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Introduction

• Multiple agencies are interested in 
evaluating potential safety impacts from 
emerging energy technologies
• Air Force

• Impact on training missions at Nevada Test and 
Training Range

• FAA

• California Energy Commission
• Solar power plant Applications for Certification

• National Academies – Transportation Research 
Board

• Synthesis Report on “Investigating Safety Impacts of 
Energy Technologies on Airports and Aviation”
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Air Force White Papers

• Series of white papers covering 
renewable energy technologies (PV, 
CPV, CSP, etc.)

• Potential impacts include the following:
• Ground-based and airborne radar interference

• Radio frequency interference

• Glare impact on pilots and sensors

• Infrared emissions (“thermal signature”)

• Overflight restrictions

• Sonic overpressure
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Introduction

• Glint and glare may cause unwanted visual 
impacts
• Glint is momentary flash of light; glare is more continuous 

source of excessive brightness

• Visual impacts range from flash blindness to retinal burn

• Need quantified analysis of glint/glare to reduce 
uncertainties associated with visual impacts of 
CSP installations
• Industry, military, government agencies (e.g., California 

Energy Commission, Transportation Research Board)
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Examples of Glint/Glare

Solar OneSolar One
(10 MW(10 MWee power power 
tower, Daggett, tower, Daggett, 

CA)CA)

Central Receiver Central Receiver 
Test FacilityTest Facility
(SNL, NM)(SNL, NM)

Kramer JunctionKramer Junction
(150 MW(150 MWee parabolic trough, Mojave parabolic trough, Mojave 

Desert, CA)Desert, CA)

National Solar Thermal Test FacilityNational Solar Thermal Test Facility
(SNL, NM)(SNL, NM)
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Glare Types

 

Specular 
Reflection

Diffuse 
Reflection

(polished surfaces; 
e.g., mirrors)

(rough surfaces; 
e.g., receivers)
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Specular Reflections

• Point Focus and Line Focus Collectors

Dish Heliostat Parabolic Trough
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Off-axis Dish

Specular Glare

• Potential for glint and glare from collectors

• Off-axis; misalignment; moving to or from stow/standby

• End-loss and spillage for troughs

Off-axis Trough End-Loss from Trough
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Previous Work
(Pertaining to CSP Glint and Glare)

• 1976-1984: Brumleve, T.D., SAND76-8022 and 
SAND83-8035
• Performed analysis and tests of glare from heliostats and 

receivers using retinal burn metrics from Sliney and Freasier 
(1973)

• Determined exclusion zones and developed beam control 
strategies

• 2009: Ho, C.K., C.M. Ghanbari, and R.B. Diver, 
SolarPACES 2009
• Developed safety metrics for both retinal burn and temporary 

flash blindness using data from multiple literature sources
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Previous Work (cont.)
(Pertaining to CSP Glint and Glare)

• 2010: Ho, C.K., C.M. Ghanbari, and R.B. Diver, ASME 
Energy Sustainability Conference
• Developed analytical equations to evaluate specular and diffuse 

glare using retinal burn and temporary flash blindness metrics; 
performed validation tests

• 2010:  Ho, C.K. and S.S. Khalsa (this paper)
• Derived explicit equations to determine distances that cause 

retinal burn and temporary flash blindness for specular glare

• Introduced web-based tool 
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Glare Analysis
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Retinal Irradiance

choroid

retina

lensconjunctiva

cornea

pupil

iris

nodal point

fs

ds dr

• Need to calculate
• Power entering eye

• Function of irradiance at the cornea (front of eye)

• Subtended angle of glint/glare source
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Potential Impacts

(0.15 s exposure)

From Ho et al. (2010)
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Analysis Steps
(from ASME ES2010 paper)

• Calculate retinal irradiance using equations in 
paper for specular or diffuse reflections
• Collector optical properties, DNI, pupil diameter

• Calculate subtended angle using equations in 
paper
• For diffuse reflections, source is given by size of receiver 

or reflecting source

• For specular reflections, use equations

• Identify potential impact using plot of retinal 
irradiance vs. subtended source angle



17

Comparison to Safety Metrics

 = 0.94

RMS slope
error = 1 mrad

aperture = 12 m

focal length = 7 m

50 m viewing 
distance

 Retinal irradiance Retinal irradiance 
= 5 W/cm= 5 W/cm22

 Subtended source Subtended source 
angle = 1.8 mradangle = 1.8 mrad
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Glare Web Tool
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PHLUX Web Tool
Photographic Flux Tools for Solar Glare and Flux Mapping
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Empirical Analysis

Digital photographs are taken of the glare

Images are uploaded 
with relevant information
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Selection Tools
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Output
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Recent Examples of Glare from CSP 
Facilities
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Concentrated Glare from Troughs
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Nevada Solar One

Drive-by video of Nevada Solar One Glare, Boulder City, NV (6/29/10, noon)
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Kramer Junction

Air Force Flyovers (F-16 and C-12) of Kramer Junction Parabolic Trough Plant in 2010 (CA)
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Helicopter Flyover of NSTTF

November 10, 2010
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Glare Analysis
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Infrared Emissions

• Heated objects can emit 
infrared radiation that may 
interfere with infrared 
sensors 
• Air Force interested in ~3 – 8 

micron range
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Spectral Emissive Power

700 K

Tower receiver

Trough

receiver

Spectral blackbody emissive power as a function of wavelength and temperature 
(adapted from Incropera and DeWitt, 1985).
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Example of Irradiance Received from 
Hot Photovoltaic Array
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(ASTM G173-03)
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(T=5250 C)
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Visible Irradiance received at 
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from a 3740 m 2̂ CPV 
array at a temperature 
of 100 C.
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Summary

• Glint and Glare can cause unwanted visual 
impacts
• Analytical models and safety metrics have been 

developed to quantify glint and glare

• Models have been validated with test data

• Web tool has been developed

• Infrared emissions from heated objects 
can interfere with infrared sensors
• Provide quantification of spectral irradiance for 

different technologies 
• Temperature and time dependent (e.g., cooling of tower 

receiver)
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Summary

• Identification and quantification of potential 
impacts will help agencies to develop 
appropriate mitigations, measures, and/or 
requirements 

• California Energy Commission

• Air Force

• FAA 

• National Academies – Transportation Research 
Board


