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Neurons to Algorithms

What problem are we trying to solve?
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Describe the function of a select brain circuit.

AND gate [Kömmerling & Kuhn 99]
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Neocortical (brain) slice
[Stephen Smith Lab at Stanford]

Sandy Bridge die [Intel Corp.]

Abstract away physical details to 
explain what something does or 
how it interacts with other things.
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Why is this important?
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Simple curiosity: we 
wish to know ourselves

Applications: we wish to 
build artifacts with human 
levels of intelligence.

Exascale / Neuromorphic hardware: 
requires an understanding of the 
software.
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Algorithms as description
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Algorithm = A set of rules that induce a sequence 
of operations on an array of natural numbers.

[modified from Wikipedia]

An algorithm can approximate real numbers.

A sequence of operations on numerical values is an 
appropriate “language” in which to describe what the 
brain does.
• Discrete set of nerves entering and exiting the 

brain.
• Nerve signals can be expressed as a real-valued 

functions of time.
• Signal processing can be approximated.
• More abstract descriptions can take the form of 

operations on data structures.
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Algorithms as description
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An algorithm is a mathematically precise way to describe 
how to do the same thing that a neural circuit is doing.

It’s like  …  apple pie.
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Algorithms as differential equations
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• Any problem in the complexity class nondeterministic polynomial time
(NP) can be reduced to a Boolean expression [Cook-Levin theorem].

• Any Boolean expression can be reduced to differential equations:
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• All the problems the brain directly solves are likely to be in NP
– Fixed amount of hardware.
– Very limited time, so very limited iteration.
– Approximate solutions to problems from higher classes may exist.
– Unlikely that brain possesses an “oracle” proposing the correct solution.
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Neurons as differential equations
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where each G□ is a function of V and time.  
Specifically, each G□ decays exponentially towards 
a value characteristic of the given voltage V.
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Hodgkin-Huxley:

Cable equation:
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Connecting Neurons to Algorithms
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Neural networks – A useful level of abstraction where the differential 
equations of neurons and algorithms take on comparable forms
• State of each neuron represented by only one or very few variables 

(“point neurons”).
• State of algorithm represented as vectors of real values.
• Most operations expressed as a multivariate linear function 

composed with a non-linear “squashing” function: O=f(Ax+b)
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Algorithm Examples
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Kalman Filter [Rao & Ballard 1999]
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Online Clustering (ART) [Carpenter and Grossberg 1987]
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Bottom-Up Models by Physiologists
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[Douglas & Martin]

[Callaway]
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Spatial structure of Neurons

[Watakabe 09]
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Finding the Algorithmic Needle
in the Neural Haystack
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• Neurophysiology literature
• Online databases

Database 
of Neural 
Structure

Network 
parameters

Xyce netlist

Query

Algorithmic 
motifs

Visualizations• Computer science insight
• Previous algorithms
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Neural structure database
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Computationally explicit
• Other available neural DBs rarely specify neural 
structure in terms of variables and equations.

• Varying specificity in the literature.
• Some sources may contradict each other.
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Structures at different levels of abstraction
• No strict hierarchical decomposition
• Connectivity may cross scale levels

How to query?
• Need sufficient closure to make working model.

Some challenges…



Neurons to Algorithms

14

Questions or 
Comments?
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Shorthand Notation
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Implicit squashing functions
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Use “L” for “learning rate” or decay rate
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