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NISAC Overview: Who we are

 The National Infrastructure Simulation and Analysis Center (NISAC) is

– A program of the Office of Infrastructure Protection

– With researchers and analysts at 

• Sandia National Laboratories, Albuquerque NM

• Los Alamos National Laboratory, Los Alamos, NM

– Began as a collaboration between the two laboratories in 1999

• Built on top of years of prior modeling and simulation of infrastructures and systems

– Established under §1016 of The USA PATRIOT Act of 2001

– Transferred to DHS under §201 (g) (4) of The Homeland Security Act of 2002
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NISAC Overview: What we do

 NISAC performs a range of 
infrastructure simulation and 
analysis tasks for and through 
DHS

– Conducts incident consequence 
analyses

• Planned analyses

• Ad-hoc analyses

– Provides support for national and 
regional exercises

– Conducts capability development 
to support analysis
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NISAC Overview: What we do
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NISAC Overview: What we do
Example: Healthcare Dependencies
 Determine Critical Dependencies

– Natural gas may only be used for backup 
generation and cooking so it is only 
critical if electric power supply is lost

– Without electric power, the hospital may 
not run operating rooms even with 
backup generators

 Mitigation Options
– How and where can patients be 

relocated?
– Did the event cause higher demand on 

hospitals?
– Analyze the effect of existing patient 

demand on healthcare resources and 
infrastructure

– Assess how the quality of care and 
patient prognoses may be altered by a 
lack of resources

– Assess the impact of allowing resources 
and patients to be redistributed between 
healthcare providers

– Determine how resources and patients 
can be shifted to maximize treatment 
outcomes and minimize response costs
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Select Dependencies

Regional Impacts



NISAC Overview: What we do

Provide fundamentally new modeling and simulation capabilities for the 
analysis of critical infrastructures, their interdependencies, vulnerabilities, 
and complexities

These domains are

– Large

– Complex

– Dynamic

– Adaptive

– Nonlinear

– Behavioral
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These advanced capabilities improve the robustness of our Nation’s critical infrastructures 
by aiding decision makers in the areas of policy assessment, mitigation planning, education, 
training, and near real-time assistance to crisis response organizations. 



NISAC Overview:
Critical Infrastructures are Interconnected
 Interconnections exist

– Within an infrastructure sector

– Across infrastructure sectors

 This includes
– Dependencies

– Interdependencies

 These dependencies and 
interdependencies include

– Humans in the loop

– Rules and other constraints
• Functionally specific

• Geographically specific

• Treaties, regulations, etc.

 Dependencies and interdependencies can 
result in

– Unexpected consequences

– Cascading failures and impacts

 History is increasingly full of long-tail events

8Too complex for mental models to be effective decision tools.



NISAC Overview:
Perspective Drives Process
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Constraints on Modeling and Model Sharing

 Temporal constraints
– On the timing needed to reflect certain system elements
– On the time needed to deliver analytic products

 System uniqueness
– Generalizing systems can result in a model of infrastructure systems that doesn’t 

respond to hazards/dependencies accurately

 Variation across the risk landscape
– Failure mechanism can greatly influence cascading impacts across infrastructure 

systems

 Information constraints
– Data

 The Human in the Loop
– Within the model
– Using the model

• Properly defining the use case(s) for which the model was designed and applying the 
model to the appropriate use case(s) 
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Constraints: Variation Across the Risk Landscape

 Understanding how infrastructure 
components become damaged

– What components are susceptible 
to different hazards

– May differ by location

– Will vary by infrastructure system

 Large-scale versus local event

– Damage to many infrastructure 
systems within a region

– Regional differences (earthquakes 
act differently in different regions)
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Constraints: System Uniqueness

 Geographic distribution

– What areas will be 
directly impacted

• How many people are 
affected

• What other 
infrastructure systems 
are in disruption area

 Components that are 
damaged

– More components, the 
longer 
restoration/recovery 
times

– Severity of damage 
impact repair times
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12,000 people lose 
electric power service

Total of 2,000 people may 
be impacted by rolling 
blackouts; up to 400 people 
at any given time between 
3:00pm and 9:00pm



Lessons Learned

 Common metrics beneficial and useful in comparing alternatives and 
discussing differences within and across sectors

– Economic consequence

– Resilience metrics

 Identifying the ‘next problem’ is important – identifying the right way to 
address it is equally important

– Flexibility to deal with variants to the ‘next problem’ is desired

 Validation is important and hard

– Especially for low probability, high consequence system disruptions

 Modeling is a constant balance of the tradeoff between breadth and depth

 The scope of unaddressed problems within sectors, especially those that 
involve cross-border concerns, is still large
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