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Motivation

* Physical systems often require multiscale simulations to
capture phenomena occurring at both bulk and interface.

* Modeling such systems requires exchange of information
between the different scales.

* Uncertainty quantification is needed p, Atom(;'stl"c
in order to get a predictive fidelity —BC e
of the multiscale simulation.

Overlap (hand-shake)
region

Based on all inputs into the |
simulation, what is the resulting P
uncertainty in the predicted

value of the coupling variables?

¢ j Continuum
BCC model

Uncertain
\observables



The main objective is to quantify uncertainty of an atomistic
simulation output in a stochastic coupled multiscale setting.

We develop and validate a theoretical framework for stochastic multi-
scale coupling based on a simple plane Couette flow.

u =V p 'his BC is handled by
a continuum model.

Overlap
(hand-shake) region

This BC is handled by an
u,=0 P> Jtomistic simulation.

A simple plane Couette flow

Benefits of studying a simple Couette flow:
* Analytical solution available on the continuum level
* Sufficiently simple for methods development and validation
* Sufficiently complex to address all hurdles towards the final solution



Atomistic simulations output is uncertain due to Molecular
Dynamics (MD) finite sampling.
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Stochastic coupling is needed in order to feed uncertainty back to continuum.



In order to evaluate any uncertain observable, we first
evaluate the exchanged variables and their uncertainty
between the atomistic and continuum models.

To this end, we focus on the uncertainty
due to MD noise and finite sampling.

We use Polynomial Chaos Expansions
(PCE) to express the uncertain variables
u and U.

U= (u)
~f (U)

We use Bayesian inference to propagate
uncertainty in an atomistic simulation
and to compute the PCE model of

u

u=fa(U).
We then iterate between the atomistic T

. . . . ncertain
and continuum simulations until I —

convergence.



Polynomial Chaos Expansions (PCE) are used in uncertainty
quantification for an efficient representation of a random variable

Let X be a random variable with finite variance.

X:0—IR

X((U)= Z XkY/k<§1,§2---§Nd)
k=0
{Ei}fvjl are i.i.d. random variables (e.g., Gaussian)

{Y’k}f:o are multivariate orthogonal polynomials (e.g., Hermite)

We truncate the expansion at order N_ and dimension N, such that:

X=) X,Y,(§) P+1=



Bayesian Inference

Let m be a hypothesis and D observed data.

Posterior\ Likelihood \? | ) ( )A/Prior
P(D\m)P(m
PmID) = T Bimyplm)am

* The prior expresses the initial knowledge about the hypothesis m (e.g. uniform
distribution, expert's knowledge...)

* The likelihood is the probability of observing the data D given the hypothesis m.
It encompasses the forward model of m.

e The denominator is a normalization constant.

* The posterior is the probability of the hypothesis m given the data D : offers an
enhanced knowledge of m.



Variables exchange between continuum and atomistic models
within the overlap region

MD simulation domain

* A velocity u is extracted from the atomistic simulation at y=0 and imposed
on continuum at z=0.

« A velocity U is evaluated by the continuum model at z=h  and it is imposed
on the atomistic simulation at y=0 and y=2h  (in opposite directions)



Propagating of uncertainty in a MD simulation

MD

NN N

1) We draw N_samples U from the
PCE of U based on quadrature points. V4

2) For each sample U, we perform : {V"’f}?;fo
N_replica MD simulations. : '

3) From each replica MD simulation,
we draw N, samples V7.

4) We use all these N_xN xN, values ! ' ' ' T Ui
of v as data D, to infer the PCE of vu.



Inferring the Output Variable

P(afo?)D,) x P(D,l|a, 0*)P(a,0?)

VA

P
v :Zﬂkq’k(g)JrUg [ :
—0 \ ) Noise E{. :
Noise term .
|

We draw samples from the . . . | |
posterior using Markov Chain | | | ! ! {Jms
Monte Carlo (MCMC) sampling. )

¢ relates to the spread in U’



Folding the input uncertainty and the sampling noise into
one uncertain output

After marginalizing over o2, we obtain a joint posterior on the {Uk}',;o:

We approximate {gk}P
follows:

as a Multivariate Normal Distribution (MVN) as

{ir}yey ~MVYN(u,2) =p + L where LTL =%

We obtain:

i=WE)T ot (/BT S T(E)



Folding the input uncertainty and the sampling noise into one
uncertain output

u

T(E)T -t (TS (E)

This expression of G is “cheap” for sampling in {and ¢!

/ . ~
Inverse Cumulative F() is the CDF of 4 P
Distribution
Function (CDF) < 1 uw=>Y up¥(¢)
t:Jann(;f]grr:n Up = <F (®(6))?;(§)) k=0

. (ﬂjﬂ(g)d>

¢ is the degree of
freedom associated
with the sampling noise



Summary of the Different Steps for Coupling

Laminar Newtonian Couette flow
The analytical solution is available

V Vuk hMD h’ for\
= V“k hMDh for 0 < k< P

)

U(é) u(é)

lSampling on Gauss Folding { into § T

quadrature points

Bayesian inference

Surrogate
M=N xN




Joint Posterior of {G,d }
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Bayesian inference Folding  into & BaCk. to
continuum

Sequential Bayesian Updating (SBU)

The posterior of the previous iteration is used as the prior in the current iteration.
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Stochastic Coupling Algorithm Convergence Without SBU

t = Time averaging window width
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Stochastic Coupling Algorithm Convergence With SBU
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Effect of the time averaging window t_on the
convergence of the mean and standard deviation
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Effect of the number of samples M on the convergence

of the mean and standard deviation
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Conclusions

Uncertainty quantification enables predictive modeling of
multi-scale systems.

We showed a method to derive the PCE of a variable
extracted from MD simulations.

We developed an algorithm that couples atomistic and
continuum simulation models through variable exchange in
terms of PCEs.

The coupling iterative algorithm converges in a reasonable
number of iterations.

Sequential Bayesian Updating enhances the accuracy of the
converged variables by including additional data at each
iteration.
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Uncertainty Propagation in the Atomistic

Simulation
Inferring the Output Variable
P(ﬁ,agDﬂ) X P(Dﬂﬁ,a%)?(ﬁ)?(ag)
Log-likelihood function:

dtd
2
T¢

log (P(DU|'£},, ag)) — _0.5N N, N, (log(27r) n 1og(a§)) — 0.5

P
djtG-nN, N, = 07 = ) ik Wr(&)

K==l
Priors:
. 2
For the PC coefficients: For 0_8"
P
L T L for o2 > ()
f < < —
Plu) = Igak—ﬁk or B £ e < 0 P(gg) — ¢ % §
0 otherwise 0 otherwise



Results

Molecular Dynamics Simulations

0 20 40 60
typ (ns)

t = time averaging window width
U=20m/s

¥y = 2hMD--S

* MD simulations are a lot more
expensive than continuum simulations.

* Hence, we infer a surrogate of these
MD simulations and use in the coupling
algorithm.



Results
MD Simulations Surrogate

t =5ns
W T

t =25ns
W T

25 25 25

207 207 20¢

157 15+ 15+

107 107 107

40 0 10 20 30

t = Time averaging window width

For each sample of U, we now draw M data points from the surrogate equal to
N_x N, data points drawn from MD simulations.



U@ u($)

Sampling on Gauss
quadrature points

Folding ¢ into fT

u(,o)

Bayesian inference

U_S|n9 the MD Sequential Bayesian Updating (SBU)
simulations The posterior of the previous iteration
surrogate 1s used as prior in the current iteration



Results

Uncertainty Propagation in the Atomistic Simulation
Inference data
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Results

Uncertainty Propagation in the Atomistic Simulation
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Uncertainty Propagation in the Atomistic Simulation

Results

Without SBU (M=20)
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Results

Uncertainty Propagation in the Atomistic Simulation
With SBU (M=20)
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