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Motivation
•  Physical systems often require multiscale simulations to 

capture phenomena occurring at both bulk and interface.

•  Modeling such systems requires exchange of information 
between the different scales.

•  Uncertainty quantification is needed 
in order to get a predictive fidelity 
of the multiscale simulation.

Based on all inputs into the 
simulation, what is the resulting 
uncertainty in the predicted 
value of the coupling variables? 



A simple plane Couette flow

The main objective is to quantify uncertainty of an atomistic 
simulation output in a stochastic coupled multiscale setting.

 Benefits of studying a simple Couette flow: 
• Analytical solution available on the continuum level
• Sufficiently simple for methods development and validation
• Sufficiently complex to address all hurdles towards the final solution

This BC is handled by an 
atomistic simulation.

This BC is handled by 
a continuum model.

Overlap
(hand-shake) region

We develop and validate a theoretical framework for stochastic multi-
scale coupling based on a simple plane Couette flow.



t
w
=  time averaging window width

U = 20 m/s

Stochastic coupling is needed in order to feed uncertainty back to continuum.

Atomistic simulations output is uncertain due to Molecular 
Dynamics (MD) finite sampling.



In order to evaluate any uncertain observable, we first 
evaluate the exchanged variables and their uncertainty 

between the atomistic and continuum models.

● To this end, we focus on the uncertainty 
due to MD noise and finite sampling.

● We use Polynomial Chaos Expansions 
(PCE) to express the uncertain variables 
u and U.

● We use Bayesian inference to propagate 
uncertainty in an atomistic simulation 
and to compute the PCE model of 
u=f

a
(U).

● We then iterate between the atomistic 
and continuum simulations until 
convergence.



Polynomial Chaos Expansions (PCE) are used in uncertainty 
quantification for an efficient representation of a random variable.

Let X be a random variable with finite variance.

 are i.i.d. random variables (e.g., Gaussian)

 are multivariate orthogonal polynomials (e.g., Hermite)

 We truncate the expansion at order No and dimension Nd such that:
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k=0
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PriorLikelihoodPosterior

● The prior expresses the initial knowledge about the hypothesis m (e.g. uniform 
distribution, expert's knowledge...)

● The likelihood is the probability of observing the data D given the hypothesis m. 
It encompasses the forward model of m.

● The denominator is a normalization constant.

● The posterior is the probability of the hypothesis m given the data D : offers an 
enhanced knowledge of m.

Let m be a hypothesis and D observed data.

Bayesian Inference



Variables exchange between continuum and atomistic models 
within the overlap region

MD simulation domain

• A velocity u is extracted from the atomistic simulation at y=δ and imposed 
on continuum at z=δ.

• A velocity U is evaluated by the continuum model at z=hMD  and it is imposed 
on the atomistic simulation at y=0 and y=2hMD  (in opposite directions)



1)  We draw N
s 
samples U

i
 from the 

PCE of U based on quadrature points.

2)  For each sample U
i
, we perform 

N
r
 replica MD simulations.

3)  From each replica MD simulation, 
we draw Nt samples vij.

4)  We use all these Ns×Nr×Nt values 
of v as data Dv to infer the PCE of u.

Propagating of uncertainty in a MD simulation



Inferring the Output Variable

Noise 

Noise term

We draw samples from the 
posterior using Markov Chain 
Monte Carlo (MCMC) sampling.



ξ relates to the spread in U i

v



Folding the input uncertainty and the sampling noise into 
one uncertain output

We approximate            as a Multivariate Normal Distribution (MVN) as 
follows:

where

After marginalizing over σ 2, we obtain a joint posterior on the           :{ uk}k=0
P

{ uk}k=0
P

We obtain:



Folding the input uncertainty and the sampling noise into one 
uncertain output

This expression of ũ is “cheap” for sampling in ζ and ξ !

Inverse Cumulative 
Distribution 
Function (CDF) 
transform

F(.) is the CDF of ũ 

ξ is the degree of 
freedom associated 
with the sampling noise



Continuum

Laminar Newtonian Couette flow
The analytical solution is available

Summary of the Different Steps for Coupling

Surrogate
M = Nr x Nt



Joint Posterior of {ũ0,ũ1}

Back to 
continuum

Sequential Bayesian Updating (SBU)
The posterior of the previous iteration is used as the prior in the current iteration.

1st  iteration
8th  iteration
Without SBU

8th  iteration
With SBU



1st  iteration
8th  iteration
Without SBU

8th  iteration
With SBU

PDFs of u and U

Back to 
continuum



tw = Time averaging window width

tw=1 ns tw=5 ns tw=25 ns

Stochastic Coupling Algorithm Convergence Without SBU



tw = Time averaging window width

Stochastic Coupling Algorithm Convergence With SBU

tw=1 ns tw=5 ns tw=25 ns



Without SBU With SBU

Solid: tw=1 ns Dashed: tw=5 ns Dotted: tw=25 ns

Mean
Standard
deviation

Effect of the time averaging window tw on the 
convergence of the mean and standard deviation

Mean Standard
deviation



Without SBU With SBU

Solid: M=10 Dashed: M=20 Dotted: M=40

Mean
Standard
deviation

Effect of the number of samples M on the convergence 
of the mean and standard deviation

Mean Standard
deviation



• Uncertainty quantification enables predictive modeling of 
multi-scale systems.

• We showed a method to derive the PCE of a variable 
extracted from MD simulations.

• We developed an algorithm that couples atomistic and 
continuum simulation models through variable exchange in 
terms of PCEs.

• The coupling iterative algorithm converges in a reasonable 
number of iterations.

• Sequential Bayesian Updating enhances the accuracy of the 
converged variables by including additional data at each 
iteration.

Conclusions
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Uncertainty Propagation in the Atomistic 
Simulation

Inferring the Output Variable

Log-likelihood function:

Priors:
For the PC coefficients: For       : 

2



Results

• MD simulations are a lot more 
expensive than continuum simulations.

• Hence, we infer a surrogate of these 
MD simulations and use in the coupling 
algorithm.

Molecular Dynamics Simulations

t
w
=  time averaging window width

U = 20 m/s



Results
MD Simulations Surrogate

For each sample of U, we now draw M data points from the surrogate equal to 
Nr x Nt data points drawn from MD simulations.

tw = Time averaging window width



Sequential Bayesian Updating (SBU)
The posterior of the previous iteration 
is used as prior in the current iteration

Using the MD 
simulations 
surrogate



Results
Uncertainty Propagation in the Atomistic Simulation

Inference data
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Results
Uncertainty Propagation in the Atomistic Simulation

PDFs of ũ
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Results
Uncertainty Propagation in the Atomistic Simulation

Without SBU (M=20)
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Results
Uncertainty Propagation in the Atomistic Simulation

With SBU (M=20)
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