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Securing an arbitrary code is not
just hard; it’s impossible

• Restated: Generic code has vulnerabilities that are 
unprovable and unknowable
– Not statistical, even in principle

– Turing completeness demands that a generic code is 
undecidable

• So now what?



Complexity makes
cyber threats asymmetric

• Developer, user, and attacker
all don’t know where the 
vulnerabilities are 
(undecidable) 

• Worse, attacker may have 
planted a vulnerability

• Asymmetry: One vulnerability 
compromises the whole code
– Developer has to find all of 

them (impossible in general) 

• No one can guarantee “this 
code is clean” or even 
quantify improvement



What is complexity?

• Complex systems are characterized by large 
numbers of interacting entities where even a few
entities can strongly affect system behavior

• Complex systems are irreducible; their behavior 
is emergent and not evident a priori, but is 
accessible via observation and simulation

• Examples are ubiquitous

– Living things and ecosystems

– Human societies, economies, and institutions

– Highly engineered artifacts – e.g., airplanes, NWs

– Large-scale infrastructure – e.g., power grids

– Computer software, hardware, and networks 



Complexity space illustrates tradeoffs
in device engineering and analysis



How formal methods workHow formal methods work

• Feed a formal methods tool with a mathematical model 
of the system (formal specification) and the claimed 
properties of the system

– Automated theorem proving

• Uses logical truths and inference to prove the 
properties of the system

– Model checking

• Partial order reduction, symbolic manipulation, 
etc. to reduce the state space

• Exhaustive checking of the reduced states

• If a property can be proved false, a counter-example is 
also provided



Formal methods are a bridge
to complexity, filling an important gap

• Formal methods use computer analysis to verify 
digital systems rigorously and exhaustively

– Applicable to less complex systems that are still beyond 
the reach of manual analysis

– Widely used in high-consequence industrial applications 
such as aviation and medical devices

• Verification of components does not generally 
translate to verification of whole system

• Irreducible complexity enters when exploring entire 
state space is infeasible

– Reliability and security assertions become probabilistic

• Both formal verification and complexity science are 
vital for gaining confidence in digital systems



Complexity science offers a new
perspective on modeling and design

• Most real-world systems are too intricate to 
analyze directly; they are irreducible

• Reductionism requires “bottom-up” understanding

– Use expert knowledge to model component entities

– Validate system model vs. observations

– Make each component entity as reliable as possible

– Formal methods are the pinnacle of this approach

• Complexity science provides “top-down” insight 
relating system structure to emergent behavior

– New modeling paradigm: Identify entities by abstraction 
from idealized models with known emergent behavior

– New design paradigm: Build real systems based on 
models with desired emergent behavior



• “Sandbot”: cyber model of 
coordinated malware

• ​SOC is spontaneous
development of multi-scale 
phenomena with power-law 
distributions

– Similar to thermodynamic 
criticality but without tuning

• Illustrated by sandpile 
model: physics-like CA

– Sand is sprinkled randomly

– Avalanches occur at all scales

Self-organized criticality is
a simple example of emergent behavior



Complexity is a fact of “life”

• Biological phenomena are a prototype and 
inspiration for many complex domains

– Life involves a large chemical regulatory network

– “Game of Life” model is based on population dynamics

– Bio concepts pervade computing (viruses, mutations)

• Biology typifies complex couplings of manmade 
systems – economy, energy, cybersecurity

Eukaryotic 
cell-cycle 
regulation



Robustness is key to understanding
real-world systems with “organic” behavior

• Highly optimized tolerance (HOT): Systems designed
or selected to perform well despite perturbations

• Robustness is necessary for biological evolution and 
for effective engineering

• HOT systems exhibit power-law distributions like SOC 
but have organic structure (not self-similar)

• Adapted robustness to one set of perturbations 
induces extra fragility to different perturbations

• Indeed, rare but catastrophic failures are seen in highly 
engineered/evolved systems

– Electrical blackouts, cyber shutdown of Estonia, financial 
panics, hacker penetration of bank database, etc.



Observation #1: A program’s
feature set has many implementations

• Feature set is defined by a 
test suite

• Test suite verifies that an 
implementation conforms to 
desired functionality

• Test suite is a sample; 
cannot realistically cover all 
possible input/outputs

• Vulnerabilities arise from 
untested input/outputs

• Any feature set has infinitely 
many implementations
– Finite large number if size is 

bounded



Observation #2: Ensemble of instances 
permits the formulation of statistics

• Assume: Multiple implementations randomize security holes

• Ensemble of multiple-version, “randomized” undecidable 
codes allows formation of security improvement statistics



High-reliability systems can be
constructed from “N-version software”

• Space Shuttle: 4 computers, identical 
software, different hardware, same design
– Focus is on hardware faults

• Similarly, software redundancy used mostly 
for control systems up to now
– N-version software: Multiple versions implemented to the 

same feature set by different developers

• Models of N-version software view the control system 
as a stochastic process that walks the code graph of 
the software
– Control system takes the place of a “fuzzer”



Similarly, N-version software can 
quantifiably improve cybersecurity

• Clear generalization of N-version reliability to 
cybersecurity …

• … but there are important differences requiring 
enabling technology
– Compromised versions must be removed and replaced

– Hand-made new versions are time-consuming and expensive
• May repeat previous mistakes



Simple statistics arise from
an ensemble of undecidable programs

• On a specific feature set F there is a probability Pv that a 
particular sample from the set of implementations of F
will be susceptible to vulnerability v.  For a voting 
ensemble of size N:
– The probability of success for the attacker is (Pv)

N/2

– The attacker “work” is the expected number of tries: (Pv)
−N/2

– The work for defender is the cost of producing N
implementations: ~ N

N



A simple example: Diverse software
can be constructed from components

• Component-based codes 
automatically conform to 
a feature set if the 
constituent components 
conform to their 
individual feature sets 
(semantic interfaces) 
– Multiple implementations of 

the code amount to multiple 
versions of components

– Components can be mixed 
and matched to form a 
combinatorial number of 
code implementations



Living systems adapt to cope
with unknowable attacks

• A component type 
is similar to a 
gene; component 
implementations 
are similar to 
alleles of a gene



Reassemble alleles into individuals

• Different alleles can 
be assembled into 
new individuals that 
have “randomized” 
security holes

• New individuals are 
differently vulnerable 
and potentially 
adaptive

• Excess functionality 
and planted 
vulnerabilities can be 
“annealed” away



Compare responses from individuals

• Now different 
individuals will 
produce the same 
feature set but react 
differently to attacks



Evolve new and more robust individuals

• Eliminate the one 
with the 
differentiated 
response



Complexity can address 
“whole system” robustness and stability

• Consider designing a digital circuit to add two 1-bit 
numbers (a “half adder”)

– This is among the most basic functions appearing in 
microelectronics

• There are many ways of composing logic gates to 
implement this functionality

• The next slide shows two such circuits; each performs 
as a half adder when run for twenty steps

– Shown correctly adding 1 + 1 to get the binary result 10

– They also give correct answers for the other possible inputs



Outputs

Inputs Inputs

Outputs

A B



What distinguishes the two 
implementations? Resilience

• For this very simple functionality, both circuits can be 
verified by exhaustive testing

• More realistic circuits cannot be tested exhaustively, 
so we need to understand the effect of untested states

• In this example, we introduce occasional gate errors to 
represent unanticipated behavior

• The next slide shows a typical run of each circuit with 
a 1% error rate per gate update

– States that deviate from the ideal run are outlined in red

• Circuit A has much less error in the final output 
(greater resilience) than circuit B – why?

– In this case, average inputs per node (k) makes the difference



Outputs
(Average incorrect bits: 0.73)

Inputs Inputs

Outputs
(Average incorrect bits: 0.10)

A B

k = 1.5 k = 2.5


