
Complex System Modeling and
Science-Based Cybersecurity

Computer Sciences and Information Systems
Sandia National Laboratories, Livermore, California

Sandia National Laboratories is a multiprogram laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the United States Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-1375P

Securing an arbitrary code is not
just hard; it’s impossible

• Restated: Generic code has vulnerabilities that are
unprovable and unknowable
– Not statistical, even in principle

– Turing completeness demands that a generic code is
undecidable

• So now what?

Complexity makes
cyber threats asymmetric

• Developer, user, and attacker
all don’t know where the
vulnerabilities are
(undecidable)

• Worse, attacker may have
planted a vulnerability

• Asymmetry: One vulnerability
compromises the whole code
– Developer has to find all of

them (impossible in general)

• No one can guarantee “this
code is clean” or even
quantify improvement

What is complexity?

• Complex systems are characterized by large
numbers of interacting entities where even a few
entities can strongly affect system behavior

• Complex systems are irreducible; their behavior
is emergent and not evident a priori, but is
accessible via observation and simulation

• Examples are ubiquitous

– Living things and ecosystems

– Human societies, economies, and institutions

– Highly engineered artifacts – e.g., airplanes, NWs

– Large-scale infrastructure – e.g., power grids

– Computer software, hardware, and networks

Complexity space illustrates tradeoffs
in device engineering and analysis

How formal methods workHow formal methods work

• Feed a formal methods tool with a mathematical model
of the system (formal specification) and the claimed
properties of the system

– Automated theorem proving

• Uses logical truths and inference to prove the
properties of the system

– Model checking

• Partial order reduction, symbolic manipulation,
etc. to reduce the state space

• Exhaustive checking of the reduced states

• If a property can be proved false, a counter-example is
also provided

Formal methods are a bridge
to complexity, filling an important gap

• Formal methods use computer analysis to verify
digital systems rigorously and exhaustively

– Applicable to less complex systems that are still beyond
the reach of manual analysis

– Widely used in high-consequence industrial applications
such as aviation and medical devices

• Verification of components does not generally
translate to verification of whole system

• Irreducible complexity enters when exploring entire
state space is infeasible

– Reliability and security assertions become probabilistic

• Both formal verification and complexity science are
vital for gaining confidence in digital systems

Complexity science offers a new
perspective on modeling and design

• Most real-world systems are too intricate to
analyze directly; they are irreducible

• Reductionism requires “bottom-up” understanding

– Use expert knowledge to model component entities

– Validate system model vs. observations

– Make each component entity as reliable as possible

– Formal methods are the pinnacle of this approach

• Complexity science provides “top-down” insight
relating system structure to emergent behavior

– New modeling paradigm: Identify entities by abstraction
from idealized models with known emergent behavior

– New design paradigm: Build real systems based on
models with desired emergent behavior

• “Sandbot”: cyber model of
coordinated malware

• ​SOC is spontaneous
development of multi-scale
phenomena with power-law
distributions

– Similar to thermodynamic
criticality but without tuning

• Illustrated by sandpile
model: physics-like CA

– Sand is sprinkled randomly

– Avalanches occur at all scales

Self-organized criticality is
a simple example of emergent behavior

Complexity is a fact of “life”

• Biological phenomena are a prototype and
inspiration for many complex domains

– Life involves a large chemical regulatory network

– “Game of Life” model is based on population dynamics

– Bio concepts pervade computing (viruses, mutations)

• Biology typifies complex couplings of manmade
systems – economy, energy, cybersecurity

Eukaryotic
cell-cycle
regulation

Robustness is key to understanding
real-world systems with “organic” behavior

• Highly optimized tolerance (HOT): Systems designed
or selected to perform well despite perturbations

• Robustness is necessary for biological evolution and
for effective engineering

• HOT systems exhibit power-law distributions like SOC
but have organic structure (not self-similar)

• Adapted robustness to one set of perturbations
induces extra fragility to different perturbations

• Indeed, rare but catastrophic failures are seen in highly
engineered/evolved systems

– Electrical blackouts, cyber shutdown of Estonia, financial
panics, hacker penetration of bank database, etc.

Observation #1: A program’s
feature set has many implementations

• Feature set is defined by a
test suite

• Test suite verifies that an
implementation conforms to
desired functionality

• Test suite is a sample;
cannot realistically cover all
possible input/outputs

• Vulnerabilities arise from
untested input/outputs

• Any feature set has infinitely
many implementations
– Finite large number if size is

bounded

Observation #2: Ensemble of instances
permits the formulation of statistics

• Assume: Multiple implementations randomize security holes

• Ensemble of multiple-version, “randomized” undecidable
codes allows formation of security improvement statistics

High-reliability systems can be
constructed from “N-version software”

• Space Shuttle: 4 computers, identical
software, different hardware, same design
– Focus is on hardware faults

• Similarly, software redundancy used mostly
for control systems up to now
– N-version software: Multiple versions implemented to the

same feature set by different developers

• Models of N-version software view the control system
as a stochastic process that walks the code graph of
the software
– Control system takes the place of a “fuzzer”

Similarly, N-version software can
quantifiably improve cybersecurity

• Clear generalization of N-version reliability to
cybersecurity …

• … but there are important differences requiring
enabling technology
– Compromised versions must be removed and replaced

– Hand-made new versions are time-consuming and expensive
• May repeat previous mistakes

Simple statistics arise from
an ensemble of undecidable programs

• On a specific feature set F there is a probability Pv that a
particular sample from the set of implementations of F
will be susceptible to vulnerability v. For a voting
ensemble of size N:
– The probability of success for the attacker is (Pv)

N/2

– The attacker “work” is the expected number of tries: (Pv)
−N/2

– The work for defender is the cost of producing N
implementations: ~ N

N

A simple example: Diverse software
can be constructed from components

• Component-based codes
automatically conform to
a feature set if the
constituent components
conform to their
individual feature sets
(semantic interfaces)
– Multiple implementations of

the code amount to multiple
versions of components

– Components can be mixed
and matched to form a
combinatorial number of
code implementations

Living systems adapt to cope
with unknowable attacks

• A component type
is similar to a
gene; component
implementations
are similar to
alleles of a gene

Reassemble alleles into individuals

• Different alleles can
be assembled into
new individuals that
have “randomized”
security holes

• New individuals are
differently vulnerable
and potentially
adaptive

• Excess functionality
and planted
vulnerabilities can be
“annealed” away

Compare responses from individuals

• Now different
individuals will
produce the same
feature set but react
differently to attacks

Evolve new and more robust individuals

• Eliminate the one
with the
differentiated
response

Complexity can address
“whole system” robustness and stability

• Consider designing a digital circuit to add two 1-bit
numbers (a “half adder”)

– This is among the most basic functions appearing in
microelectronics

• There are many ways of composing logic gates to
implement this functionality

• The next slide shows two such circuits; each performs
as a half adder when run for twenty steps

– Shown correctly adding 1 + 1 to get the binary result 10

– They also give correct answers for the other possible inputs

Outputs

Inputs Inputs

Outputs

A B

What distinguishes the two
implementations? Resilience

• For this very simple functionality, both circuits can be
verified by exhaustive testing

• More realistic circuits cannot be tested exhaustively,
so we need to understand the effect of untested states

• In this example, we introduce occasional gate errors to
represent unanticipated behavior

• The next slide shows a typical run of each circuit with
a 1% error rate per gate update

– States that deviate from the ideal run are outlined in red

• Circuit A has much less error in the final output
(greater resilience) than circuit B – why?

– In this case, average inputs per node (k) makes the difference

Outputs
(Average incorrect bits: 0.73)

Inputs Inputs

Outputs
(Average incorrect bits: 0.10)

A B

k = 1.5 k = 2.5

