the user
code isolated of platform related dependencies.

// A functor that processes attribute arrays e.g. array calculator.
functor voild UnaryCalculator (
const daxWork work, const daxArray* input, daxArray* output)

{

float in value = daxGetArrayValue (work, input);
float result = <operation>(in value);
daxSetArrayValue (work, output);

}

// Functor that computes cell-scalars based on point-scalars.
functor voild CellAverage (
const daxWork work,

const daxArray* positions 1n positions,

const daxArray* and (connections , ref (in positions)) 1in connections,
const daxArray* dep (1n positions) 1nputArray,

daxArray* dep (1in connections) outputArray)

// Get the connected-components using the connections array.
daxConnectedComponent cell;
daxGetConnectedComponent (work, 1in connections, &cell);

float sum value = 0.0;
for (int cc=0; cc < daxGetNumberOfElements (&cell); cc++)

{

// Generate a "work" for the point of interest.
daxWork point work;
daxGetWorkForElement (&cell, cc, &point work);

sum value += daxGetArrayValue (polnt work, inputArray):;

}
sum value /= daxGetNumberOfElements (&cell);

daxSetArrayValue (work, outputArray, sum value);

}

Algorithm functions are built into modules. Modules can be connected
together to form pipelines. Once the pipeline is set up, one can sched-
ule an execution by using the executive.

daxElevationModule elevation;
daxCellAverageModule cellAverage;

daxExecutive executive;
executive.Connect(elevation, elevation->GetOutputPort ("output"),
cellAverage, cellAverage->GetInputPort("input array"));

executive.Execute () ;

Acknowledgements
For more information, please visit us at http://daxtoolkit.org.
The Dax Toolkit is funded by a DOE ASCR grant for Scientific Data
Management and Analysis at Extreme Scale.
Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s Na-

tional Nuclear Security Administration under contract DE-AC04-
94AL85000.

